НАУЧНАЯ СТАТЬЯ

УДК 615.1 615.014 539.264

ВЛИЯНИЕ АМОРФНЫХ ТВЕРДЫХ ДИСПЕРСИЙ С ПРИВИТЫМ СОПОЛИМЕРОМ ПОЛИВИНИЛКАПРОЛАКТАМА, ПОЛИВИНИЛАЦЕТАТА И ПОЛИЭТИЛЕНГЛИКОЛЯ НА КРИСТАЛЛИЧНОСТЬ И КИНЕТИКУ РАСТВОРЕНИЯ N-БУТИЛ-N-МЕТИЛ-1-ФЕНИЛПИРРОЛО[1,2-А]ПИРАЗИН-3-КАРБОКСАМИДА

Владимир Борисович Маркеев, Владимир Павлович Виноградов, Сергей Валерьевич Тишков, Евгения Викторовна Блынская, Константин Викторович Алексеев, Владимир Львович Дорофеев

Федеральный исследовательский центр оригинальных и перспективных биомедицинских и фармацевтических технологий

Автор, ответственный за переписку: Владимир Борисович Маркеев, markeev vb@academpharm.ru

Аннотация. Проблема плохой растворимости в воде, которая, как правило, отрицательно сказывается на биодоступности при пероральном приеме лекарственных средств, свойственна большинству (до 70%) молекул, разрабатываемых в качестве активных фармацевтических субстанций. В статье описана разработка аморфных твердых дисперсий N-бутил-N-метил-1-фенилпирроло[1,2-а]пиразин-3-карбоксамида (ГМЛ-3) с полимером Soluplus[®]. Включение практически нерастворимого в воде и обладающего антидепрессивным и анксиолитическим действием ГМЛ-3 в твердые дисперсии позволило перевести его из кристаллического в аморфное состояние. Аморфность твердых дисперсий подтверждена рентгенофазовым анализом и дифференциальной сканирующей калориметрией. Выявлено взаимодействие полимера и ГМЛ-3 внутри дисперсий. В результате изучения влияния аморфных твердых дисперсий с Soluplus[®] на кинетику высвобождения ГМЛ-3 удалось добиться растворимости 98,4% ГМЛ-3 в воде путем создания твердых дисперсий ГМЛ-3 с Soluplus[®], что решило проблему растворимости данной АФС.

Ключевые слова: твердые дисперсии, кристалличность, Γ МЛ-3, $Soluplus^{\otimes}$, растворимость

DOI: 10.55959/MSU0579-9384-2-2025-66-4-319-327

Благодарности. Авторы выражают благодарность Центру коллективного пользования МГУ имени М.В. Ломоносова за техническую поддержку в осуществлении настоящей работы.

Список сокращений: ГМЛ-3 – N-бутил-N-метил-1-фенилпирроло[1,2-а] пиразин-3-карбоксамид, АТД — аморфная твердая дисперсия, АФС— активная фармацевтическая субстанция.

Финансирование. Исследование выполнено в рамках бюджетного финансирования ФГБНУ «ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий».

[©] Маркеев В.Б., Виноградов В.П., Тишков С.В., Блынская Е.В., Алексеев К.В., Дорофеев В.Л., 2025

Для цитирования: Маркеев В.Б., Виноградов В.П., Тишков С.В., Блынская Е.В., Алексеев К.В., Дорофеев В.Л. Влияние аморфных твердых дисперсий с привитым сополимером поливинилкапролактама, поливинилацетата и полиэтиленгликоля на кристалличность и кинетику растворения N-бутил-N-метил-1-фенилпирроло[1,2-а]пиразин-3-карбоксамида // Вестн. Моск. ун-та. Сер. 2. Химия. 2025. Т. 66. № 4. С. 319—327.

ORIGINAL ARTICLE

INFLUENCE OF AMORPHOUS SOLID DISPERSIONS WITH A GRAFTED COPOLYMER OF POLYVINYLCAPROLACTAM, POLYVINYL ACETATE, AND POLYETHYLENE GLYCOL ON THE CRYSTALLINITY AND KINETICS OF DISSOLUTION OF N-BUTYL-N-METHYL-1-PHENYLPYRROLO[1,2-A]PYRAZINE-3-CARBOXAMIDE

Vladimir B. Markeev, Vladimir P. Vinogradov, Sergej V.Tishkov, Evgenija V. Blynskaya, Konstantin V. Alekseev, Vladimir L. Dorofeev

Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies

Abstract. The problem of poor solubility in water, which usually negatively affects the bioavailability of oral medications, is a characteristic of most molecules (up to 70%) developed as active pharmaceutical ingredients (API). Amorphous solid dispersions of N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3) with Soluplus® polymer have been developed. The inclusion of GML-3, which is practically insoluble in water and has an antidepressant and anxiolytic effects in solid dispersions, made it possible to transfer it from a crystalline to an amorphous state. The amorphousness of solid dispersions was confirmed by powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC), and the interaction of polymer and GML-3 inside the dispersions was revealed. As a result of studying the effect of amorphous solid dispersions with Soluplus® on the dissolution kinetics of GML-3, it was possible to achieve the solubility of GML-3 in water at the level of 98,4%, which solves the problem of the solubility of the API.

Abbreviations: GML-3 – N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide, ASD – amorphous solid dispersion, API – active pharmaceutical ingredient.

Keywords: solid dispersions, crystallinity, GML-3, Soluplus®, solubility

Acknowledgements. The authors are grateful to the Center for Collective Use of Lomonosov Moscow State University for technical support in the implementation of this work.

Financial Support. The study was carried out within the framework of budget financing of the Federal State Budgetary Budgetary Institution "FITZ of original and promising Biomedical and Pharmaceutical Technologies".

For citation: Markeev V.B., Vinogradov V.P., Tishkov S.V., Blynskaya E.V., Alekseev K.V., Dorofeev V.L. Influence of Amorphous Solid Dispersions with a Grafted Copolymer of Polyvinylcaprolactam, Polyvinyl Acetate, and Polyethylene Glycol on The Crystallinity And Kinetics of Dissolution of N-Butyl-N-Methyl-1-Phenylpyrrolo[1,2-A]Pyrazine-3-Carboxamide // Vestn. Mosk. un-ta. Ser. 2. Khimiya. 2025. T. 66. № 4. S. 319–327.

Снижение или потеря трудоспособности пациентов, страдающих тревогой и депрессией, на

которую приходится большая часть психических расстройств, наносит серьезный ущерб экономи-

ке и социуму [1–3]. При этом в первые недели после начала терапии антидепрессантами повышен риск суицида, что делает необходимым прием пациентами анксиолитиков (устаревшее название «транквилизаторы») [4, 5].

Синтезированное в ФГБНУ «ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий» в линии производных 1-арилпирроло[1,2-а]пиразин-3-карбоксамида соединение N-бутил-N-метил-1-фенилпирроло[1,2-а]пиразин-3-карбоксамид, получившее рабочий шифр ГМЛ-3 (рис. 1), обладает одновременно антидепрессивным и анксиолитическим действием. Два терапевтических эффекта и отсутствие большинства побочных эффектов бензодиазепинов являются преимуществами ГМЛ-3 как нового перспективного лекарственного препарата (ЛП). Однако его низкая растворимость в воде, составляющая более 10000 мл на 1 г активной фармацевтической субстанции (АФС) негативно влияет на биодоступность, выступая препятствием на пути к созданию ЛП для перорального приема. По разным данным такая проблема характерна для большинства (около 70%) новых разрабатываемых в качестве АФС молекул [6, 7]. Проблема усугубляется наличием у малых молекул АФС прочной кристаллической решетки, которая существенно замедляет кинетику растворения. ГМЛ-3 имеет характерные для кристаллического вещества пики дифрактограммы при 5,7; 7,5; 12,1; 17,9; 21,1 и 22,7 град. и пик плавления на термограмме при 86-88 °C [8]. Одним из путей увеличения скорости растворения и преодоления проблемы кристалличности АФС является создание аморфных твердых дисперсий (АТД), где АФС молекулярно диспергирована в полимере, в результате чего все молекулы находятся в аморф-



Рис. 1. Структурная формула ГМЛ-3

ном состоянии [9–11]. Это положительно сказывается на кинетике растворения АФС, так как в этом случае не требуется энергии на разрыв ее кристаллической решетки.

Цель настоящего исследования — оценка кинетики высвобождения ГМЛ-3 из АТД, изучение кристалличности и взаимодействия ГМЛ-3 с полимером (Soluplus[®]).

Soluplus® разработан специально для получения АТД и представляет собой привитый сополимер поливинилкапролактама, поливинилацетата и полиэтиленгликоля (6000) в соотношении 13:57:30 со средней молекулярной массой 118 000. Твердые дисперсии с Soluplus[®], как правило, получают методом экструзии горячего расплава. Однако, несмотря на то, что температура стеклования данного полимера составляет ~70 °C и близка к температуре плавления кристаллов ГМЛ-3, риск термолиза ГМЛ-3 при длительном термостатировании в расплавленном состоянии не позволяет использовать методы создания АТД, связанные с нагреванием. ГМЛ-3 растворим в этаноле, Soluplus® растворяется в этаноле без образования коллоидных частиц, которые формируются лишь при критической концентрации 7,6 мг/л (при рН 7). Таким образом, при достаточном количестве этанола можно получить АТД ГМЛ-3 с Soluplus[®] методом «удаления растворителя», суть которого заключается в совместном растворении АФС и полимера в органическом растворителе с его последующей отгонкой при условиях, не приводящих к плавлению, кипению или воспламенению компонентов.

Материалы и методы

В качестве объекта исследования использовали N-бутил-N-метил-1-фенилпирроло[1,2-а]пиразин-3-карбоксамид. При создании АТД использовался Soluplus [BASF, Германия (USP / NF, EP, JP)] и 96%-й этанол.

Получение твердых дисперсий ГМЛ-3 с Soluplus® осуществляли методом «удаления растворителя». АТД получали при соотношении ГМЛ-3: полимер, равном 1:5, 1:10, 1:15 и 1:20. ГМЛ-3 и Soluplus® совместно растворяли в этаноле (в соотношении 1:5−20:25), затем высушивали в сушильном шкафу при температуре 50−55 °C.

Получение микрофотографий твердых дисперсий ГМЛ-3 осуществляли с помощью лабораторного микроскопа Saike Digital SK2009HDMI-Т (Китай) без проводящей жидкости на подложке и с увеличением контраста изображения.

Изучение АТД ГМЛ-3 методом дифференциальной сканирующей калориметрии

Измерение образцов методом дифференциальной сканирующей калориметрии (ДСК) проводили с использованием прибора Netzsch STA 449 F1 (Netzsch, Германия), совмещенного с термогравиметрией QMS 403 С. Примерно 4–5 мг образца запечатывали в алюминиевый тигель с отверстием в крышке. Далее проводили нагревание до температуры 160 °C со скоростью 5 °С/мин. В качестве продувочного газа использовали воздух.

Измерение кристалличности *АТД ГМЛ-3* методом рентгенофазового анализа

Спектры рентгенофазового анализа (РФА) фиксировали с помощью дифрактометра рентгеновского Bruker D8 Venture (Германия, 2019). Измерения проводили излучением CuK_a при 40 кВ и 40 мА в диапазоне 2–60 град. с размером шага 0,02 град.

Испытание на растворение

По причине прилипания и агломерации частиц АТД на лопасти и поверхность ячейки тестера растворения проводить эксперименты согласно ОФС.1.4.2.0014 «Растворение для твердых дозированных лекарственных форм» затруднительно. Высвобождение АФС ГМЛ-3 из АТД оценивали спектрофотометрически с использованием «модифицированного теста растворения» [12-14]. Среда растворения - 150 мл воды очищенной; устройство - магнитная мешалка; температура среды растворения 37,0±0,5 °C; время отбора проб 1, 3, 5, 10, 15, 30, 45 и 60 мин. Опыт проводили в пяти ячейках (n = 5). После каждого отбора проб проводили пополнение среды (10 мл). Оптическую плотность определяли на УФ-спектрофотометре «Экрос ПЭ-5400УФ»

(«Экрос», Россия) при длине волны 256±2 нм. При необходимости пробы пропускали через нейлоновый фильтр с размером пор 0,45 мкм. Для оценки типа диффузии ГМЛ-3 из полимера использовали модель Корсмейера – Пеппаса.

Результаты и обсуждение

Согласно данным оптической микроскопии, АТД ГМЛ-3 представляют собой аморфные чещуйчатые частицы неправильной формы без вкраплений (рис. 2). Рентгенограмма с интенсивностями гало АТД ГМЛ-3 представлена в табл. 1 и на рис. 3. По данным РФА, Soluplus не имеет кристаллических пиков и представляет собой аморфный полимер с наличием аморфных гало с апогеем в 12 и 21 град.

Первый аморфный пик имеет меньшую интенсивность и угол от направляющей (угол между направлением роста гало и направлением роста интенсивности второго гало) $\alpha = 18$ град., который является характерным для данного полимера (рис. 3, E). Так, для полимера характерна интенсивность 83×10^3 и 99×10^3 отн. ед.

У полученных АТД ГМЛ-3 исчезли пики, характерные для АФС ГМЛ-3, что говорит об аморфизации АФС внутри дисперсий. При всех соотношениях, согласно РФА, твердые дисперсии аморфны, т.е. отсутствуют пики кристаллического АФС ГМЛ-3, но стоит отметить, что остаточную кристалличность внутри системы можно выявить только с помощью ДСК. Однако на РФА виден необычный эффект взаимодействия АФС ГМЛ-3 и полимера. При соотношении 1:5 в АТД угол наклона и 2-й пик остались характерными для Soluplus[®], 1-й пик потерял интенсивность на 15×10^3 усл. ед., а разница между интенсивностью аморфных гало выросла в 2,5 раза, что свидетельствует о взаимодействии АФС и полимера, в результате чего, возможно, изменилась конформация глобулы полимера (рис. 3, А, табл. 1).

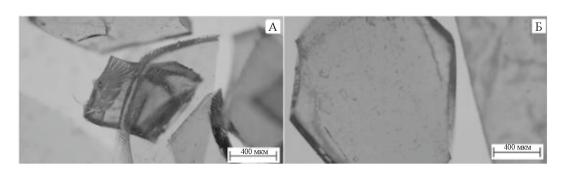


Рис. 2. Микрофотографии АТД ГМЛ-3 (c Soluplus®) в соотношениях 1:5 (A) и 1:10 (Б)

a 1

	Таблица
Интенсивность на РФА и угол наклона на энтолерме ЛСК для АТЛ ГМ.Л-3	

Полимер : ГМЛ-3	α (РФА), град.	а	ь	C = b - a	(C/C ₀)×100%	α (ДСК), град.	β, град.
Soluplus®	18	83	99	16	100	47	56
1:5	18	68	99	41	256	46	60
1:10	20	76	99	23	144	45	74
1:15	8	39/49	99	47	294	38	90
1:20	11	51/60	99	49/39	306/244	38	90

Перемена этих параметров полимера происходит и при других концентрациях, наиболее значимая из которых при соотношении 1:15. В этом случае пик 1 практически исчезает, $\alpha=8$ град., а интенсивность ниже, чем у второго пика в 2,5–3 раза (рис. 3, Б–Е). По той же причине наблюдалось небольшое смещение гало от 20 к 22 град. при соотношении 1:15, 1:20 и постепенное появление нового аморфного гало при 40–45 град. (рис. 3, Д). Схожее поведение для циннаризина описано в [10, 11]. Приведенные особенности свидетельствуют о солюбилизирующих свойствах Soluplus®.

Термограмма, полученная в ходе исследования методом ДСК для полимера, подтверждает литературные данные, свидетельствующие о том, что входящий в состав ПЭГ 6000 при нагревании проявляет свойства полукристаллического вещества, что может стать причиной ошибочной интерпретации результатов при изучении АТД [12, 13].

В целях проведения более детального анализа вычислены углы на термограмме в точке перегиба между нормалью и направлением потока (рис. 4). Полимер при нагревании на начальном этапе

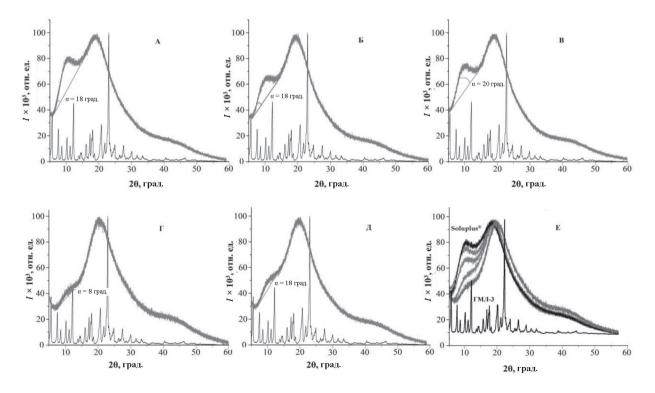


Рис. 3. РФА ГМЛ-3 в сравнении с АТД ГМЛ-3 с Soluplus[®] (A) в соотношениях 1:5 (Б), 1:10 (В), 1:15 (Г), 1:20 (Д), и общая рентгенограмма всех составов (Е)

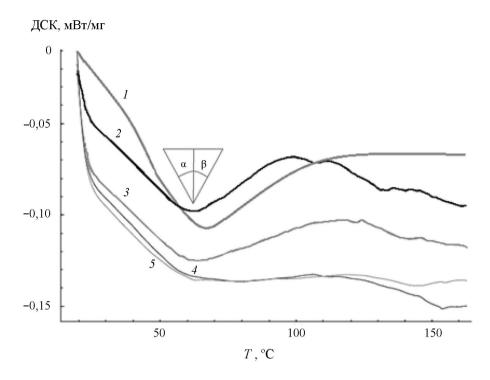


Рис. 4. Термограммы АТД ГМЛ-3 и Soluplus[®] при соотношении: $I - \text{Soluplus}^{\$}, 2 - (1:5), 3 - (1:10), 4 - (1:15), 5 - (1:20)$

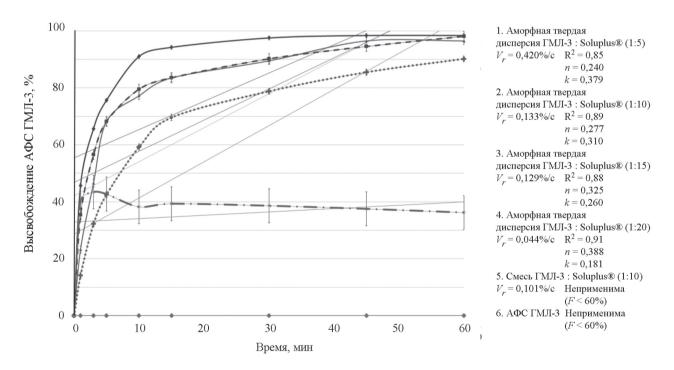


Рис. 5. Кинетика высвобождения АФС ГМЛ-3 из АТД с Soluplus® с использованием модели Корсмейера – Пеппаса

проявляет свойства стекловидного вещества со следами остаточной кристалличности ($\alpha = 47$ град., начало плавления 37,64 °C, пик 42,21 °C,

окончание плавления 46,98 °C с выделением -0.04 мДж/г энергии), а также проявляется вторичное возрастание $\beta = 56$ град., связанное со

Таблица 2 Высвобождение АФС ГМЛ-3 из АТД с Soluplus® с использованием модели Корсмейера – Пеппаса

Состав		Время, мин							Математическая
Состав	1	3	5	10	15	30	45	60	модель
АФС ГМЛ-3	0,05	0,06	0,05	0,05	0,05	0,05	0,05	0,05	(F < 60%)
RSD	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
АТД ГМЛ-3 (1:5)	45,66	65,66	75,66	91,02	94,25	97,55	98,40	98,40	$R^2 = 0.85;$ n = 0.240; k = 0.379;
RSD	1,8	0,7	0,7	0,6	0,4	0,5	0,5	0,4	0,70
АТД ГМЛ-3 (1:10)	35,42	56,55	68,22	79,55	83,55	90,21	94,54	98,10	$R^2 = 0.89;$ n = 0.277; k = 0.310;
RSD	2,1	2,4	2,1	1,9	1,7	1,2	1,1	0,4	1,61
АТД ГМЛ-3 (1:15)	23,20	46,50	68,20	77,20	83,50	89,50	96,5	96,5	$R^2 = 0.88;$ n = 0.325; k = 0.260;
RSD	3,4	2,3	2,1	1,3	0,9	0,9	0,9	0,9	1,59
АТД ГМЛ-3 (1:20)	14,22	32,20	42,50	59,20	69,60	78,80	85,50	90,2	$R^2 = 0.91;$ n = 0.388; k = 0.181;
RSD	4,2	3,7	3,2	3,4	3,5	2,8	2,1	1,7	3,08
Смесь ГМЛ-3 с (Soluplus [®] (1:10)	40,20	43,4	42,7	38,2	39,3	38,6	37,5	36,2	Неприменима (F < 60%)
RSD	5,7	5,4	5,2	5,0	5,7	5,9	6,1	6,2	5,65

свойствами ПЭГ 6000. При анализе АТД (1:5) углы а, в существенно не изменились по сравнению с Soluplus[®], пик плавления ГМЛ-3 отсутствует, на основании чего сделан вывод о полной аморфизации АФС внутри АТД. При соотношении 1:10 зафиксировано снижение свойственного ПЭГ полукристаллического пика на термограмме после прохождения пика стеклования ($\beta = 74$ град.), что подтверждает наличие взаимодействия АФС и полимера. На начальном этапе нагревания свойственное ПЭГ полукристаллическое поведение сохранилось (α = 47 град, начало плавления 38,84 °C, пик 42,92 °C, окончание 45,57 °C с выделением -0.04 мДж/г энергии). При соотношениях 1:15 и 1:20 первый перепад энергии на термограмме становится более гладким, т.е. АТД полностью аморфна без остаточной кристалличности (в том числе создаваемой на ДСК ПЭГ). Влияние полученных АТД ГМЛ-3 с Soluplus® на кинетику высвобождения ГМЛ-3 в среду воды очищенной изучалось в сравнении с

АФС ГМЛ-3 и механической смесью АФС и полимера (рис. 5, табл. 2). Полимер Soluplus[®] во всех случаях проявлял солюбилизирующие свойства. Микронизированный с Soluplus® ГМЛ-3 высвобождал 43,4±5,4% АФС ГМЛ-3 за 3 мин, но с достаточно высокой погрешностью. Высвобождение из АТД (1:5) за 10 мин составило 91,02±0,6% с постепенным увеличением до 98,40±0,5% к 45-й минуте. Образцы АТД ГМЛ-3 при соотношении 1:10 и 1:15 показали примерно равные результаты (77-79,5±1,6% за 10 мин), что уступает образцам АТД ГМЛ-3 при соотношении 1:5. При 1:20 наблюдается снижение кинетики растворения до 59,2±3,4% к 10-й минуте. Для всех АТД диффузия, согласно математической модели Корсмейера – Пеппаса, проходила по закону Фика (Case-Itransport), т.е. растворение полимера происходило одновременно с ГМЛ-3.

В результате комплексного исследования АТД ГМЛ-3 с Soluplus доказан переход ГМЛ-3 из кристаллического состояния в аморфное и

показано наличие слабого взаимодействия АФС и полимера. При соотношении ГМЛ-3 и Soluplus $^{\text{®}}$, равном 1:5, в водной среде АФС переходит в растворенное состояние (высвобождение ГМЛ-3 из

АТД составило 98,4±0,5%), что решает проблему растворимости ГМЛ-3 и позволяет в перспективе использовать АТД для создания ЛП с антидепрессивным и анксиолитическим действием.

СПИСОК ЛИТЕРАТУРЫ

- 1. Соловьев И.К. // РМЖ. 2023. № 5. С. 385.
- 2. Меркин А.Г., Акинфиева С.С., Мартюшев-Поклад А.В. и др. // Неврология, нейропсихиатрия, психосоматика. 2021. № 13 (1). С. 107 (https://doi.org/10.14412/2074-2711-2021-1-107-1126).
- 3. Российский статистический ежегодник. 2022: Стат. сб. / Росстат. Р76 М., 2022. С. 690.
- 4. Незнанов Н.Г., Мартынихин И.А., Мосолов С.Н. // Современная терапия психических расстройств. 2017. № 2. С. 2.
- Всемирная организация здравоохранения: сайт. 2023 (URL: https://www.who.int/ru/news-room/fact-sheets/ detail/depression) (дата обращения: 15.04.2022).
- Liu X., Zhao L., Wu B., Chen F. // Int. J. Pharm. 2023. Vol. 634. P. 122704 (https://doi.org/10.1016/j. ijpharm.2023.122704).
- Salunke S., O'Brien F., Tan D., Harris D., Math M., Arien T., Klein S., Timpe C. // Adv. Drug Deliv. Rev. 2022. Vol. 190. P. 114507 (https://doi.org/10.1016/j. addr.2022.114507).
- Markeev V.B., Tishkov S.V., Vorobei A.M., Parenago O.O., Blynskaya E.V., Alekseev K.V., Marakhova A.I., Vetcher A.A. // Polymers. 2023. Vol. 20 (15). P. 4136 (https://doi.org/10.3390/ polym15204136).
- 9. Kapourani A., Eleftheriadou K., Kontogiannopoulos K.N., Barmpalexis P. // Eur. J. Pharm. Sci. 2021. Vol. 157. P. 105642 (https://doi.org/10.1016/j.ejps.2020.105642).
- 10. Jorgensen J.R., Mohr W., Rischer M., Sauer A.,

- Mistry S., Mullertz A., Rades T. // Int. J. Pharm. 2023. Vol. 632. P. 122564 (https://doi.org/10.1016/j.ijpharm.2022.122564).
- 11. Lapuk S.E., Zubaidullina L.S., Ziganshin M.A., Mukhametzyanov T.A., Schick C., Gerasimov A.V. // Int. J. Pharm. 2019. Vol. 562. P. 113–123 (https://doi.org/10.1016/j.ijpharm.2019.03.039).
- 12. Елагина А.О., Беляцкая А.В., Кашликова И.М. и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 2019. № 2. С. 52.
- 13. Ковальский И.В., Краснюк (мл.) И.И., Краснюк И.И и др. // Химико-фармацевтический журнал. 2013. № 11 (47). С. 42 (https://doi.org/10.30906/0023-1134-2013-47-11-42-45).
- 14. Беляцкая А.В., Краснюк (мл.) И.И., Краснюк И.И. и др. // Химико-фармацевтический журнал. 2018. № 12 (52). С. 39.
- Tian B., Ju X., Yang D., Kong Y., Tang X. // Int. J. Pharm.
 Vol. 580. P. 119240 (https://doi.org/10.1016/j.ijpharm.2020.119240).
- Al-Zoubi N., Odah F., Obeidat W., Al-Jaberi A., Partheniadis I., Nikolakakis I. // Int. J. Pharm. 2018.
 Vol. 107. P. 2385-2398 (https://doi.org/10.1016/j. xphs.2018.04.028).
- Tian B., Ju X., Yang D., Kong Y., Tang X. // Mater. Sci. Eng. C. 2019. Vol. 99. P. 563 (https://doi.org/10.1016/j. msec.2019.01.126).
- Nagy Z.K., Balogh A., Vajna B., Farkas A., Patyi G., Kramarics A., Marosi G. // J. Pharm. Sci. 2012. Vol. 101. N 1. P. 32–332 (https://doi.org/10.1002/jps.22731).

Информация об авторах

Владимир Борисович Маркеев — мл. науч. сотр. лаборатории технологии лекарственных препаратов $\Phi\Gamma EHV$ « ΦHU оригинальных и перспективных биомедицинских и фармацевтических технологий» (markeev_vb@academpharm.ru) (ORCID ID: https://orcid.org/0000-0003-2930-9397, eLIBRARY AuthorID: 1123769);

Владимир Павлович Виноградов – мл. науч. сотр. лаборатории технологии лекарственных препаратов ФГБНУ «ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий» (vinogradov_vp@academpharm. ru), аспирант ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы» (ORCID ID: https://orcid.org/0000-0001-8726-6407, eLIBRARY AuthorID: 1127705);

Сергей Валерьевич Тишков – вед. науч. сотр. лаборатории технологии лекарственных препаратов ФГБНУ «ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий», канд. фарм. наук (tishkov_sv@academpharm.ru) (ORCID ID: https://orcid.org/0000-0002-8321-6952, eLIBRARY AuthorID: 899148);

Евгения Викторовна Блынская – зав. лабораторией технологии лекарственных препаратов ФГБНУ «ФИЦ оригинальных и перспективных биомедицинских и

фармацевтических технологий», докт. фарм. наук (blynskaya_ev@academpharm.ru) (ORCID ID: https://orcid.org/0000-0002-9494-1332, eLIBRARY AuthorID: 668905);

Константин Викторович Алексеев — глав. науч. сотр. лаборатории технологии лекарственных препаратов $\Phi\Gamma$ БНУ «ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий», докт. фарм. наук, профессор (alekseev_kv@academpharm.ru) (ORCID ID: https://orcid.org/0000-0003-3506-9051, eLIBRARY AuthorID: 625715);

Владимир Львович Дорофеев – исполняющий обязанности генерального директора ФГБНУ «ФИЦ оригинальных и перспективных биомедицинских и фармацевтических технологий» докт. фарм. наук, профессор (dorofeev_vl@academpharm.ru) (ORCID ID: https://orcid.org/0009-0004-3584-3742, eLIBRARY AuthorID: 529740).

Вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических стандартов

В данной работе отсутствуют исследования человека и животных.

Статья поступила в редакцию 04.10.2023; одобрена после рецензирования 11.03.2024; принята к публикации 25.12.2024.