УДК 541.183

ВЫСОКОПОРИСТЫЕ КРЕМНЕЗЕМЫ – НОСИТЕЛИ ВИТАМИНА Е

Н.К. Бебрис, Ю.С. Никитин, Н.М. Рудакова*, В.М. Староверов*, Т.Д. Хохлова

(кафедра физической химии; e-mail: adsorption@phys.chem.msu.ru)

Синтезированные на основе силиката натрия высокопористые кремнеземы (значения кажущейся плотности от 0.16 до 0.24 г/см³, а удельной поверхности от 70 до 580 м²/г) использованы в качестве носителей витамина E. Готовые формы витамина E на таком носителе содержали от 1 до 1.5 г витамина на 1 г кремнезема. Препараты сохраняли полностью свою активность после хранения при 5° С в течение 10 мес., а также при нагревании на воздухе при 95 и потом 120° С в течение 8 и 4 ч соответственно.

Витамин Е на кремнеземном носителе является составной частью витамино-минеральных премиксов и комбикормов. Кремнезем применяется для защиты витамина Е от разрушения в результате неблагоприятного воздействия среды и повышенных локальных температур при приготовлении комбикормов, а также для его равномерного распределения. Витамин Е, включенный в матрицу кремнезема, выпускают крупные европейские фирмы. В готовых формах содержится 50% витамина Е в виде dl-α-токоферилацетата. В отечественной практике такого типа препараты не выпускаются из-за отсутствия доступных высокопористых кремнеземных носителей. Силикагели не очень подходят в качестве носителей, так как они имеют относительно небольшие удельные объемы пор [1-3], а следовательно, небольшое маслопоглощение. Кроме того, гранулы силикагеля слишком жесткие и прочные. Кремнеземы с большей пористостью и меньшей прочностью (силохромы) [3-5] изготавливают из высокодисперсного кремнезема аэросила, технология получения которого довольно сложна. Разработана также особая форма кремнезема - осажденные порошки [1], при получении которых не допускают образования макрогеля поликремниевой кислоты. Такие осажденные кремнеземы имеют открытую структуру и в сравнении с силикагелями, получаемыми золь-гель методом, обладают значительно большими удельными объемами пор. Высокопористые порошки-кремнеземы (КВП) используют в промышленности в качестве носителей, наполнителей и антиспекателей [1, 6–10]. Для получения высокопористого кремнезема, используемого в качестве носителя витамина Е, был применен метод осаждения поликремниевой кислоты, источником которой служили жидкое стекло и серная кислота. В настоящей работе рассмотрены структурные характеристики полученных кремнеземов, а также их свойства как носителей витамина Е (готовые формы на основе кремнеземов).

Экспериментальная часть

Методом осаждения поликремниевой кислоты при разных условиях были приготовлены три серии образцов высокопористого кремнезема и определены их структурные характеристики. Удельные поверхности кремнеземов $(S, \, \mathbf{m}^2/\mathbf{r})$ измеряли методом тепловой десорбции азота [11] на установке Газометр ГХ-1. Кажущуюся плотность $(\rho_t, \, \mathbf{r}/\mathbf{c}\mathbf{m}^3)$ после уплотнения кремнеземов определяли по методике ИСО 787-11, 1981. Удельные объемы пор кремнеземов $(V, \, \mathbf{c}\mathbf{m}^3/\mathbf{r})$ рассчитывали по величинам кажущейся плотности: $V = 0.66/\rho_t - 0.45$. Маслопоглощение $(M, \, \mathbf{c}\mathbf{m}^3/\mathbf{r})$ кремнеземов определяли по диоктилфталату в соответствии с ИСО 787-5, 1980.

Для сопоставления структурных характеристик носителей витаминов брали защищенные формы витамина Е (на кремнеземе): "Микровит Е Промикс 50" ("Авентис Анимал Нютришн", Франция) и "Лутавит Е 50" ("БАСФ", Германия). Витамин эк-

^{*}ФГУП Белгородский Государственный НИИ технологии медицинской промышленности.

страгировали из этих форм гексаном, а носители высушивали при 120° C в течение 3 ч.

Для приготовления защищенной формы был взят витамин Е ("Хоффман Ля Рош"); в качестве растворителей витамина использовали гексан ТУ 6-09-3375-78 или изопропиловый спирт "х.ч." ТУ 6-09-402-87. При этом синтезированный нами кремнезем смешивали с витамином Е или его раствором либо в гексане, либо в изопропаноле. В последнем случае отношение объема раствора к массе кремнезема соответствовало маслопоглощению кремнезема. После перемешивания и выдерживания смеси в течение 15 мин растворитель удаляли в вакууме при 50°С.

Проведено сопоставление устойчивости к нагреванию на воздухе витамина Е как в свободном состоянии, так и введенного в кремнезем. Для этого были взяты препараты витамина Е фирмы "Хоффман Ля Рош"; "Микровит Е Промикс 50" ("Авентис Анимал Нютришн"), а также витамин Е фирмы "Хоффман", нанесенный на синтезированный нами кремнезем (КВП). Количество витамина в защищенных формах составляло 50%. Было испытано два образца готовой формы, в которых витамин Е был нанесен на КВП разными методами. Один свежеприготовленный образец (от 12.03.04) был получен без использования растворителя. Другой образец (от 10.05.03), приготовленный с использованием гексана в качестве растворителя, хранили при 5°C в течение 10 мес. Нагревание всех образцов проводили сначала при 95, потом при 120°C. Витамин из препаратов на носителях экстрагировали этанолом. Были измерены оптические плотности этанольных растворов витамина Е при длинах волн 254 и 284 нм.

Результаты и обсуждение

Структурные характеристики коммерческих кремнеземов разного назначения представлены в табл. 1. Отечественные силикагели и силохромы (адсорбенты для хроматографии, носители и поглотители) характеризуются меньшими значениями удельного объема пор и маслопоглощения, чем высокодисперсный кремнеземный порошок Тиксозил ("Родиа", Франция), применяемый в качестве антиспекателя для удаления влаги из комбикормов и увеличения их сыпучести. Такую же, как у Тиксозила, открытую структуру имеют кремнеземные но-

Таблица 1

Характеристики коммерческих кремнеземов (кажущаяся плотность ρ_t г/см³, удельный объем пор V, см³/г, удельная поверхность S, м²/г, маслопоглощение M, см³/г

Кремнеземы	ρ_t , Γ/cm^3	V, см ³ /г	S , M^2/Γ	M , см 3 /г
Силикагели:				
КСК-1	0,53	0,8	130	-
КСК-2	0,39	1,2	340	2,3
KCC-3	0,57	0,7	660	2,0
КСМ-5	0,88	0,3	910	1,6
Силохромы				
CX-1	0,29	1,8	40	-
CX-2	0,29	1,8	70	-
CX-3	0,31	1,7	130	3,3
Тиксозил	0,24	2,2	250	3,7
Носители:				
БАСФ	0,24	2,2	170	3,6
Авентис	0,25	2,1	160	3,6

сители витамина E в препаратах "Микровит E Промикс 50" и "Лутавит E50".

При получении лабораторных высокопористых кремнеземов методом осаждения поликремниевой кислоты были рассмотрены следующие факторы: концентрация реагентов, температура реакции, величина рН осаждения силиказоля и старения осадка, наличие коагулирующих агентов в реакционной смеси, их природа и концентрация.

В табл. 2 представлены структурные характеристики лабораторных образцов, полученных тремя способами осаждения поликремниевой кислоты.

Реакцию жидкого стекла с серной кислотой проводили без введения специальных добавок, а также с введением в качестве коагулирующих агентов хлористого натрия и изопропанола. Как видно из табл. 2,

 $\label{eq:2.2} T\ a\ б\ \pi\ u\ ц\ a\ 2$ Структурные характеристики лабораторных кремнеземов

V, cm³/ Γ Метод синтеза $S, M^2/\Gamma$ M, cm^3/Γ ρ_t , Γ/cm^3 Без добавок: 1 0,24 2,3 260 3,5 3,2 0,18 300 3,3 3 0,17 3.2 330 3,8 С хлористым натрием: 2,7 1 0,21 160 3,8 0,19 3,0 410 3 0,18 3,2 440 4,0 4 0,16 3.7 290 4,3 С изопропанолом: 1 0,21 2,7 580 3.9 2 0.23 2.4 420 3.6 3 0,21 2,7 190 4 0.19 3.1 70

образцы, полученные всеми тремя способами характеризуются низкими значениями кажущейся плотности ρ_t (0,16–0,24 г/см³), что соответствует значениям удельного объема пор от 3,7 до 2,3 см³/г, т.е. получены кремнеземы, довольно близкие по структурным характеристикам к носителям витамина Е ("Авентис" и "БАСФ"), и существенно более пористые. Могут быть получены кремнеземы с различающимися почти на порядок (70–580 м²/г) значениями удельной поверхности.

Синтезированные кремнеземы испытаны в качестве носителей витамина Е. Большая пористость этих кремнеземов позволила приготовить препараты, содержащие от 1 до 1,5 г витамина на 1 г кремнезе-

ма (50 и 60 мас.% витамина соответственно) и обладающие при этом сыпучестью.

Проведено сравнение устойчивости свободного витамина Е и находящегося в порах кремнеземных носителей при хранении и нагревании. В табл. 3 представлено отношение значений оптической плотности этанольных растворов витамина при 254 и 284 нм для четырех препаратов: 1) витамина Е без носителя фирмы "Хоффман Ля Рош", 2) витамина Е на кремнеземном носителе "Микровит Е Промикс 50" фирмы "Авентис АН", 3) витамина Е (50%), нанесенного на КВП без применения растворителя, 4) витамина Е (50%), нанесенного на КВП из гексана и хранившегося в течение 10 мес.

Из табл. З видно, что величины отношения оптических плотностей A_{254}/A_{284} всех четырех препаратов одинаковы и практически не изменяются после нагревания при 95° С в течение 8 ч и даже после дополнительного нагревания при 120° С еще в течение 4 ч. Из этого можно заключить, что все четыре

 ${\rm T}\ {\rm a}\ {\rm f}\ {\rm n}\ {\rm u}\ {\rm ц}\ {\rm a}\ {\rm 3}$ Поглощение A_{254}/A_{284} растворов и экстрактов препаратов витамина E до и после нагревания на воздухе

Витамин Е	Микровит Е 50	КВП E50 от 05.2003	КВП E50 от 03.2004			
Исходные препараты						
0,22	0,23	0,22	0,21			
Нагревание при 95 °C в течение1 ч						
0,21	0,23	0,22	0,22			
Нагревание при 95 °C в течение 4 ч						
0,22	0,22	0,22	0,22			
Нагревание при 95 °C в течение 8 ч						
0,22	0,23	0,23	0,23			
Нагревание при 95 °C (8 ч) и при 120 °C (4 ч)						
0,23	0,23	0,23	0,23			

препарата витамина Е устойчивы к такому нагреванию на воздухе. Препарат витамина Е на высокопористом кремнеземе, довольно длительно хранившийся (в течение 10 мес.) при 5°С, имел те же спектральные характеристики, что и свежеприготовленный, и также был полностью устойчив к нагреванию.

Таким образом, представленные результаты позволяют заключить, что полученный методом осаждения высокопористый кремнезем, по структурным характеристикам, величине маслопоглощения и инертности кремнеземной матрицы не уступает импортным носителям и может быть использован для приготовления защищенных форм витамина E.

СПИСОК ЛИТЕРАТУРЫ

- 1. Айлер Р. // Химия кремнезема. М. 1982. С. 1127.
- 2. Неймарк И.Е., Шейнфайн Р.Ю. // Силикагель, его получение, свойства и применение. Киев, 1973.
- 3. *Артемова А.А., Виноградова Р.Г., Жильцова Н.Е. и др.* // Высокомолек. соед. 1978. **A40**. C. 2735.
- 4. *Бебрис Н.К., Киселев А.В., Никитин Ю.С.* // Коллоидн. ж. 1967. **29**. С. 326.
- Хохлова Т.Д., Никитин Ю.С., Ворошилова О.И. // Ж. ВХО им. М.Д. Менделеева. 1989. 34. С.363.
- 6. Патент Германии DT-AS 2020887. 1970.
- 7. Патент Франции FR 2567505. 1984.
- 8. Патент Франции FR 2631620. 1988.
- 9. Патент США 3208823. 1965.
- 10. Деринг Н.А. Зеликин М.Б., Неймарк И.Е. и др. // Хим. технол. 1970. **16**. С. 7.
- Экспериментальные методы в адсорбции и молекулярной хроматографии / Под ред. Ю.С. Никитина, Р.С. Петровой. М., 1990

Поступила в редакцию 27.05.04

HIGH POROUS SILICAS AS CARRIERS OF VITAMIN E

N.K. Bebris, Y.S. Nikitin, N.M. Rudakova, V.M. Staroverov, T.D. Khokhlova

(Division of Physical Chemistry)

High porous silicas with apparent density $0.16 - 0.24 \, \mathrm{g/cm^3}$ and specific surface areas $70 - 580 \, \mathrm{m^2/g}$ are synthesized on base of sodium silicate and sulfur acid. They are used as carriers of vitamin E. The protected forms of the vitamin with its content $1 - 1.5 \, \mathrm{g}$ on 1 g of the silica are prepared. The preparations saved vitamin activity after storage at 5 °C during 10 months and after heating at 95 and 120 °C in the air during 8 and 4 hours, correspondingly.