УДК 532.64:532.68

К ТЕОРИИ ИЗБИРАТЕЛЬНОГО СМАЧИВАНИЯ НЕОДНОРОДНЫХ ТВЕРДЫХ ПОВЕРХНОСТЕЙ

А.В. Иванов, Б.Д. Сумм

(кафедра коллоидной химии)

Предложена модель избирательного смачивания неоднородных твердых поверхностей. В основе модели лежит предположение о двустадийности процесса смачивания: на первой стадии происходит вытеснение фазы-предшественника; на второй – непосредственно смачивание (натекание смачивающей жидкости на освободившийся участок твердой поверхности). Получено уравнение, связывающее статический краевой угол с относительной долей участков разной кривизны на линии контакта трех фаз.

Одна из крупных задач теории смачивания заключается в расчете краевых углов θ_s на неоднородной твердой поверхности, а именно, в установлении связи $\theta_s = f(\theta_0)$, (θ_0 – равновесный краевой угол), в зависимости от параметров, характеризующих неоднородность поверхности. Впервые эта проблема была поставлена П.А. Ребиндером при изучении смачивания твердых поверхностей, модифицированных адсорбционными монослоями поверхностно-активных веществ (ПАВ) [1]. Краевые углы θ_s соответствуют метастабильному равновесию на линии контакта трех фаз (ЛТК), участвующих в смачивании. Поэтому они называются статическими или кажущимися (*арраrent*) [2, 3] в отличие от угла θ_0 , отвечающего термодинамическому равновесию.

Для описания связи $\theta_{S} = f(\theta_{0})$ при смачивании неоднородных поверхностей используются два подхода – термодинамический и кинетический.

В рамках этих подходов разработан ряд конкретных моделей, которые в той или иной мере учитывают такие факторы, как форма и размеры дефектов (микронеровностей отдельных участков), их распределение и др. [2, 4–9].

Тем не менее из-за сложного рельефа и состава реальных твердых поверхностей проблема смачивания неоднородных поверхностей остается актуальной.

В данной статье предлагается модель избирательного смачивания неоднородных твердых поверхностей, основное положение которой заключается в том, что этот процесс протекает в две стадии. На первой стадии происходит вытеснение с твердой поверхности жидкости L_2 , которая контактировала с твердым телом до подвода смачивающей жидкости L_1 . На второй стадии происходит натекание смачивающей жидкости на освободившийся участок твердой поверхности. Неоднородности твердой поверхности могут существенно влиять на возможность вытеснения фазы-предшественника.

Рассмотрим "бинарные" твердые поверхности, образованные двумя типами участков: A – смачиваемые натекающей жидкостью и B – смачиваемые вытесняемой жидкостью. В условиях избирательного смачивания энергетический барьер создается адгезией вытесняемой жидкости W_A^p , при оттекании – адгезией смачивающей жидкости W_A^w . Различие работ адгезии $W_A^w \neq W_A^p$ обуславливает большой порядковый гистерезис (различие краевых углов при натекании и оттекании) при избирательном смачивании [4, 10]. Важная роль вытеснения (деадгезии) фазы-предшественника подтверждается большой длительностью (более 1 мес при 20° C) установления статических краевых углов избирательного смачивания [11].

Для неоднородных твердых поверхностей значения работы адгезии вытесняемой жидкости на отдельных участках различны. Соответственно и энергетические барьеры при ее деадгезии могут быть как сравнительно низкими, так и достаточно высокими. В первом случае будет происходить оттеснение фазы-предшественника и смачивание занимавшегося ею участка, во втором случае пленка вытесняемой жидкости может сохраняться на твердой поверхности весьма длительное время. Рассматриваемый механизм смачивания имеет определенную аналогию с развитием трещин в твердых телах при проявлении эффекта Ребиндера, когда чередуются процессы поступления поверхностно-активной жидкости в зону предразрушения вблизи вершины трещины и собственно разрыва материала [12]. При избирательном смачивании должно происходить разрушение адгезионного контакта между вытесняемой жидкостью и твердой поверхностью.

Перейдем к расчету статических краевых углов θ_s на неоднородной твердой поверхности с учетом процесса вытеснения фазы-предшественника. Рассмотрим гладкую гетерогенную поверхность как хаотическую мозаику отдельных участков с разной поверхностной энергией σ_{SP}^{i} вблизи ЛТК. Работа адгезии вытесняемой жидкости $W_A^{p,i}$ охватывает некоторый интервал ($W_{A,\text{мин}}^{p} \leq W_{A}^{p,i} \leq W_{A,\text{макс}}^{p}$). Пусть размеры отдельных участков d_i находятся в интервале $a >> d_i > d_{MHH}$, $a^2 = 2\sigma_{LG}/\rho g$ – капиллярная постоянная жидкости, р – ее плотность, g – ускорение свободного падения, $d_{\text{мин}}$ составляет несколько молекулярных размеров. Такое соотношение используется в большинстве теоретических моделей смачивания мозаичных поверхностей [2, 4]. Строгий расчет требует учета распределения этих участков (доменов) по их поверхностным энергиям и по размерам. В такой общей постановке расчет очень сложен. Ограничимся поэтому упрощенной моделью.

Пусть данная жидкость L_1 с поверхностным натяжением σ_L может оттеснить жидкость L_2 с однородного участка *i* размером d_i , если ее работа адгезии $W_A^{p,i}$ к поверхности ниже некоторого критического уровня $W_{A,C}^{p}$, т.е. $W_A^{p,i} < W_{A,C}^{p}$. Таким образом, в рамках принятых допущений твердую поверхность, включающую множество участков с различными значениями поверхностной энергии, можно рассматривать как бинарную поверхность, для которой все индивидуальные участки разделяются на две группы (рис. 1):

1) участки, с которых данная жидкость полностью вытесняет фазу-предшественник (*A*); в результате на них достигается полное смачивание: $\cos \theta_4 = +1;$

2) участки, на которых сохраняется пленка фазыпредшественника, отделяющая поверхность твердого тела от подведенной жидкости (*Б*); эта ситуация

Рис. 1. Бинарная структура твердой поверхности. Сплошная линия соответствует положению волнистой ("лепестковой") геометрии ЛТК, пунктир – ее усредненному (условному) положению (точке О на рис. 2), темные и светлые участки – участкам твердой поверхности, с которых фаза-предшественник вытесняется и не вытесняется соответственно

соответствует полному несмачиванию данного участка: соз $\theta_{R} = -1$.

Предлагаемый подход позволяет существенно упростить анализ избирательного смачивания гетерогенных поверхностей. Вместо расчета краевых углов на множестве индивидуальных участков и учета множества различных дефектов данная модель позволяет ограничиться только двумя диаметрально противоположными ситуациями – вытеснением и невытеснением фазы-предшественника.

Основная особенность предлагаемой модели состоит в том, что в масштабе неоднородностей ЛТК не будет гладкой линией, как это принимается в феноменологической теории капиллярности при выводе уравнения краевого угла смачивания. ЛТК на гетерогенной поверхности останавливается на границах участков типа А и В, поэтому в микро- и мезомасштабе ее следует считать чередованием выпуклых и вогнутых участков размером d_i . На участках типа А (смачивание) эти отрезки опережают среднее положение ЛТК, на участках типа В (несмачивание) они отстают от него (рис. 2). Возле ЛТК формируется совокупность чередующихся менисков с размером кривизны порядка d_i, а линия смачивания состоит из опережающих (выпуклых) на участках типа А и отстающих (вогнутых) "лепестков" на участках типа В (рис. 1).

Методы высокого разрешения (электронная микроскопия, лазерная интерференция и др.) подтверждают такую геометрию ЛТК [13, 14]. Отметим, что недифференцируемость ЛТК и допущение двух предельных случаев (полное смачивание и полное несмачивание) представляют ключевое положение в расчете краевых углов на основе фрактальной геометрии [15–17].

"Лепестковая" модель ЛТК приводит к следующему заключению. Механическое равновесие в зоне ЛТК и статический краевой угол θ_s определяют баланс трех сил, действующих в этой зоне. Эти силы действуют в разных направлениях и, что особенно существенно, они приложены к участкам разной длины (рис. 2). Пусть доля линии смачивания, приходящаяся на смачиваемые участки типа А, составляет ξ. Рассмотрим силы, действующие на линию смачивания единичной длины. Сила $f_1 = \sigma_{L_1L_2} \cos \theta_S$ действует на всей длине ЛТК. Она приложена в той области, где взаимодействие с твердой поверхностью еще не вызывает отклонений поверхности жидкости от гладкой формы. Сила $f_2 = \sigma_{L_1L_2} \xi$ действует на поверхности натекающей жидкости на смоченных участках типа *A*. Сила $f_3 = \sigma_{L_1L_2}$ (1- ξ) действует на поверхности пленки на несмоченных участках типа В. Тогда условие механического равновесия записывается в виде:

$$\sigma_{L_1L_2} \cos \theta_s + \sigma_{L_1L_2} (1-\xi) = \sigma_{L_1L_2} \xi.$$

Отсюда получаем уравнение статического краевого угла θ_s на неоднородной твердой поверхности:

$$\cos \theta_s = 2\xi - 1. \tag{1}$$

Рассмотрим уравнение (1) применительно к трем случаям: 1) для однородной, полностью смачиваемой поверхности $\xi \to 1$ (соз $\theta_s \to +1$, что соответствует условию полного смачивания); 2) при полном несмачивании однородной поверхности $\xi \to 0$ (нет вытеснения фазы-предшественника и соз $\theta_s \to -1$); 3) при одинаковой доле смачиваемых и несмачиваемых участков вдоль линии смачивания $\xi = 0,5$ и $\theta_s = 90^\circ$ (случай "безразличного" смачивания).

Уравнение (1) можно получить из уравнения Ребиндера–Касси для бинарной гетерогенной поверхности соз $\theta_S = \phi \cos \theta_1 + (1 - \phi)\cos \theta_2$ (θ_1 и θ_2 – краевые углы на различных типах участков; ϕ – доля площади участков 1 типа), принимая, что участки 1 и 2 соответствуют полному смачиванию и несмачиванию, т.е. $\cos \theta_1 = +1$, $\cos \theta_2 = -1$, а также считая, что ξ совпадает с долей площади ϕ , приходящейся на смачиваемые участки (что выполняется для многих бинарных гетерогенных поверхностей).

Обсудим теперь, от каких факторов зависит величина ξ. Для одной и той же гетерогенной твердой поверхности разные жидкости образуют разные краевые углы, следовательно параметр ξ зависит не только от свойств подложки, но и от свойств смачивающей жидкости. Физически величина ξ представляет обобщенную характеристику трехфазной системы, которая зависит от термодинамических свойств

Рис. 2. Профиль капли и действующие силы на линии трехфазного контакта при избирательном смачивании: *a* – на смачиваемом участке; *б* – на несмачиваемом участке (*L*₁ – смачивающая жидкость; *L*₂ – вытесняемая жидкость; *A* и *B* – смачиваемые и несмачиваемые участки твердой поверхности)

системы и от статистики распределения доменов с разной поверхностной энергией. В общем виде задача установления величины ξ сложна и требует отдельного рассмотрения. Ограничимся поэтому двумя частными случаями, для которых расчет параметра ξ представляется возможным. Отметим также, что в системах твердое тело – жидкость – газ структура линии смачивания имеет характер, аналогичный рассмотренной выше для случая избирательного смачивания.

При обсуждении связи критического поверхностного натяжения твердых тел (по Зисману) с физическими характеристиками подложки П. де Жен предложил простое соотношение соз $\theta_s = 2\alpha_s/\alpha_L - 1$, α_s и α_L – поляризуемости твердого тела и смачивающей жидкости [2]. Это соотношение по форме

аналогично уравнению (1). Можно предположить поэтому, что в таких системах $\xi = \alpha_s / \alpha_I$.

Другая возможная корреляция основана на том, что для низкоэнергетических подложек удовлетворительно выполняется правило Антонова для межфазной поверхности твердое тело – жидкость, поэтому соз $\theta_s = 2\sigma_s / \sigma_L - 1$. Это соотношение хорошо согласуется с большим числом экспериментальных данных [18], следовательно, можно полагать, что в таких системах $\xi = \sigma_s / \sigma_L$.

В рамках предлагаемой модели находит свое объяснение анизотропия смачивания. Растяжение анизотропной подложки оказывает существенное влияние на форму "лепестков" на линии трехфазного контакта, что, как следствие, и усиливает анизотропию смачивания [19].

Работа выполнена при поддержке гранта РФФИ 02-03-32128.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ребиндер П.А.* Избранные труды. Поверхностные явления в дисперсных системах. Коллоидная химия. М., 1978.
- 2. Де Жен П.Ж. // УФН. 1987. **151.** Вып. 4. С. 619.
- Сумм Б.Д., Горюнов Ю.В. Физико-химические основы смачивания и растекания. М., 1976.
- 4. Asthana R., Sobczak N. // JOM. 2000. **52.** № 1. P. 1
- Brandon S., Marmur A.J. // Colloid and Interface Sci. 1996. 183. P. 351.
- Drelich J., Miller J.D., Kumar A., Whitesides G.M. // Colloids and Surfaces. A. 1994. 93. P. 1.
- Drelich J., Wilbur J.L., Miller J.D., Whitesides G.M. // Langmuir. 1996. 12. P. 1913.
- Drelich J., Laskowski J.S., Pawlik M., Veeramasunen S. // J. Adhesion Sci. Technol. 1997. 11. № 11. P. 1399.
- 9. Drelich J. // J. Adhesion Sci. Technol. 1999. 13. № 12. P. 1437.
- 10. Сумм Б.Д., Соболева О.А., Должикова В.Д. // Коллоид. журн. 1998. **60**. № 5. С. 650.

- 11. Деньщикова Г.И., Сумм Б.Д. // Вестн. Моск. ун-та. Сер. 2. Химия. 1989. **30.** С. 512.
- Ребиндер П.А. Избранные труды. Поверхностные явления в дисперсных системах. Физико-химическая механика. М., 1979.
- Patrick R.L., Brown J.A. // J. Colloid and Interface Sci. 1971.
 35. № 2. P. 362.
- 14. Низовцев В.В. // Коллоид. журн. 1989. 51. 5. С. 919.
- Summ B.D., Samsonov V.M. // Colloids and Surfaces. 1999. 160. P. 63.
- 16. Самсонов В.М. // Коллоид. журн. 1997. 59. № 4. С. 520.
- Hazlett R.D. // J. Colloid and Interface Sci. 1990. 137. № 2. P. 527.
- 18. Абрамзон А.А., Зайченко Л.П., Сумм Б.Д. // Журн. прикл. химии. 1980. 53. № 5. С. 1040.
- 19. Русанов А.И. // Коллоид. журн. 1998. 60. С. 815.

Поступила в редакцию 10.11.03

ON THE NEW APPROACH TO THE THEORY OF PREFERENTIAL WETTING OF HETEROGENEOUS SOLID SURFACES

A.V. Ivanov, B.D. Summ

(Division of Colloid Chemistry)

The model of preferential wetting of heterogeneous solid surfaces is proposed. In a basis of model the assumption about two stage – wetting mechanism lays: at the first stage there is a displacement of a precursor phase; on the second — direct wetting of the solid surface by wetting liquid. Within the framework of the offered model the line of three-phase contact represents ensemble of alternating sites of positive and negative curvature. Conditions of balance on a three-phase line (TPL) for a case when displacement of a precursor phase is limiting stage of process of selective (preferential) wetting are considered. The equation binding a static contact angle with a relative share of sites of different curvature on TPL is presented.