УДК 541.12.017:536.7.661.1

КРИСТАЛЛИЗАЦИЯ ПОРОШКОВ ГЕКСАФЕРРИТА БАРИЯ ИЗ НЕКОТОРЫХ РАСТВОРОВ-РАСПЛАВОВ, СОДЕРЖАЩИХ БОРНЫЙ АНГИДРИД

Л. М. Витинг, В. В. Хасанов, О. Г. Бурцева, С. В. Мотылькова

(кафедра общей химии)

Методами физико-химического анализа впервые построены диаграммы плавкости в политермических сечениях $BaO \cdot B_2O_3 - BaFe_{12}O_{19}$ и $BaO \cdot 0, 6B_2O_3 - BaFe_{12}O_{19}$ псевдотройной оксидной системы $BaO - B_2O_3 - Fe_2O_3$. В обеих системах найдены протяженные области кристаллизации гексаферрита бария $BaFe_{12}O_{19}$. Измерена вязкость расплавов при высоких температурах, методом наименьших квадратов получены значения коэффициентов в уравнениях температурной зависимости вязкости. Установлено, что при сверхбыстрой закалке (~ 10^6 K/c)) и последующем отжиге полученного аморфного материала выделяется ультрадисперсный магнитный порошок гексаферрита бария, размер частиц которого (< 0,3 мкм) позволяет использовать его в качестве материала для магнитных носителей со сверхплотной записью информации.

Ранее нами было показано, что закалка высокотемпературного раствора-расплава, насыщенного эквимолярной смесью ферритообразующих оксидов (например, NiO:Fe₂O₃ = 1:1) приводит к кристаллизации дисперсного порошка феррита никеля (NiFe₂O₄), что представляет несомненный интерес для радиоэлектроники и техники магнитной записи информации [1, 2]. В этой связи представлялось необходимым изучить возможность получения наноразмерных (< 500 нм или 0,5 мкм) кристаллических порошков гексаферрита бария BaFe₁₂O₁₀, используемых для создания носителей со сверхвысокой плотностью записи информации (>10⁶ бит/мм²). Очевидно, что степень дисперсности нанопорошков будет определяться не только скоростью закалки раствора-расплава, но и вязкостью расплавленного растворителя и склонностью его к стеклообразованию. Было установлено, что расплавленные Bi₂O₃ и 2Bi₂O₃·BaO способны растворять гексаферрит бария и поэтому могут быть использованы в качестве растворителей для раствор-расплавного получения монокристаллов и порошков BaFe₁₂O₁₉. Однако в связи с незначительной вязкостью растворителей (~14 \cdot 10⁻³ H·см⁻² при 1000°) и отсутствием стеклообразования при закалке не удается получить размер частиц порошка менее 3,1 мкм. [3-5]. Позднее одним из авторов было показано, что требуемый наноразмер магнитного порошка удается получить лишь при использовании стеклообразующих растворителей, в частности, содержащих B₂O₃ [6].

В числе многих стеклообразующих растворителей для выращивания оксидных монокристаллов (шпинелей, гранатов и др.) часто используют $BaO \cdot B_2O_3$ и $BaO \cdot 0.6B_2O_3$ [7]. Сведения о вязкости упомянутых растворителей и о возможности их применения для получения порошков гексаферрита бария в литературе отсутствовали. С целью восполнения указанного пробела нами было изучено взаимодействие в политермических сечениях $BaO \cdot B_2O_3 - BaFe_{12}O_{19}$ и $BaO \cdot 0.6B_2O_3 - BaFe_{12}O_{19}$ псевдотройной оксидной системы $BaO - B_2O_3 - Fe_2O_3$.

Сплавы систем изучали методами ДТА (дериватограф фирмы «*MOM*», Венгрия), ВПТА, РФА, оптической микроскопией (микроскоп МИМ-7), магнитным (определение температуры Кюри) и химическим анализами. Плавление проводили в платиновом тигле, навеска сплава составляла 5 г. Вязкость расплавленных растворителей измеряли с помощью одной из разновидностей ротационного метода – определением угла закручивания упругой нити с закрепленным на конце платиновым шаром,

Вязкость барийборатных растворителей при высоких температурах (сантипуазы 10⁻³ H·cm⁻²)

BaO·B ₂ O ₃					
$(T_{nn} = 1378 \text{ K}, \eta = 0.6494 \cdot 10^{-3} \exp(105837.6/RT), S = 0.042, p = 0.83\%)$					
Т	η	Т	η	Т	η
1380	661,7	1440	450,4	1480	354,6
1400	579,9	1460	399,1	1500	316,2
BaO·0,6B ₂ 0 ₃					
$(T_{nn} = 1378 \text{ K}, \eta = 0.6494 \cdot 10^{-3} \exp(105837.6/RT), S = 0.042, p = 0.83\%)$					
Т	η	Т	η	Т	η
1280	649,8	1340	399,2	1380	295,4
1300	549,6	1360	342,6	1400	255,7

Примечание. S – стандартное отклонение, p – процент прочности.

Рис. 1 Диаграмма состояния квазибинарной системы $BaO \cdot B_2O_3 - BaFe_{12}O_{19}$

Рис. 2. Диаграмма состояния квазибинарной системы $BaO\cdot0,6B_2O_3$ – $BaFe_{12}O_{19}.$ А – ж + $BaO\cdotB_2O_3$ + $3BaO\cdotB_2O3$ + $BaFe_{12}O_{19}$

погруженным во вращающийся с постоянной скоростью 2 об/мин тигель с расплавом [8], а также метод падающего частично уравновешенного тела [9]. В бинарной системе BaO – B_2O_3 один из рассматриваемых растворителей (BaO· B_2O_3) является соединением, плавящимся конгруэнтно при 1105°, а другой (BaO· $0,6B_2O_3$) – соединением, плавящимся в интервале температур 850–1000°. Состав последнего расположен в эвтектической области между соединениями BaO· B_2O_3 и 3BaO· B_2O_3 [10].

Диаграммы состояния изученных систем приведены на рис. 1, 2. Политермическое сечение $BaO \cdot B_2O_3 - BaFe_{12}O_{19}$ является квазибинарной эвтектической систе-

мой, эвтектика имеет координаты 830° и 15,0 мол.% ВаFe₁₂O₁₉, в заэвтектической области кристаллизуется гексаферрит бария (рис. 1). В сечении ВаО·0,6В₂О₃ -ВаFe₁₂O₁₉ область кристаллизации гексаферрита бария расположена правее и выше точки с координатами 810° и 12,5 мол.% ВаFe₁₂O₁₉ (рис. 2). Из приведенных диаграмм состояния следует, что в обеих системах обнаружены обширные области кристаллизации гексаферрита бария, что подтверждается комплексом перечисленных выше методов физико-химического анализа. Так, химический анализ донной кристаллической фазы, образовавшейся после отделения от затвердевшего маточного раствора обработкой горячей 35%-й уксусной кислотой, показал, что кристаллы содержат 61,8% Fe и 12,3% Ва (теоретически в ВаFe₁₂O₁₉ содержится 60,3% Fe и 12,3% Ba). Точка Кюри кристаллов найдена равной 445±5°, что практически совпадает с табличным значением 448±6° [11].

Измерение вязкости (η) растворителей при высоких температурах и обработка экспериментальных данных методом наименьших квадратов позволили получить уравнения температурной зависимости вязкости (таблица).

Сверхбыстрая закалка жидкого раствора-расплава (10^5-10^6 K/c) на установке с вращающимися со скоростью 1000 об/мин металлическими каландрами и последующий отжиг полученных аморфных чешуек при 800° в течение 3 ч привели после последующего удаления маточного раствора обработкой горячей 35%-й уксусной кислотой к получению дисперсного магнитного порошка гексаферрита бария, состав и свойства которого были подтверждены упомянутыми выше методами физико-химического анализа. Размер частиц порошка был найден равным 0,1–0,3 мкм. Таким образом, нанодисперсные магнитные порошки могут быть получены только при закалке и термообработке стеклообразующих раствороврасплавов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Витинг Л.М., Олейников Н.Н., Исаев А.Ф. Авт. св. СССР № 663485. 1979.
- 2. Витинг Л.М. Дис. ... докт. хим. наук. М., 1980.
- 3. Хасанов В.В. Деп. ВИНИТИ, № 5358-89.
- 4. Хасанов В.В., Загородная Н.Ф., Витинг Л.М. Деп. ВИНИТИ, № 5950-89.
- 5. Хасанов В.В. Дис. ... канд. хим. наук. М., 1980.
- 6. Хасанов В.В. Деп. ВИНИТИ, № 5880-88.
- Elwell D., Scheel H.J. Crystal growth from hightemperature solutions // L.-N-Y-Fr., 1975.
- Казаринова Н.Г., Витинг Л.М., Резницкий Л.А. // Вестн. Моск. ун-та. Сер. 2. Химия. 1976. № 3. С. 336.
- 9. Маршак Ф.М. // Заводск. лаб. 1946. 12. № 2-3. С. 324.
- 10. *Торопов Н.А.* Диаграммы состояния силикатных систем. Справочник. Вып. 1. Л., 1969.
- Термические константы веществ. Справочник. Вып. 10. М., 1981.

Поступила в редакцию 03.12.98