На правах рукописи

Тегина Ольга Яковлевна

Влияние строения привитого слоя и структурных параметров носителей на адсорбционные свойства полифторалкилкремнеземов

02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва-2015

Работа выполнена в лаборатории адсорбции и хроматографии кафедры физической химии химического факультета Московского государственного университета имени М.В. Ломоносова.

Научный руководитель: доктор химических наук, профессор Рошина Татьяна Михайловна

Официальные оппоненты:

доктор химических наук Буряк Алексей Константинович ФГБУН «Институт физической химии им. А.Н. Фрумкина электрохимии

PAH», заведующий лабораторией физико-химических хроматографии основ И хромато-масс-спектрометрии

И

доктор химических наук

Курганов Александр Александрович

ФГБУН «Институт нефтехимического синтеза Топчиева PAH», заведующий A.B. ИМ. лабораторией хроматографии

Ведущая организация:

ФГБОУ ВПО «Российский университет дружбы народов»

Защита диссертации состоится «15» мая 2015 года в 15 час 00 мин на заседании Диссертационного совета Д 501.001.90 по химическим наукам при Московском государственном университете имени М.В. Ломоносова по адресу: 119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 3., Химический факультет МГУ, аудитория 446.

С диссертацией можно ознакомиться в Фундаментальной библиотеке МГУ имени М.В. Ломоносова по адресу: Москва, Ломоносовский проспект, д. 27 и на сайте химического факультета: www.chem.msu.ru

Автореферат разослан « » 2015 года

Учёный секретарь Диссертационного совета Д 501.001.90, кандидат химических наук, доцент

Sulf

Шилина М.И.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Нанопористые минеральные оксиды, обладая развитой поверхностью, являются не только прекрасными адсорбентами в первоначальном виде, но и способны радикально менять свои физико-химические химического свойства результате модифицирования. Особый интерес В представляют химически модифицированные кремнеземы (ХМК). Достаточно отметить, что ХМК относятся к основным сорбентам для ВЭЖХ. Полифторорганические наиболее эффективны соединения ДЛЯ создания функциональных материалов с супергидрофобной и олеофобной поверхностью. С их помощью получают тончайшие (около нм) покрытия, которым присущи ценные хроматографические, электрофизические, водозашитные. антикоррозионные, бактериостатические и антифрикционные свойства. Как правило, стремятся к получению лиофобизованных структур с высокой плотностью прививки модификаторов, мало отличающейся от теоретически возможной. Однако изготовить покрытия с высокой плотностью прививки на поверхности готовых изделий, таких, как корпуса и стекла транспортных средств, архитектурные строения, ткани, устройства микроэлектроники или узкопористые материалы – трудновыполнимая задача. Тем не менее, систематическим исследованиям в области влияния концентрации, а также состава и структуры привитых полифторалкильных групп на защитные свойства слоя, уделяется недостаточно внимания.

Для создания новых материалов весьма перспективны кремнеземы с высокоупорядоченным строением мезопор, особенно типа SBA, поскольку обладают большими размерами пор среди себе подобных. Известно, что такие материалы обладают молекулярно-ситовыми свойствами могут быть И использованы в качестве носителей катализаторов И сорбентов лля хроматографии, элементов химических сенсоров, оптических и электронных устройств. Несомненный интерес представляет достаточно «строгая» структура SBA и SBA со слоем модификатора для использования их в качестве модельных поверхностей при исследовании механизмов адсорбции, капиллярной взаимодействий конденсации И межмолекулярных на мезопористых поверхностях, что важно и для практического применения SBA. Однако в литературе утилитарный доминирует подход рассматриваются, И преимущественно определения структурных для параметров, данные ПО низкотемпературной адсорбции комплексные азота, a исследования адсорбционных систем, включающих мезопористые кремнеземы, воду И отсутствуют. Совокупность адсорбционных органические соединения И хроматографических методов позволяет получить количественные данные о взаимосвязи различных свойств привитого слоя ХМК с термодинамическими характеристиками адсорбции молекул разной природы в широкой области температур и давлений, а также с эффективными параметрами пористой структуры и сделать выводы о качестве лиофобизующего покрытия, что необходимо для выработки рекомендаций при направленном синтезе ХМК.

<u>Цель работы</u> состояла в изучении физико-химических характеристик ранее не исследованных систем, включающих кремнеземы, отличающиеся по

3

параметрам пористой структуры, химическому строению и плотности привитого слоя, и широкий набор адсорбатов-тестов адсорбционно-статическим, газохроматографическим (ГХ) и другими методами.

Для достижения поставленной цели были сформулированы следующие задачи:

- Методом ГХ определить термодинамические характеристики адсорбции (ТХА) органических молекул разных классов на поверхностях кремнеземов с химически привитыми полифторалкильными слоями, отличающимися как составом и структурой, так и концентрацией привитых групп.
- Полученные значения ТХА совместно с адсорбционно-статическими и ИК-спектроскопическими данными связать с химическим строением модифицированной поверхности твердого тела и адсорбированных молекул и проанализировать для определения природы и роли активных центров в адсорбционных процессах на ХМК.
- Адсорбционно-статическим методом изучить влияние параметров пористой структуры носителей на свойства поверхности гидрофобизованных кремнезёмов по отношению к молекулам гексана, бензола, азота и воды и выявить закономерности и особенности процессов адсорбции и капиллярной конденсации в порах модифицированных материалов.

<u>Научная новизна</u>. Впервые адсорбционно-статическим, газохроматографическим и ИК-спектроскопическим методами изучены изменения свойств поверхности при модифицировании перфторгексилсиланом сравнительно новой разновидности кремнезема SBA-15.

Получены ранее неизвестные данные, характеризующие адсорбционные свойства кремнеземов с привитыми линейными и разветвленными трифункциональными силанами:

• силикагелей, модифицированных $Cl_3Si(CH_2)_2(n-C_6F_{13})$ и $Cl_3Si(CH_2)_2(iso-C_3F_7);$

• силохромов, модифицированных $Cl_3Si(CH_2)_2(n-C_8F_{17})$ и $Cl_3Si(CH_2)_2(iso-C_3F_7)$.

Представлены новые результаты, дополняющие имеющиеся в литературе сведения об адсорбционных свойствах силохромов с привитыми монофункциональными полифторалкильными и с трифункциональными октильными модификаторами.

Впервые обнаружено, что в целом плотность прививки и природа фторорганического модификатора практически не влияет на степень гидрофобности модифицированных нанопористых кремнеземов.

Впервые на основании сравнительного анализа адсорбционных данных по N₂, гексану и бензолу выполнены расчеты краевых углов смачивания углеводородов на XMK на лиофобных поверхностях. Представленные результаты позволяют дать полуколичественную или, по меньшей мере, качественную интерпретацию экспериментальных фактов, т.е. особенностей капиллярных явлений в лиофобных порах, что важно как для практического применения фторсодержащих поверхностей, так и развития теоретических вопросов адсорбции.

Практическая значимость. Установлено, что использование модификаторов разной природы позволяет регулировать свойства поверхности ХМК и, снижая, в целом, адсорбционный потенциал поверхности кремнеземов и её гидрофильность, направленно изменять в зависимости от поставленных задач необходимый уровень её селективности и полярности по отношению к углеводородам, а также к кислород- и азотсодержащим молекулам.

Показано, что азот (при 77 К) является подходящим адсорбатом для определения текстурных характеристик модифицированных полифторалкилсиланами кремнеземов, однако если требуется более детальная информация о поверхностных свойствах материалов, особенно в условиях их практического применения, например, при комнатных температурах, в качестве адсорбатов целесообразно дополнительно использовать другие вещества, и, в первую очередь, такие как гексан, бензол и вода.

Результаты, представленные работе, могут быть В применены для интерпретации вновь полученных экспериментальных данных и предсказания характеристик пористых материалов с полифторорганическим покрытием, а также для дальнейшего развития научно-обоснованных методов направленного синтеза эффективных адсорбентов, мембран и катализаторов. Кроме этого, они могут быть рекомендованы к использованию в научно-исследовательских организациях и учебных заведениях, где проводятся работы в области сорбции, катализа, хроматографии, биологии: Институте геохимии и аналитической химии им. В.И. Вернадского РАН, Институте физической химии и электрохимии им. А.Н. Фрумкина РАН, Институте катализа им. Г.К. Борескова СО РАН, Институте органической химии им. Н.Д. Зелинского РАН, Институте общей и неорганической химии им. Н.С. Курнакова РАН.

На защиту выносятся:

- Термодинамические данные (константы Генри, теплоты и стандартные энтропии адсорбции) для широкого набора разных классов органических соединений на исходных и модифицированных кремнеземах, отличающихся параметрами пористой структуры и гидрофобными покрытиями.
- Полные изотермы адсорбции-десорбции гексана, бензола, азота и воды на исходных носителях и ряде образцов с перфторгексильными и изоперфторпропильными группами.
- Результаты расчета краевых углов смачивания углеводородов на поверхностях, модифицированных монофункциональными перфторгексилсиланом, из адсорбционных данных.
- Интерпретация и обобщение полученных в работе и литературных данных по созданию высокоэффективных защитных покрытий.

Апробация результатов. Основные результаты работы были представлены на Всероссийской конференции «Актуальные проблемы теории адсорбции, пористости и адсорбционной селективности» (Москва – Клязьма 2014), XV «Актуальные Всероссийском проблемы симпозиуме теории адсорбции. пористости и адсорбционной селективности» (Москва – Клязьма 2013), I, II Всероссийском симпозиуме «Кинетика и динамика обменных процессов» (Краснодарский край 2013, 2012), Всероссийской научной конференции по фундаментальным вопросам адсорбции (Тверь 2013), XIX, XVIII. XVII Международных научных конференциях студентов, аспирантов и молодых учёных «Ломоносов» (Москва 2012, 2011, 2010), Второй конференции СНГ «Золь-гель-2012» (Севастополь 2012), ХІ Международной конференции «Современные проблемы адсорбции» (Москва 2011), Международном симпозиуме «Современные проблемы химии поверхности и физики» (Киев 2010).

<u>Личный вклад автора</u> состоит в поиске и анализе литературы по теме диссертации, выполнении основного объёма экспериментальной работы, связанной с изучением физико-химических характеристик кремнеземов и их модифицированных форм адсорбционно-статическим, газохроматографическим и другими методами, анализе и обработке полученных данных, интерпретации полученных результатов, подготовке публикаций и докладов.

Публикации. По теме диссертации опубликовано 20 печатных работ, из них 7 статей (5 в научных журналах из перечня, рекомендованного ВАК, 2 - в трудах конференции) и 13 тезисов докладов на научных конференциях.

<u>Объем и структура диссертации</u>. Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, результатов и их обсуждения, выводов, списка цитируемой литературы и приложения, содержит 41 таблицу (35 - в приложении) и 87 рисунков (3 - в приложении). Изложена на 170 страницах машинописного текста, включая 12 стр. приложения. Список цитированной литературы состоит из 309 наименований.

Во введении обоснована актуальность работы и сформулированы цели и задачи исследования.

В обзоре литературы обобщены сведения по получению, строению, адсорбционным и другим физико-химическим свойствам модифицированных поверхностей на основе оксида кремния. Кратко описаны силикатные материалы различной морфологии, получаемые при разных условиях синтеза. Рассмотрен синтез и характеристики мезопористых наноматериалов различной структуры и текстуры, обладающих дальним порядком регулярно упакованных пор. Описаны методы исследования, применяемые для определения физико-химических химически модифицированных поверхностей. характеристик В ходе рассмотренных в литературе исследований была установлена высокая гидро- и олеофобность материалов, В состав которых входят поверхностные полифторалкильные группы. Показана уникальная возможность применения фторсодержащих поверхностей таких областях как нанотехнология, В микромеханика, лазерная техника, текстильная промышленность, медицина, фармакология и химия биологических поверхностей раздела.

В <u>экспериментальной части</u> описаны исходные кремнеземы и их модифицированные формы, оборудование, методики проведения физико-химических испытаний.

Обсуждение результатов представлено тремя разделами.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

<u>Объекты и методы исследования</u>. Обозначения и отдельные характеристики основных изученных образцов приведены в табл. 1.

Таблица 1 Обозначения и характеристики образцов (содержание углерода на поверхности кремнеземов (ω_c , %), концентрация привитых групп (N, нм⁻²), удельная поверхность (S_{ya} , м²/г))

Обозначение в тексте	Образец	Привитая группа	Ю _с	N	$S_{ m yg}$
SBA	Мезопористый кремнезем SBA-15	-	-	-	387
SBA II	Мезопористый кремнезем SBA-15	-	-	-	854
SG	Силикагель (Sigma- Aldrich, USA)	-	-	-	297
ASG^*	Силохром С-120 (Ставропольский завод химреактивов)	-	-	-	101
SBA-F	Модифицированный SBA	-Si(CH ₃) ₂ (CH ₂) ₂ (n - C ₆ F ₁₃)	4.9	0.76	294
SBA-F II	Модифицированный SBA II	-Si(CH ₃) ₂ (CH ₂) ₂ (n - C ₆ F ₁₃)	10.3	0.93	389
SG-F	Модифицированный SG	-Si(CH ₃) ₂ (CH ₂) ₂ (n - C ₆ F ₁₃)	6.1	1.3	249
SG-F (III)	Модифицированный SG	$\equiv \mathrm{Si}(\mathrm{CH}_2)_2(n-\mathrm{C}_6\mathrm{F}_{13})$	7.0	2.1	246
SG-isoF(III)	Модифицированный SG	$\equiv Si(CH_2)_2(iso-C_3F_7)$	6.1	2.7	239
ASG-F, $C_{6}F_{13}(2)$	Модифицированный ASG	-Si(CH ₃) ₂ (CH ₂) ₂ (<i>n</i> - C ₆ F ₁₃)	2.1	1.1	100
$C_4F_9(2)$	Модифицированный ASG	-Si(CH ₃) ₂ (CH ₂) ₂ (<i>n</i> - C ₄ F ₉)	2.6	1.7	86
$C_8F_{17}(2)$	Модифицированный ASG	$-Si(CH_3)_2(CH_2)_2(n-C_8F_{17})$	2.7	1.2	92
$ASG-C_8F_{17}(III)$	Модифицированный ASG	$\equiv \operatorname{Si}(\operatorname{CH}_2)_2(n - \operatorname{C}_8 \operatorname{F}_{17})$	3.2	1.9	87
ASG-isoF(III)	Модифицированный ASG	$\equiv Si(CH_2)_2 - (iso-C_3F_7)$	2.5	2.8	90
C8(II)	Модифицированный ASG	$\equiv \mathrm{Si}(n - \mathrm{C}_{8}\mathrm{H}_{17})$	5.9	4.4	83
C8(III)	Модифицированный ASG	$\equiv \operatorname{Si}(n - \operatorname{C}_8 \operatorname{H}_{17}) + -\operatorname{Si}(\operatorname{CH}_3)_3$	5.9	4.4	83
FC	Фторуглеродный адсорбент состава (CF_x) _n , где $x \approx 1$	-	-	-	190

*частично использованы литературные данные

В качестве исходных носителей в работе были использованы кремнеземы с разными параметрами пористой структуры: мезопористые кремнеземы SBA-15 (SBA, SBA II; эффективный диаметр пор $d_p = 8$ и 7 нм соответственно), силикагель SG ($d_p = 13$ нм) и силохром ASG ($d_p = 30$ нм). Все носители были гидроксилированы при кипячении в воде в течение 25 ч. В качестве

модификаторов использованы монофункциональные (RSi(CH₃)₂Cl,) и трифункциональные (RSiCl₃) полифторалкилсиланы и октилсиланы (R - радикал).

Газохроматографические (ГХ) исследования образцов проводили на хроматографе "Хром-5" с пламенно-ионизационным детектором, гелием в качестве газа-носителя и стеклянными колонками (длина 0.6-1 м, внутренний диаметр 2-2.5 мм).

В качестве основных тестовых соединений использованы *н*-алканы (C₅-C₁₁), ароматические углеводороды (бензол, толуол, этилбензол), 2-метилпропан-2-ол, диэтиловый эфир, нитрометан, ацетонитрил.

Для расчетов термодинамических величин из ГХ данных предполагали, что адсорбция проводится в области Генри и удерживаемый объем V_a , (мл/м²) численно равен константе Генри K_{Γ} . В качестве стандартного состояния выбраны единичные концентрации вещества в газовой фазе (мкмоль/мл) и в адсорбированном состоянии (мкмоль/м²). Для расчета K_{Γ} использовали значения удельной поверхности S_{yd} , определенные методом БЭТ из изотерм адсорбции азота (площадь, занимаемая молекулой азота на поверхности адсорбента 0.162 нм²) или методом тепловой десорбции.

Начальную дифференциальную теплоту адсорбции q и стандартную энтропию адсорбции ΔS° определяли по температурной зависимости $\ln K_{\Gamma}$ в интервале от 373 К до 423 К:

$$\ln K_{\Gamma} = q/\mathbf{R}T + \Delta S^{\circ}/\mathbf{R} + 1,$$

где $q = -\Delta U^{\circ}$, а ΔU° – дифференциальное мольное изменение внутренней энергии при адсорбции (в приближении, что q и ΔS° не зависят от температуры).

Для большинства тестовых соединений погрешность определения V_a , q и ΔS° на исследованных образцах не превышала 10%.

Индексы удерживания Ковача *I*_i рассчитывали по формуле:

$$I_i = 100 \frac{\ln V_{ai} - \ln V_{an}}{\ln V_{a(n+1)} - \ln V_{an}} + 100n,$$

где V_{an} и $V_{a(n+1)}$ –удерживаемые объемы *н*-алканов с числом атомов углерода *n* и *n*+1 соответственно, при условии соблюдения соотношения $V_{an} \leq V_{a(n+1)}$.

Вклады энергии специфического взаимодействия ΔG^{sp} в энергию Гиббса адсорбции ΔG^{o} определяли следующим образом:

$$\Delta G^{sp} = \Delta G^o - \Delta G^d,$$

где ΔG^d – энергия Гиббса адсорбции для *н*-алкана (реального или гипотетического) с тем же значением поляризуемости, что и у исследуемого соединения, способного к специфическому взаимодействию.

Изотермы адсорбции воды, бензола и гексана измерены при температуре 298 К весовым статическим методом (пружинные кварцевые весы Мак-Бена-Бакра). Измерение изотерм адсорбции азота выполнено при 77 К на сорбтометре ASAP-2020 (Micromeritics, Norcross, GA, USA). Определение удельной поверхности S_{yd} методом тепловой десорбции азота проведено при 77 К на сорбтометре «Газометр ГХ-1» с катарометром на смеси Не (80 об.%) и N₂.

Элементный анализ на углерод проводили на приборе Perkin Elmer 2400 CHN Analyzer (Schwarzkopf Microanalytical Lab., Woodside, NY).

ИК-спектры диффузного отражения (DRIFT) регистрировали при комнатной температуре на спектрометре NICOLET "Protege" 460. В качестве молекул-тестов использовали дейтерированный ацетонитрил и бензол.

Для исследования морфологии SBA, выполненного проф. W.F. DeGrado (Biomolecular Imaging Coreat University of Pennsylvania), использовали сканирующую электронную микроскопию и просвечивающую электронную микроскопию.

Термическую устойчивость образцов в токе сухого азота определяли на приборе TA Hi-Res 2950 Thermogravimetric.

Кремнеземы, модифицированные монофункциональными силанами. исследования адсорбционных свойств Результаты силохромов, модифицированных монофункциональными полифторалкилсиланами (в случае образцов первой серии $C_3F_7(1)$ и $C_6F_{13}(1)$ с концентрацией привитых групп N = 2.42.1 нм⁻², соответственно, использованы данные $pafot^{1}$). И а также октилкремнезема $C_8H_{17}(1)^1$ (монофункциональный модификатор, N = 3 нм⁻²) ГХ методом представлены рис. 1(а). После модифицирования на полифторалкилсиланами наблюдается заметное снижение энергии дисперсионного взаимодействия для всех образцов по сравнению с исходным носителем. В согласии со статическими данными для гексана (рис. 1(б)), в группах образцов, как первой (1), так и второй серии (2), уменьшение концентрации привитых групп и рост длины привитой цепи, приводит к повышению адсорбции н-алканов. Однако, адсорбция молекул алканов на октилкремнеземе с наиболее плотным из всех исследованных ХМК покрытием, значительно превышает адсорбцию на всех фторсодержащих поверхностях. Это подчеркивает роль химической природы модификатора, ярко проявляющуюся, в данном случае, в дисперсионных взаимодействиях.

Рис. 1 Зависимости $\ln K_{\Gamma}$ от числа атомов углерода *n* в молекулах *н*-алканов при 403 К (а) и изотермы адсорбции гексана при 298 К (б) на: **1** - ASG, **2** - C₆F₁₃(2), **3** - C₄F₉(2), **4** - C₈H₁₇(1), **5** - C₆F₁₃(1), **6** - C₃F₇(1)

¹Т.М. Рощина, Н.К. Шония, А.Б. Никольская и др. // Физикохимия поверхности и защита материалов. 2009. Т. 45. № 2. С. 165. К.В. Gurevich, Т.М. Roshchina, N.K. Shonia et.al. // J. Coll. Interface Sci. 2002. V. 254. № 1. Р. 39.Т.М. Рощина, Н.К. Шония, М.С. Лагутова и др. // Журн. Физ. Химии. 2007. Т.81. №7. С. 1282.

Для оценки вкладов специфических взаимодействий молекул, обладающих π-связями, в адсорбцию, при элиминировании дисперсионной составляющей Генри $K_{\Gamma}^{\text{отн}}$, взаимодействия, определены относительные константы где $K_{\Gamma}^{\text{отн}} = K_{\Gamma}$ (бензол)/ K_{Γ} (гексан), а также разности теплот адсорбции Δq этих углеводородов (табл. 2). В целом, $K_{\Gamma}^{\text{отн}}$ и Δq снижаются после модифицирования и с ростом плотности прививки, причем в пределах каждой серии отличаются незначительно. Следовательно, возможный рост участия в адсорбционном процессе остаточных силанолов (за счет уменьшения концентрации привитых более эффективным групп) компенсируется экранированием полярной поверхности носителя длинными радикалами и/или ростом вклада боковых взаимодействий с ними, а также снижением доступности полярного фрагмента полифторалкильной цепи -⁺⁶CH₂-⁻⁶CF₂-. Это особенно заметно для образцов серии 2, различающихся по плотности прививки в 1.5 раза.

Таблица 2 Отношения констант Генри бензола к гексану ($K_{\Gamma}^{\text{отн}}$) при 403 К и разности теплот адсорбщии бензола и гексана ($\Lambda q_{\Gamma} \kappa \Pi w$ /моль)

ризности теплот идеороции основни и тексини (Ду, кдж/мони)									
	ASG	$C_4F_9(2)$	$C_6F_{13}(2)$	$C_3F_7(1)$	$C_6F_{13}(1)$	$C_8H_{17}(1)$			
K_{Γ}^{oth}	2.9	2.4	2.3	1.3	1.4	1.1			
Δq	8.2	8.7	7.3	2.8	3.4	0			

В отличие от адсорбционных систем с участием углеводородов для кислород- и азотсодержащих молекул, способных к образованию сравнительно электростатическим прочной водородной связи, И донорно-акцепторным взаимодействиям с остаточными силанольными группами и полярными фрагментами привитой цепи, снижение адсорбционной активности образцов с полифторалкильными группами по сравнению с исходным носителем более заметно (рис. 2). Кроме этого, можно отметить общую для большинства молекул тенденцию к некоторому подъему значений - $\Delta G^{\rm sp}$ (табл. 3) при сокращении длины и, возможно, доступности полярного фрагмента -⁺⁶CH₂-⁻⁶CF₂- привитой цепи в каждой серии фторкремнеземов, а также отчетливый их рост при уменьшении концентрации привитых групп.

Согласно ИК-спектроскопическим данным в спектрах образцов C₄F₉(2) и C₆F₁₃(2) отсутствуют полосы поглощения (п.п.), характерные для валентных и составных колебаний изолированных Si-OH групп. Различия в сдвигах п.п. после адсорбции бензола, показывают, что силанолы C₄F₉(2) обладают меньшей адсорбционной активностью в отношении этой молекулы, чем у образца $C_6F_{13}(2)$. В то же время, при адсорбции CD₃CN анализ ИК-спектров приводит к выводу о том, что сила бренстедовских кислотных центров (БКЦ) на $C_4F_9(2)$ и $C_6F_{13}(2)$ практически одинаковая и выше, чем на фторкремнеземах с высокой плотностью прививки. Так, на C₄F₉(2) и C₆F₁₃(2) красный сдвиг п.п. при 3705 см⁻¹, относящейся к колебаниям возмущенных водородной связью ОН-групп, составляет 279-282 см⁻¹, а на $C_6F_{13}(1) - 240$ см⁻¹. Это позволяет заключить, что увеличение размера привитой группы на $C_6F_{13}(2)$ в сравнении с $C_4F_9(2)$, несмотря на уменьшение плотности прививки в 1.5 раза, способствует заметному снижению адсорбционной активности остаточных силанолов носителя по отношению к ацетонитрилу, делая ее почти такой же, как и на C₄F₉(2). Следовательно, почти незаметные различия - $\Delta G^{\rm sp}$ и K_{Γ} ацетонитрила на образцах

со сравнительно небольшой концентрацией привитых групп обусловлены, в основном, близостью силы БКЦ на них. В целом ИК-спектроскопические данные по адсорбции бензола и ацетонитрила согласуются с результатами ГХ эксперимента в широкой области температур. Таким образом, варьируя такие параметры привитого слоя, как длина и концентрация привитых групп, можно регулировать в заданном направлении специфичность и селективность поверхности фторсодержащих кремнеземов.

Рис. 2 Зависимости $\ln K_{\Gamma}$ от обратной температуры для диэтилового эфира (а) и ацетонитрила (б) на: **1**-ASG, **2**-C₆F₁₃(2), **3**-C₄F₉(2), **4**-C₈H₁₇(1), **5**-C₆F₁₃(1), **6**-C₃F₇(1)

Таблица 3 Вклады энергии специфических взаимодействий (-ΔG^{sp}, кДж/моль) в энергию Гиббса адсорбции при 403 К

Адсорбат	C ₃ F ₇ (1)	$C_6F_{13}(1)$	C ₄ F ₉ (2)	$C_6F_{13}(2)$
2-Метилпропан-2-ол	5.2	4.2	8.5	5.6
Диэтиловый эфир	3.4	2.3	10.3	11.1
Нитрометан	8.9	8.7	12.4	12.1
Ацетонитрил	10.6	9.7	15.6	15.0

Рис. 3 Изотермы адсорбции паров воды при 298 К на: **1** - ASG, **2** - C₆F₁₃(2), **3** - C₄F₉(2), **4** - C₈H₁₇(1), **5** - C₆F₁₃(1), **6** - C₃F₇(1). $a_{\rm m}$ - теоретически возможная емкость плотного монослоя молекул воды

Результаты исследования адсорбции паров воды в статических условиях показали (рис. 3), что практически для ХМК вплоть $p/p_s \rightarrow 1$, всех до значения адсорбции воды заметно меньше теоретически возможной емкости плотного монослоя молекул воды, рассчитанного с учетом размера молекул с помощью S_{vд} для исходного носителя ($a_{\rm m} = S_{\rm yg} / \omega \cdot N_{\rm A}$, ω - площадка молекулы воды 0.1 нм², N_A – число Авогадро), что позволяет отнести все изученные фторсилохромы К супергидрофобным материалам.

Влияние пористой структуры и химии поверхности на адсорбционные свойства кремнеземов рассмотрено на примере образцов SBA, SBA II, SG, ASG и их модифицированных

монофункциональным перфторгексилсиланом формах. Как следует из рис. 4, на исходных образцах величины адсорбции н-алканов наиболее высоки на образце с наименьшим размером пор – SBA, в сравнении с силикагелем или силохромом, что связано, прежде всего, с усилением влияния адсорбционного поля в порах при уменьшении их размера. В согласии с этим, значения V_a *н*-алканов на SBA II в ≈ 3 раза выше, чем на SBA. Как и в случае исследования адсорбции гексана в статических условиях (рис. 4), направление уменьшения K_{Γ} , как и теплот адсорбции в ряду четырех – семи н-алканов (табл. 4, где для примера приведены q гексана), следующее: SBA > ASG > SG, что не согласуется с увеличением размера ASG по сравнению SG. Кроме этого, пор на с расчет $K_{\Gamma}^{\text{отн}} = K_{\Gamma}(\text{бензол})/K_{\Gamma}(\text{гексан}), а также I и \Delta q$ (табл. 4), показал, что эти величины падают в следующем ряду: SG > SBA > ASG. K_{Γ} для CH₃CN и диэтилового эфира, как и величины адсорбции воды, на SG превышают соответствующие значения для SBA (рис. 5, табл. 4). Это говорит о сравнительно высокой концентрации силанольных групп на силикагеле, что, вероятнее всего, является основным фактором, определяющим снижение дисперсионных и рост специфических взаимодействий на SG, а также может оказывать влияние на свойства поверхности модифицированного силикагеля.

Рис. 4 Начальные области изотерм адсорбции гексана при 298 К (а) и зависимости $\ln K_{\Gamma}$ от числа атомов углерода *n* в молекулах *н*-алканов при 403 К (б) на: **1** - SBA, **2** - SG, **3** - ASG, **4** - SBA-F, **5** - SG-F, **6** - ASG-F

Таблица 4 Отношения констант Генри бензола к гексану ($K_{\Gamma}^{\text{отн}}$) при 403 К, константы Генри (K_{Γ}) и индексы Ковача (*I*) при 403 К, теплоты адсорбции (*q*, кДж/моль), разности теплот адсорбции бензола и гексана (Δq , кДж/моль), значения величин адсорбции воды (*a*, мкмоль/м²) при 298 К и относительном

	SBA	SBA-F	SG	SG-F	ASG	ASG-F
$K_{\Gamma}^{ m oth}$	4.2	2.7	5.4	3.1	2.9	2.3
Бензол, K_{Γ}	0.21	0.085	0.15	0.046	0.11	0.044
Диэтиловый эфир, <i>I</i>	1181	1169	1356	1263	1167	1106
Гексан, q	33	31	29	28	31	29
Бензол, q	43	39	45	40	39	36
Δq	10	8	16	12	8	7
Вода, а	5.7	1.9	7.8	1.6	4.0	0.6

давлении і	аров р	⊳/p _S =0	.33
------------	--------	---------------------	-----

Рис. 5 Зависимости $\ln K_{\Gamma}$ от обратной температуры для диэтилового эфира (а), ацетонитрила (б). **1** - SBA, **2** - SG, **3** - ASG, **4** - SBA-F, **5** - SG-F, **6** - ASG-F

Закрепление на поверхности кремнеземов перфторгексильных групп сопровождается падением K_{Γ} всех исследованных соединений (рис. 4, 5, табл. 4). При этом порядок в изменении величин *a* и K_{Γ} алканов сохраняется таким же, как SBA-F > ASG-F > SG-F. C одной стороны исходных носителях: на это обусловлено плотностью привитого слоя – чем она ниже (0.76 нм^{-2} на SBA-F), тем меньше проявляется эффект модифицирования, а с другой – росту адсорбции способствует уменьшение размера пор (наименьшие на SBA-F). Различия в размерах пор определяют и соотношения V_a *н*-алканов на SBA-F II > SBA-F. Последовательность изменения K_{Γ} аренов (табл. 4, где для примера приведены K_{Γ} диэтилового эфира ацетонитрила (рис. 5), способных бензола), И к специфическому взаимодействию с поверхностью, иная: SBA-F > SG-F ≥ ASG-F. При этом K_{Γ} для диэтилового эфира на XMK падают в 3–6 раз относительно K_{Γ} на определяется уменьшением в первую очередь исходных образцах, ЧТО концентрации и экранированием остаточных силанолов носителя. В тоже время, при адсорбции ацетонитрила К_Г после модифицирования изменяются в меньшей степени, например, на SBA-F в ≈1.4 раза (для диэтилового эфира ≈3 раза). Возможно, не только силанолы кремнеземов, но и полярный фрагмент привитой цепи -⁺⁶CH₂-⁻⁶CF₂- на XMК определяет сравнительно высокие величины адсорбции CH₃CN, обладающего большим дипольным моментом (3.9 Д). В группе модифицированных кремнеземов K_{Γ} наиболее высоки на SBA-F, что, на обусловлено небольшой первый взгляд, концентрацией привитых перфторгексильных групп. Однако $K_{\Gamma}^{\text{отн}}$, I и Δq на SBA-F ниже, чем на SG-F, хотя и выше, чем на ASG-F (табл. 4). Можно предположить, что, несмотря на заметно более низкую концентрацию привитых групп на SBA-F, чем на SG-F (в 1.7 раз), число доступных для адсорбции ОН-групп на модифицированном силикагеле что в узких порах нередко формируются Также следует учесть, выше. способствует компактные привитые слои, что лучшему экранированию немодифицированной поверхности носителя.

ГХ данные согласуются с полученными методом ИК-спектроскопии: сила БКЦ по отношению к ацетонитрилу и бензолу на SBA-F выше, чем на ASG-F. Это является одной из причин более высокой адсорбционной активности модифицированного образца SBA-F.

Рис. 6 Изотермы адсорбции воды на исходном и модифицированных кремнеземах с разными параметрами пористой структуры при 298 К. Черные точки – десорбция

Данные, полученные по адсорбции воды модифицированных на приближаются кремнеземах, К высокоплотным алкильным фазам, плотность несмотря низкую на прививки (рис. 6). Например, на силохроме с плотнейшим слоем C_{16}^{-1} гексадецильных групп $(N = 2.8 \text{ HM}^{-2})$ адсорбция воды при расчете на метр квадратный и значении *p/p*_S=0.9 сопоставима с адсорбцией на ASG-F и всего в ≈ 2.7 раза меньше, чем на SBA-F. Длительное выдерживание фторкремнеземов в парах воды (около 4-х месяцев) привело к увеличению количества адсорбированной воды, но и при $p/p_{\rm S} \rightarrow 1$ оно осталось сопоставимо

с условной емкостью монослоя (16 мкмоль/м²), например, на SBA-F – 14.7 мкмоль/м².

Следует подчеркнуть, что, модифицирование SBA перфторгексилсиланом сохраняет достаточно высокой адсорбционную емкость сорбента и узкое распределение пор по размерам, что, с учетом высокой гидрофобности, определяет преимущества SBA перед другими кремнеземными носителями и позволяет рекомендовать его для практического использования в адсорбции и катализе, а также для решения экологических проблем.

Поданным ТГА фторсодержащие кремнеземы с разными параметрами пористой структуры обладают достаточно высокой термической стабильностью в атмосфере азота (до ≈700 К) и, следовательно, могут быть использованы на практике при сравнительно высоких температурах.

Кремнеземы, модифицированные трифункциональными силанами. Адсорбционно-статическим и ГХ методами исследованы свойства кремнеземов (SG ASG). модифицированных линейными разветвленными И И полифторалкильными и *n*-октильными производными трихлорсиланов. В группе (YB) образцов силикагеля адсорбция углеводородов растет В ряду: SG-isoF(III) < SG-F < SG-F(III) < SG (рис. 7), в котором нарушается корреляция с модификатора (табл. 1). Самые плотностью прививки низкие величины адсорбции на SG-isoF(III), меньше, чем на исходном носителе в 4-5 раз при обусловлены как разветвленным строением, $p/p_{\rm S} = 0.2$. так и высокой концентрацией привитых групп. Кроме того, более выраженный отрицательный индуктивный эффект -CF-(CF₃)₂ группы сильнее снижает поляризуемость связанной с ним метильной группы по сравнению с линейным фторалкильным радикалом, что, возможно, влияет на падение дисперсионной составляющей энергии взаимодействия.

Рис. 7 Начальные области изотерм адсорбции гексана и бензола при 298 К на исходном и модифицированных силикагелях. Масштаб оси ординат смещен для гексана на 4 мкмоль/м²

Рис. 8 Зависимости $\ln K_{\Gamma}$ от числа атомов углерода *п* в молекулах аренов и *н*-алканов при 403 К на исходном и модифицированных силикагелях

Причиной более сильного взаимодействия УВ с SG-F(III) в сравнении с адсорбционных SG-F может наличие дополнительных быть центров В модифицирующем слое – доступных для адсорбции гидроксильных групп у якорного кремния, образовавшихся результате атома В гидролиза непрореагировавших атомов хлора в молекулах модификатора. Как и в случае статических измерений, в области предельно малых заполнений поверхности наиболее низкие величины K_{Γ} УВ наблюдаются на SG-isoF(III), а на SG-F(III) K_{Γ} УВ больше, чем на SG-F, но меньше, чем на исходном носителе (рис. 8). Такие же соотношения получены на силохромах (рис. 9а). Однако теплоты адсорбции а н-алканов и аренов на образце силикагеля с линейным трифункциональным силаном превосходят в среднем на 4-7 кДж/моль величины, полученные на исходном носителе (табл. 4, 5, где для примера приведены q гексана и бензола). Как следует из табл. 4, 5 и рис. 96, подобное, достаточно редкое явление, наблюдается и на широкопористом силохроме, модифицированном линейным фторсодержащем трихлорсиланом (ASG-C₈F₁₇(III)), а также, но только для насыщенных УB, на октилкремнеземе C8(II) с трифункциональным модификатором.

Стандартные энтропии адсорбции ΔS° УВ на SG-F(III) и ASG-C₈F₁₇(III) на 10-18% меньше, чем ΔS° на соответствующих исходных и модифицированных монофункциональными и разветвленными трифункциональными полифторалкилсиланами образцах силикагеля и силохрома (табл. 6). Это, возможно, связано с формированием более структурированных привитых слоев на кремнеземах SG-F(III) и ASG-C₈F₁₇(III), которые ограничивают подвижность взаимодействующих с ним адсорбированных молекул.

Рис. 9 Зависимости $\ln K_{\Gamma}$ при 403 К (а) и теплот адсорбции q (б) от числа атомов углерода n в молекулах *н*-алканов на исходном и модифицированных силохромах

Таблица 5 Отношения констант Генри бензола к гексану ($K_{\Gamma}^{\text{отн}}$) при 403 К, константы Генри K_{Γ} при 403 К, теплоты адсорбции (q, кДж/моль), разности

теплот адсорбции бензола и гексана (Δq , кДж/моль), вклады энергии специфических взаимодействий (- ΔG^{sp} , кДж/моль) в энергию Гиббса адсорбции и

индексы ковача (1) при 403 к							
	SG-isoF(III)	SG-F(III)	ASG-iso F(III)	$ASG-C_8F_{17}(III)$			
$K_{\Gamma}^{ m oth}$	4.2	6.3	2.6	4.9			
Γ ексан, K_{Γ}	0.010	0.019	0.016	0.027			
Гексан, q	27	33	28	34			
Бензол, q	45	52	38	47			
Δq	18	19	10	13			
Диэтиловый эфир, - $\Delta G^{\rm sp}$	14	16	11	15			
Диэтиловый эфир, <i>I</i>	1319	1416	1133	1214			
Ацетонитрил, І	1444	1458	1244	1187			

Таблица 6 Стандартные энтропии адсорбции (ΔS° , Дж/моль·К)									
A	SC	SG-F	SG-	SG-	ASG	ASG-	ASG-	ASG-	
Адсороат	30		F(III)	isoF(III)	ASU	F	$C_8F_{17}(III)$	isoF(III)	
Гексан	-111	-112	-123	-115	-112	-112	-123	-112	
Гептан	-117	-113	-129	-124	-115	-116	-129	-121	
Октан	-124	-118	-136	-127	-123	-121	-137	-129	
Нонан	-130	-123	-141	-128	-131	-127	-144	-130	
Бензол	-135	-134	-155	-145	-124	-123	-142	-129	
Толуол	-144	-142	-160	-152	-134	-134	-154	-138	
Этилбензол	-154	-142	-165	-157	-145	-137	-162	-145	

Упилоензол – 154 – 142 – 165 – 157 – 145 – 157 – 162 – 145 Индексы удерживания *I*, $-\Delta G^{sp}$ для полярных молекул, $K_{\Gamma}^{\text{отн}}$ и Δq для адсорбционной пары бензол-гексан на кремнеземах с привитыми линейными трифункциональными фторсиланами превышают или приближаются к аналогичным значениям на исходных носителях (табл. 4, 5, *I* для CH₃CN на SG = 1353, ASG = 1102, $-\Delta G^{sp}$, кДж/моль для диэтилового эфира на SG = 17, ASG = 15). В то же время эти характеристики на образце октилкремнезема C8(II) не достигают соответствующих величин, полученных на исходном кремнеземе.

концентрация и разветвленное строение привитой группы Высокая способствуют лучшему экранированию как остаточных силанолов носителя, так и дополнительных гидроксильных групп, образовавшихся при синтезе, на SG-isoF(III) или ASG-isoF(III) в сопоставлении с кремнеземами с привитыми линейными трифункциональными силанами SG-F(III) или ASG-F(III). Однако на образце SG-isoF(III) *I*, - ΔG^{sp} , $K_{\Gamma}^{\text{отн}}$ и Δq превосходят рассчитанные на силикагеле с монофункциональным силаном SG-F (табл. 4, 5). Подобная картина отмечена и при сопоставлении ASG-isoF(III) и ASG-F. В связи с этим важно обратить внимание на возможно более активное участие в адсорбции полярного фрагмента $-^{+\delta}CH_{2}-^{-\delta}CF_{2}$ пеци или $-^{+\delta}CH_{2}-^{-\delta}CF_{-}$ полифторалкильной привитой сформированной с помощью трифункционального модификатора, присутствие которого способствует увеличению вклада специфического взаимодействия.

Дополнительная силанизация октилкремнезема C8(II), сопровождающаяся замещением части остаточных и дополнительно образовавшихся в результате взаимодействия с октилтрихлорсиланом ОН-групп на низкоэнергетические триметилсилильные радикалы, приводит к существенному снижению значений K_{Γ} и *q н*-алканов на C8(III) по сравнению с другими октилкремнеземами, а также вкладов специфического взаимодействия. При этом на XMK с монослойным покрытием и октилкремнеземе с дополнительно силанизированным олигомерным привитым слоем C8(III) константы Генри кислородсодержащих соединений различаются незначительно (например, при 403 К для диэтилового эфира $K_{\Gamma}(C8(II))=0.16, K_{\Gamma}(C_8H_{17}(1)^1)=0.019$ и $K_{\Gamma}(C8(III))=0.024). Следует отметить, что$ достаточная химическая однородность и гидрофобность поверхности позволяетиспользовать адсорбент с олигомерным октильным привитым слоем последополнительной силанизации в ГХ высокополярных соединений, включаятретичный бутанол, ацетонитрил и фенол.

Рис. 10 Начальные области изотерм адсорбции воды при 298 К на исходном и модифицированных силикагелях

Независимо от строения полифторалкилсиланов, модифицирование силикагеля приводит К резкому уменьшению адсорбции воды (рис. 10). При насыщении максимальное количество адсорбированной воды снижается в ≈ 20 -50 раз в сравнении с исходным Даже при $p/p_{\rm S} \rightarrow 1$ носителем. количество адсорбированной воды на XMK, равное 6-13 мкмоль/ m^2 , остается меньше условной емкости монослоя (16 мкмоль/м²). Низкая адсорбции величина воды свидетельствует об образовании

однородных высокогидрофобных покрытий. Гидрофобность поверхности немного падает при переходе от SG-F к SG-isoF(III) и, далее, к SG-F(III), что

согласуется с увеличением доступных силанольных групп для привитых слоев трифункциональных модификаторов по сравнению с монофункциональными.

Таким образом, поверхность XMK с закрепленными трифункциональными полифторалкилсиланами обладает высокогидрофобнымии сравнительно низкоэнергетическими, но одновременно полярными свойствами.

<u>Пористая структура и смачиваемость мезопористых кремнеземов</u>. Модифицирование поверхности SBA и SG полифторалкилсиланами приводит к закономерному уменьшению удельной поверхности и объема пор V, а также эффективного (наиболее вероятного) диаметра пор, определенного по адсорбции N_2 (табл.1, 7). В целом предельный объем пор, заполняемых адсорбатом в модифицированном образце при $p/p_S \rightarrow 1$, незначительно зависит от природы молекул.

Таблица 7 Общий объем пор V(мл/г), диаметр пор d_p (нм) по азоту, бензолу и гексану, диаметр мениска d_m (нм) по бензолу и гексану на

noving rop winning entres entres										
	SE	BA	SE	BA-F	S	G	S	G-F	SG-F(III)	SG-isoF(III)
Адсорбат	V	d_{p}	V	$d_{\rm p}/d_{\rm m}$	V	$d_{ m p}$	V	$d_{\rm p}/d_{\rm m}$	V	V
Азот	0.9	8.3	0.6	7.2	1.2	13.4	0.8	11.6	0.7	0.8
Гексан	0.9	8.8	0.6	9.0	1.2	14.4	0.8	14.6	0.7	0.7
Бензол	0.9	9.0	0.6	11.2	1.2	12.6	0.8	17.3	0.6	0.7

полифторалкилкремнеземах

Полные изотермы адсорбции-десорбции N_2 , гексана и бензола на исходных и модифицированных *n*-C₆F₁₃(CH₂)₂Si(CH₃)₂Cl образцах приведены на рис. 11.

Рис. 11 Полные изотермы адсорбции паров азота при 77 К, гексана и бензола при 298 К на исходных (квадраты) и модифицированных (кружки) кремнеземах SBA (а) и SG (б), a_m - расчетная емкость монослоя. Черные точки - десорбция. Масштаб оси ординат смещен на 10 и 15 ммоль/г (а) и на 15 и 25 ммоль/г (б)

Вследствие уменьшения V при модифицировании обе ветви петли капиллярно-конденсационного гистерезиса (ККГ) для N_2 на XMK располагаются ниже, чем на исходном носителе. При этом область ККГ изменяется достаточно слабо и остается в пределах величин p/p_s , близких к исходным образцам, практически не испытывая влияния природы поверхности. В отличие от N_2 , для УВ наблюдается резкое смещение изотерм адсорбции на модифицированных

образцах в область более высоких, по сравнению с исходным носителем, величин $p/p_{\rm S}$ (рис. 11), причем оно сильнее выражено в случае бензола. Смещение кривых ККГ на ХМК настолько велико, что кривые десорбции лежат вблизи или правее, кривые адсорбции на исходном кремнеземе. Заполнение монослоя чем $a_{\rm m}$ (ммоль/г), ($a_{\rm m} = S_{\rm vg}/\omega N_{\rm A}$, где ω - площадки молекул, бензол – 0.49 нм², гексан - 0.52 нм²), при адсорбции углеводородов на ХМК не происходит вплоть до $p/p_{\rm S} = 0.7 - 0.8$. Важно отметить, что такие же зависимости адсорбционных свойств фторсодержащих поверхностей от природы молекул обнаружены и для силикагелей с трифункциональными модификаторами. Эти факты говорят о существенном поверхностной энергии снижении смачиваемости И фторсодержащих покрытий.

Рис. 12 Сечение цилиндрической поры с адсорбатом. $d_{\rm C}$ - диаметр коры, $d_{\rm m}$ - диаметр мениска, $d_{\rm p}$ - диаметр поры, θ – краевой угол смачивания, τ - толщина адсорбционной пленки

Традиционно лиофобность материалов характеризуют краевыми углами смачивания измеренными θ, для жидкостей различных на плоских поверхностях. В работе выполнена оценка θ на основе кривых десорбции, полученных для мезопористых c монофункциональным кремнеземов перфторгексилсиланом SBA-F и SG-F. Использовали простую модель, которая чаще всего служит основой расчетов распределения пор ПО размерам, уравнение Кельвина для цилиндрических пор: $d_{\rm m} = \frac{4 \cdot \sigma \cdot V_{\rm m}}{RT \cdot \ln(p_{\rm s} / p)}$, где $d_{\rm m}$ – диаметр

полусферического мениска, σ и $V_{\rm m}$ поверхностное натяжение и мольный объем жидкого адсорбата, соответственно, при температуре опыта Т, R – газовая постоянная. Соотношение между диаметром мениска $d_{\rm m}$, диаметром кор $d_{\rm C}$, толщиной адсорбционной пленки т и диаметром пор d_p следует из рис. 12. При полном смачивании $\cos\theta = 1$, $d_{\rm m} = d_{\rm C}$ и $d_{\rm p} = d_{\rm C} + 2\tau$. При неполном смачивании $0 < \cos\theta < 1$ и $d_{\rm C} = d_{\rm m} \cdot \cos\theta$. Поскольку в литературе отсутствуют сведения о величинах τ на поверхностях с полифторалкильными слоями в качестве опорных данных мы использовали полные изотермы адсорбции N₂, гексана и бензола на широкопористых кремнеземах ASG и ASG-F. Выбор обусловлен тем, что эти работе образцы детально исследованы В с применением комплекса физико-химических методов, по концентрации привитых групп (таких же, как у SBA-F и SG-F) ASG-F занимает промежуточное положение, широкие поры (по бензолу ≈50 нм) обеспечивают то, что основание ККГ для бензола и гексана находится при *p*/*p*_S≥0.8 (рис. 13). Поэтому для расчета средних значений т использовали известное уравнение для непористых адсорбентов: $\tau = a \cdot V_{\rm m}/S_{\rm yg}$, где *а* (ммоль/г) – величина адсорбции при измеряемом $p/p_{\rm S}$. Результаты приведены на рис. 14. Значения т на ASG и ASG-F для N2 лежат в области литературных данных, полученных на непористом гидроксилированном SiO₂, т.е. азот практически не чувствителен к влиянию природы поверхности. Величины τ для

бензола и гексана на ASG очень близки и также соответствуют опубликованным данным для C_6H_6 на SiO₂. Это позволяет использовать традиционные в адсорбционных экспериментах уравнения при расчете τ для азота на SBA-F и SG-F, а также τ для углеводородов на SBA и SG, например, $\tau = 10^{-1} \sqrt{\frac{5.924}{0.0156}}^2$

Рис. 13 Полные изотермы адсорбции паров бензола на исходном (квадраты) и модифицированном (кружки) силохроме ASG при 298 К. Черные точки - десорбция

Рис. 14 Толщина адсорбционной пленки τ при разных p/p_S : для азота на: **1** - ASG, **2** - ASG-F, **3** - **5** лит. данные; для бензола на: **6** - ASG, **10** - ASG-F, **7**,**8** - лит. данные; для гексана на: **9** - ASG, **11** - ASG-F

Для углеводородов τ на ASG-F много ниже и в области, соответствующей ККГ на фторкремнеземах SBA-F и SG-F, составляют не более 0.33 нм. Это меньше толщины одного слоя для молекул бензола (0.37 нм) или гексана (0.4 нм). Учитывая близкие значения τ для углеводородов в области основания ККГ на SBA-F или на SG-F и на ASG-F, можно предположить, что сплошная адсорбционная пленка на перфторгексильных слоях не образуется, и это проявляется в ухудшении смачивания (понижении cos θ) поверхности молекулами углеводородов. Результаты расчетов диаметров, характеризующих поры, в приближении, что объем заполненных пор равен объему адсорбированной жидкости (в мл/г) при данном *p*/*p*_S, показывают, что наиболее вероятные Кельвиновские диаметры (d_m) для углеводородов на фторкремнеземах больше или равны диаметрам пор на исходных носителях (табл. 7). Следовательно, можно оценить угол смачивания по уравнению: $\cos\theta = d_{\rm C}/d_{\rm m}$, для чего необходимо определить $d_{\rm C}$. Использовали несколько вариантов расчета $d_{\rm C}$ (во всех случаях выбраны наиболее вероятные значения размеров). Например, для системы бензол и SBA-F принимали, что неизвестный диаметр пор SBA-F по бензолу равен d_p SBA-F по азоту, d_C SBA-F (по C₆H₆) = d_p - 2 τ , где τ находили из данных для системы бензол и опорный адсорбент ASG-F. Аналогично получали

²М.М. Дубинин. В сб. Современная теория капилярности: к 100-летию теории капилярности Гиббса. Под. Ред. А.И. Русанова и Ф.Ч. Гудрича. М.: Химия 1980. С. 100-126.

 $\cos\theta$ для гексана на SBA-F и SG-F и бензола на SG-F с применением разных вариантов оценки $d_{\rm C}$.

Таблица 8 Значения $\cos\theta$ и $\cos\theta_{(hat/ort)}$ на SBA-F, SG-F и F/Si пластинк	е для
бензола и гексана, поверхностное натяжение σ (мН/м)	

Адсорбат	cosθ SBA-F	cosθ SG-F	Метод сидящей капли для F/Si пластинки, соsθ _(нат/отт)	σ
Бензол	0.60	0.64	0.55/0.57	28.2
Гексан	0.75	0.75	0.87/0.91	17.9

Результаты, приведенные для этого варианта оценки $d_{\rm C}$ в табл. 8, показывают, что рассчитанные из изотерм адсорбции соs неплохо согласуются со значениями, полученными методом сидящей капли на модифицированной тем же силаном кремниевой пластинке (F/Si). При этом в согласии с традиционными представлениями, чем больше поверхностное натяжение жидкости, тем хуже смачивание $(\cos\theta < 1)$. Поскольку критическое поверхностное натяжение полифторсодержащих поверхностей лежит в интервале 10-15 мН/м, азот $(\sigma = 8.9 \text{ MH/M})$ вероятнее всего полностью смачивает $(\cos\theta = 1)$ полифторалкильные слои на кремнеземе.

Рис. 15 Дифференциальные кривые распределения диаметров пор по размерам на SBA-F: $\mathbf{1} - d_{\rm p}$ по N₂ (77 K), $\mathbf{2} - d_{\rm m}$ по бензолу (а) и гексану (б) (298 K), $\mathbf{3}$ - расчет $d_{\rm p}$ из $d_{\rm m}$ по бензолу при $\cos\theta = 0.6$ (а) и по гексану при $\cos\theta = 0.75$ (б) ($d_{\rm C} = d_{\rm m} \cdot \cos\theta$, $d_{\rm p} = d_{\rm C} + 2\tau$, где τ для систем с ASG-F)

Используя рассчитанные из изотерм адсорбции N₂, бензола или гексана значения $\cos\theta$, с помощью дифференциальных кривых для d_m нашли d_c , а затем d_p . На рис. 15 для примера представлены данные на SBA-F, из которых следует, что полученные значения $\cos\theta$ дают возможность рассчитать кривые распределения пор по размерам,описывающие «экспериментальные» данные на SBA-F по N₂ с приемлемой точностью. Подобная картина наблюдается и на SG-F. Как показано выше (рис. 6), адсорбция воды на фторкремнеземах незначительна, а ККГ не отмечается, что обусловлено несмачиваемостью поверхности пор этим жидким адсорбатом ($\sigma = 72$ мH/м, $\theta > 90^{\circ}$).

Таким образом, на основании результатов комплексного исследования выявлена взаимосвязь пористой структуры и химии поверхности кремнеземного носителя с особенностями адсорбционных свойств модифицированных образцов

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- 1. Установлено, что в группе исходных носителей с разными параметрами пористой структуры наименьший размер пор у SBA служит основной причиной роста термодинамических характеристик адсорбции.
- 2. Показано, что модифицирование поверхности кремнеземов приводит к снижению величин адсорбции. Уменьшение концентрации привитых групп усиливает влияние немодифицированной поверхности кремнеземов на адсорбцию молекул разной природы, а для широкопористых кремнеземов сокращение длины привитой цепи уменьшает вклад латеральных взаимодействий с привитым слоем.
- 3. Обнаружено, что поверхность кремнеземов, модифицированных полифторорганическими соединениями, обладает редким набором свойств, в частности, высокогидрофобных и сравнительно низкоэнергетических, но при этом достаточно полярных по отношению к органическим соединениям, что проявляется при исследовании образцов с трифункциональными ярко модификаторами в условиях ГХ, т.е. в области предельно малых заполнений. Важным фактором, определяющим характер взаимодействий И ИХ соотношение, является распределение электронной плотности в привитых радикалах, зависящее от их структуры.
- 4. Образование октильного привитого слоя с помощью трифункционального силана позволяет получать поверхности со сравнительно высокой энергией дисперсионных взаимодействий. Однако дополнительной силанизацией в отношении большинства исследованных веществ, включая воду, достигаются достаточно высокие экранирующие свойства, присущие плотнейшему покрытию, сформированному с помощью монофункционального модификатора.
- 5. Установлено, что в отличие от гексана и бензола, наблюдается незначительное влияние природы модификатора и его концентрации на адсорбцию азота. Предложены подходы к оценке углов смачивания для углеводородов на полифторалкильных поверхностях, которые приводят к объяснению нетривиальных зависимостей, связанных с влиянием модифицирования на свойства кремнеземов в области капиллярно-конденсационного процесса в лиофобных порах.
- 6. Использование полифторалкильных модификаторов при лиофобизации кремнеземов приводит к получению супергидрофобных поверхностей. При этом различия в плотности прививки модификаторов, длине фторалкильной цепи, а также пористая структура носителя незначительно влияют на эти свойства материалов.

Основные результаты работы изложены в следующих публикациях:

- 1. Рощина Т.М., Шония Н.К., <u>Таякина (Тегина) О.Я</u>., Bernardoni F., Fadeev A.Y. Взаимодействие паров азота и углеводородов с мезопористыми кремнеземами, модифицированными перфторгексилсиланом. // Физикохимия поверхности и защита материалов. 2014. Т. 50. № 3. С. 254-261.
- 2. Рощина Т.М., Шония Н.К., <u>Таякина О.Я</u>., Ткаченко О.П., Кустов Л.М. Влияние состояния поверхности кремнеземов с привитыми монофункциональными полифторалкилсиланами на адсорбцию полярных молекул. // Журн. физ. химии. 2013. Т. 87. № 8. С. 1371-1378.
- 3. Рощина Т.М., Шония Н.К., <u>Таякина О.Я</u>., Ткаченко О.П., Кустов Л.М., Bernardoni F., Fadeev A.Y. Роль концентрации и природы привитых групп в адсорбции углеводородов на кремнеземах, модифицированых монофункциональными перфторалкилсиланами. // Журн. физ. химии. 2012. Т. 86. № 3. С. 508-517.
- 4. Рощина Т.М., Шония Н.К., <u>Таякина О.Я</u>., Фадеев А.Ю. Адсорбция паров органических соединений на кремнеземах с октилсилильным покрытием. // Журн. физ. химии. 2011. Т. 85. № 2. С. 352-359.
- 5. Шония Н.К., Рощина Т.М., Никольская А.Б., <u>Таякина О.Я.</u>, Ткаченко О.П., Кустов Л.М., Фадеев А.Ю. Природа лиофобизующего покрытия и адсорбция органических молекул и воды на модифицированных кремнеземах. // Журн. физ. химии. 2010. Т. 84. № 11. С. 2131-2142.
- 6. Рощина Т.М., Шония Н.К., <u>Таякина О.Я</u>., Bernardoni F., Fadeev A.Y. Газохроматографические свойства кремнеземов SBA-15. // Сборник трудов 2-го Всероссийского симпозиума с участием иностранных ученых «Кинетика и динамика обменных процессов». Краснодарский край. 2013. С. 104-105.
- 7. Шония Н.К., Рощина Т.М., Таякина О.Я., Ткаченко О.П., Кустов Л.М. Применение методов адсорбции ИК-спектроскопии в исследовании И поверхностью бензола взаимодействия паров с гидрофобизованного SBA. // Всероссийской мезопористого кремнезема Труды научной конференции фундаментальным вопросам адсорбции участием по С иностранных ученых. Тверь. 2013. С. 84-87.
- 8. Шония Н.К., Рощина Т.М., <u>Таякина О.Я.</u>, Bernardoni F., Fadeev A.Y. Адсорбция азота и гексана на силикагелях с привитыми трифункциональными полифторалкилсиланами. Тез. докл. Всероссийской конференции с участием иностранных ученых «Актуальные проблемы теории адсорбции, пористости и адсорбционной селективности». Москва-Клязьма. 2014. С. 79.
- Shoniya N.K., Roshchina T.M., <u>Tayakina O.Ya</u>., Bernardoni F., Fadeev A.Y. Adsorption Properties of Lyophobic Mesoporous Silicas. // Book of Abstracts IV International Conference on Colloid Chemistry and Physicochemical Mechanics. Russia. Moscow. 2013. P. 358-360.
- 10. <u>Таякина О.Я</u>., Шония Н.К., Рощина Т.М., Bernardoni F., Fadeev A.Y. Адсорбционные и структурные свойства силикагеля, модифицированного перфторгексилсиланом. // Материалы XV Всероссийского симпозиума с участием иностранных ученых «Актуальные проблемы теории адсорбции, пористости и адсорбционной селективности». Москва - Клязьма. 2013. С. 100.

- 11. Ткаченко О.П., Кустов Л.М., Шония Н.К., <u>Таякина О.Я.</u>, Рощина Т.М. Исследование адсорбции ацетонитрила на мезопористом кремнеземе SBA методами ИК-спектроскопии диффузного рассеяния и газовой хроматографии. Влияние модифицирования полифторалкилсиланом. // Материалы XV Всероссийского симпозиума с участием иностранных ученых «Актуальные проблемы теории адсорбции, пористости и адсорбционной селективности». Москва Клязьма. 2013. С. 96.
- 12. Рощина Т.М., Шония Н.К., <u>Таякина О.Я</u>. Адсорбция кислородсодержащих соединений на кремнеземах, модифицированных монофункциональными полифторалкилсиланами. Влияние концентрации и длины привитых групп. // Тез. Докл. Всероссийского симпозиума с участием иностранных ученых «Кинетика и динамика обменных процессов». Краснодар. 2012. С. 89.
- 13. Рощина Т.М., Шония Н.К., <u>Таякина О.Я</u>., Bernardoni F., Fadeev A.Y. Газохроматографические свойства мезопористого кремнезема SBA и продукта его модифицирования перфторгексилсиланом. // Тез. Докл. Всероссийского симпозиума с участием иностранных ученых «Кинетика и динамика обменных процессов». Краснодар. 2012. С. 30.
- 14. Шония Н.К., Рощина Т.М., <u>Таякина О.Я</u>. Влияние свойств кремнеземного носителя на адсорбцию углеводородов привитым полифторгексильным покрытием. // Тез. Докл. Второй Конференции СНГ «Золь-гель-2012». Украина. Севастополь. 2012. С. 176.
- 15. <u>Таякина О.Я.</u> Влияние параметров пористой структуры кремнеземов, лиофобизованных перфторгексилсиланом на адсорбцию углеводородов. // Материалы XIX Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2012». Секция «Химия», подсекция «Физическая химия-1». Москва. 2012. С. 472.
- 16. Tkachenko O.P., Kustov L.M., Shoniya N.K., Lagutova M.S., <u>Tayakina O.Ya.</u>, Roshchina T.M. Adsorption of acetonytrile on fluorinated lyophobic silicas with varied grafting density. // Abstract of XI International Conference «Modern problems of adsorption» dedicated to 110th anniversary of Academician M.M. Dubinin. М:Изд. группа «Граница». 2011. С. 209.
- 17. Roshchina T.M., Shoniya N.K., <u>Tayakina O.Ya</u>., Tkachenko O.P., Kustov L.M., Bernardoni F., Fadeev A.Y. Grafting density and vapor adsorption of hydrocarbons on fluorinated lyophobic silicas. // Abstract of XI International Conference «Modern problems of adsorption» dedicated to 110th anniversary of Academician M.M. Dubinin. М:Изд. группа «Граница». 2011. С. 333.
- 18. Shoniya N.K., Roshchina T.M., <u>Tayakina O.Ya</u>., Fadeev A.Y., Bernardoni F. Nature of molecules of adsorbates and capillary condensation in pores of lyophobic mesoporous adsorbent. // Abstract of XI International Conference «Modern problems of adsorption» dedicated to 110th anniversary of Academician M.M. Dubinin. М:Изд. группа «Граница». 2011. С. 217.
- 19. Таякина R.O Адсорбция углеводородов кремнеземах, на модифицированных монофункциональными полифторалкилсиланами. Влияние концентрации и длины привитых групп. // Материалы XVIII Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2011». Секция «Химия», подсекция

«Физическая химия-1». Москва. 2011. Электронный ресурс ISBN 978-5-317-03634-8.

 Shoniya N.K., Roshchina T.M., <u>Tayakina O.Ya</u>., Bernardoni F., Fadeev A.Y. Adsorption Characterization of Silicas Grafted with Perfluorinated Alkylsilanes of Different Composition. // Abstract of International Symposium «Modern problems of surface chemistry and physics» Kyiv – Ukraine. 2010. P. 35-36.

Автор выражает свою искреннюю благодарность проф. Фадееву А. Ю. за предоставление для исследования образцов и измерение изотерм адсорбции азота, а также за проведение термогравиметрического анализа, проф., д.х.н. Кустову Л. М и с.н.с., к.х.н. Ткаченко О. П. за проведение и помощь в интерпретации полученных ИК-спектров. Особую благодарность хотелось бы выразить научным руководителям проф., д.х.н. Рощиной Т. М. и с.н.с., к.х.н. Шонии Н. К. за помощь в обсуждении результатов, внимание и поддержку.