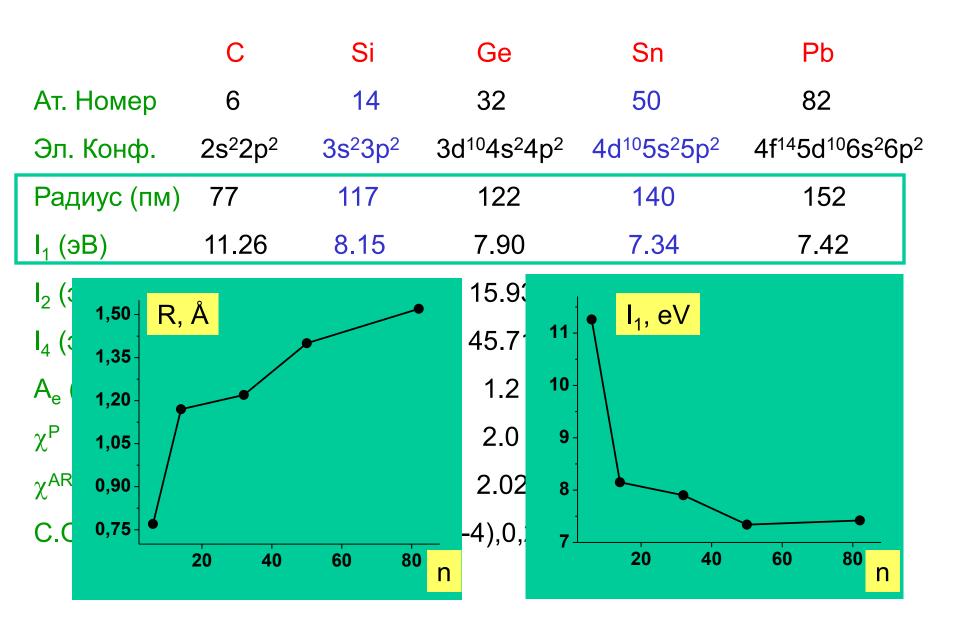
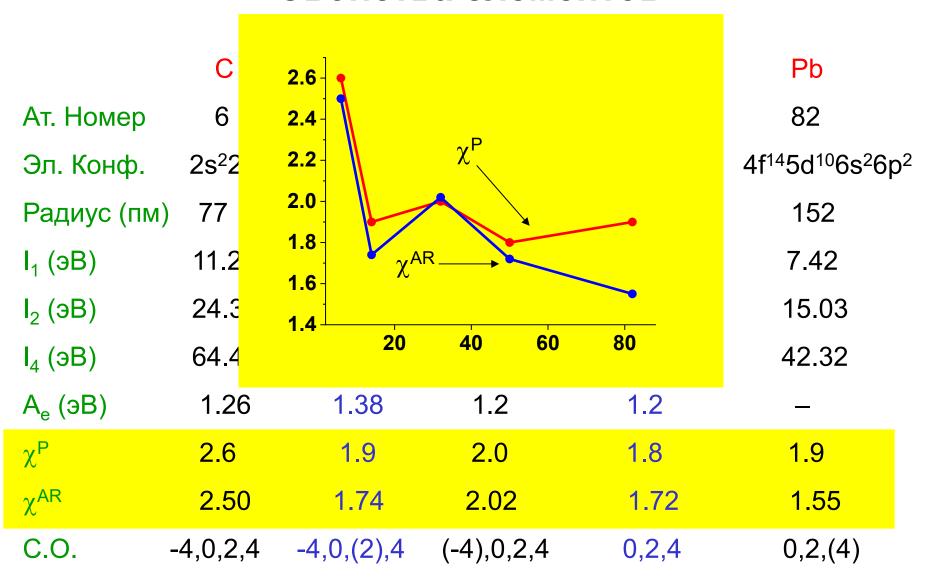


Элементы 14 группы

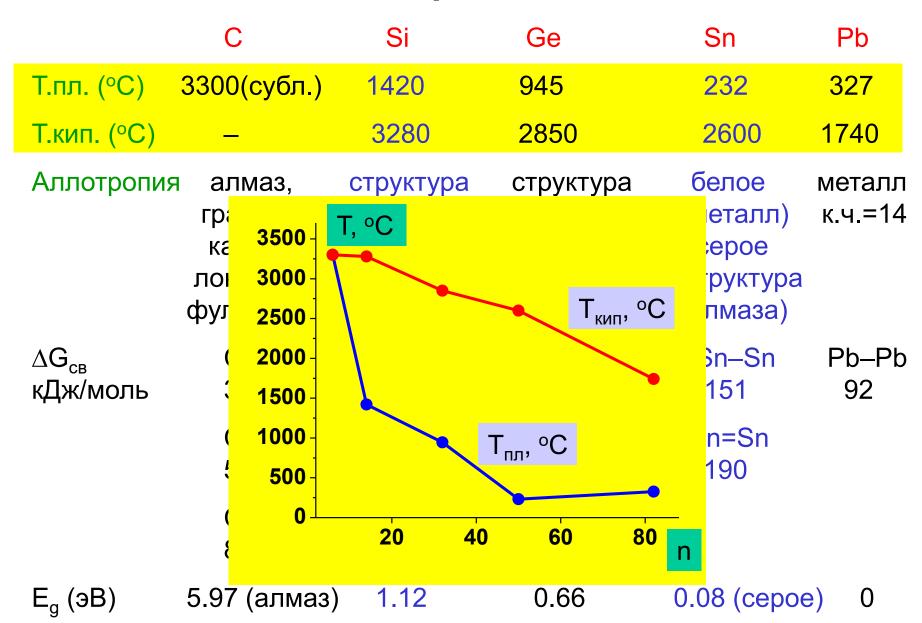
Элементы 14 группы

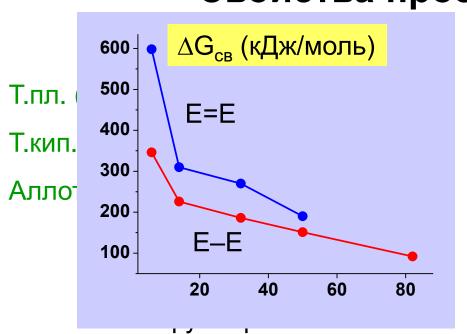

1 2

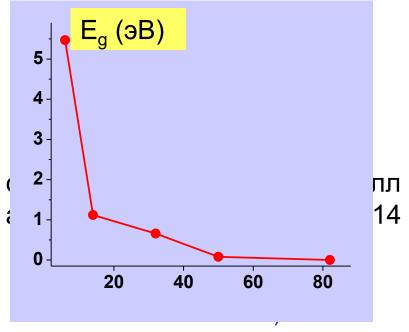
13 **14** 15 16 17 18


Н							(H)	Не
Li	Be		В	C	N	О	F	Ne
Na	Mg		Al	Si	P	S	Cl	Ar
K	Ca		Ga	Ge	As	Se	Br	Kr
Rb	Sr	d-block	In	Sn	Sb	Te	I	Xe
Cs	Ba		T1	Pb	Bi	Po	At	Rn
Fr	Ra			,				

С – углерод, Si – кремний, Ge – германий, Sn – олово, Pb – свинец

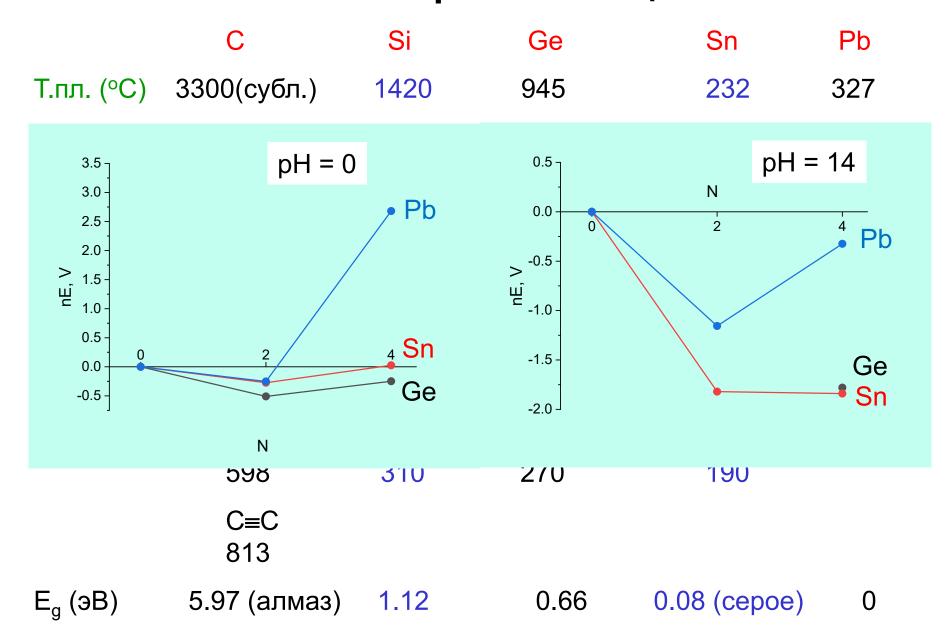

	С	Si	Ge	Sn	Pb
Ат. Номер	6	14	32	50	82
Эл. Конф.	$2s^22p^2$	$3s^23p^2$	$3d^{10}4s^24p^2$	4d ¹⁰ 5s ² 5p ²	$4f^{14}5d^{10}6s^26p^2$
Радиус (пм)	77	117	122	140	152
I ₁ (эВ)	11.26	8.15	7.90	7.34	7.42
I ₂ (эВ)	24.38	16.35	15.93	14.63	15.03
I ₄ (эВ)	64.49	45.14	45.71	40.73	42.32
A _e (эВ)	1.26	1.38	1.2	1.2	_
χ^{P}	2.6	1.9	2.0	1.8	1.9
χ^{AR}	2.50	1.74	2.02	1.72	1.55
C.O.	-4,0,2,4	-4,0,(2),4	(-4),0,2,4	0,2,4	0,2,(4)

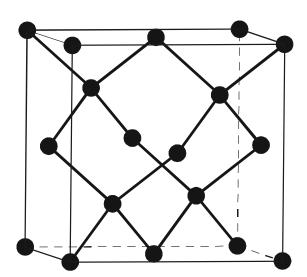

	С	Si	Ge	Sn	Pb
Ат. Номер	6	14	32	50	82
Эл. Конф.	$2s^22p^2$	$3s^23p^2$	$3d^{10}4s^24p^2$	4d ¹⁰ 5s ² 5p ²	$4f^{14}5d^{10}6s^26p^2$
Радиус (пм)	77	117	122	140	152
I ₁ (эВ)	11.26	8.15	7.90	7.34	7.42
I ₂ (эВ)	24.38	16.35	15.93	14.63	15.03
I ₄ (эВ)	64.49	45.14	45.71	40.73	42.32
A _e (эВ)	1.26	1.38	1.2	1.2	_
χ^{P}	2.6	1.9	2.0	1.8	1.9
χ^{AR}	2.50	1.74	2.02	1.72	1.55
C.O.	-4,0,2,4	-4,0,(2),4	(-4),0,2,4	0,2,4	0,2,(4)



	С	Si	Ge	Sn	Pb
Т.пл. (°С)	3300(субл.)	1420	945	232	327
Т.кип. (°C)	_	3280	2850	2600	1740
Аллотропи	я алмаз, графит, карбин, лонсдейлит фуллерены	структура алмаза	структура алмаза	белое (металл) серое (структура алмаза)	металл к.ч.=14
∆G _{св} кДж/моль	C–C 346	Si–Si 236	Ge–Ge 186	Sn–Sn 151	Pb–Pb 92
	C=C 598	Si=Si 310	Ge=Ge 270	Sn=Sn 190	
	C≡C 813				
E _g (эВ)	5.97 (алмаз)	1.12	0.66	0.08 (cepoe	e) 0

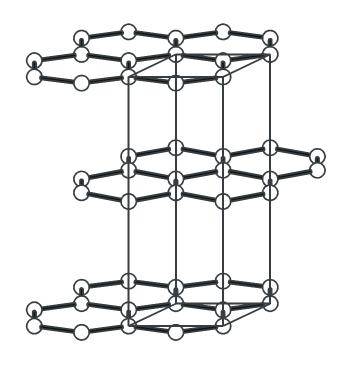
	С	Si	Ge	Sn	Pb
Т.пл. (°С)	3300(субл.)	1420	945	232	327
Т.кип. (°C)	_	3280	2850	2600	1740
Аллотропи	я алмаз, графит, карбин, лонсдейлит фуллерены	структура алмаза ,	структура алмаза	белое (металл) серое (структура алмаза)	металл к.ч.=14
∆G _{св} кДж/моль	C–C 346	Si–Si 236	Ge–Ge 186	Sn–Sn 151	Pb–Pb 92
	C=C 598	Si=Si 310	Ge=Ge 270	Sn=Sn 190	
	C≡C 813				
E _g (эВ)	5.97 (алмаз)	1.12	0.66	0.08 (cepoe)	0




∆G _{св}	C–C	Si–Si	Ge–Ge	Sn–Sn	Pb–Pb
кДж/моль	346	236	186	151	92
	C=C 598	Si=Si 310	Ge=Ge 270	Sn=Sn 190	

C≡C 813

E_g (эВ) 5.97 (алмаз) 1.12 0.66 0.08 (серое) 0


Аллотропия углерода

Алмаз

 sp^3

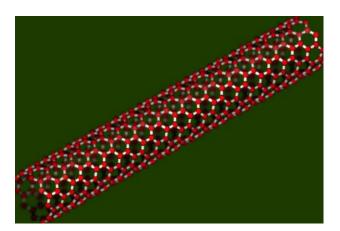
d = 154 nm

Фуллерен С60

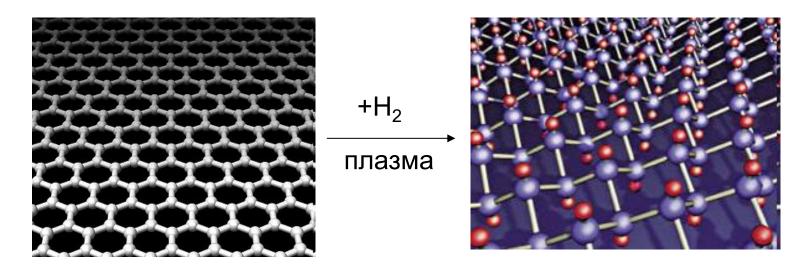
d(6,6) = 139 nm

d(5,6) = 146 nm

Графит


 sp^2

d = 142 nm


Аллотропия углерода

7 disteтpentint yttiepeдa							
Алмаз	Графит	Фуллерен					
прозрачные кристаллы	черные пластины	черные кристаллы					
самое твердое в-во	мягкий	умеренно твердый					
изолятор, высокая теплопроводность	металлический проводник (анизотропный)						
нерастворим	нерастворим	растворим в орг. растворителях					
горит в O ₂ горит в F ₂	горит в O ₂ горит в F ₂	с F ₂ образует фторофуллерены					
переходит в графит при 1800 К	термодинамически стабилен						
образует карбиды	интеркалируется	образует фуллериды					

Новые формы углерода

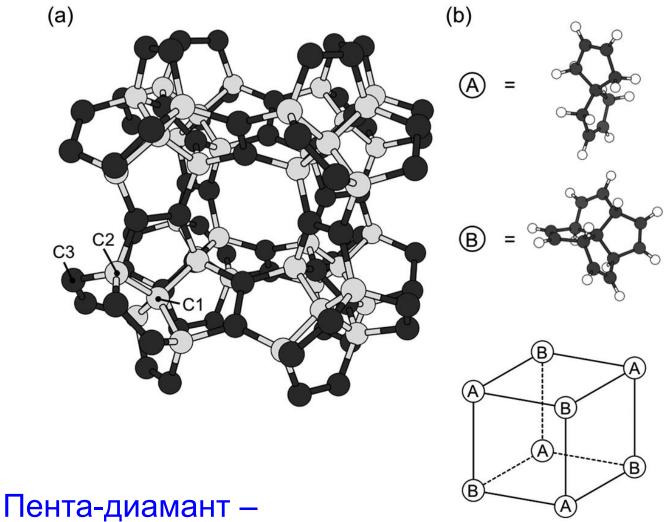
Углеродная нанотрубка Длина до 10 мкм, диаметр 10-15 нм

Графен – один слой графита

Графан – гидрированный графен

Новые формы углерода

Нобелевская премия по физике 2010 года


Андрей Гейм

Константин Новоселов

«за новаторские эксперименты с двумерным материалом – графеном»

Новые формы углерода

сочетание sp³ и sp²-гибридных атомов углерода

Свойства углерода

1. Горение

$$C$$
 (алмаз) + $O_2 = CO_2$

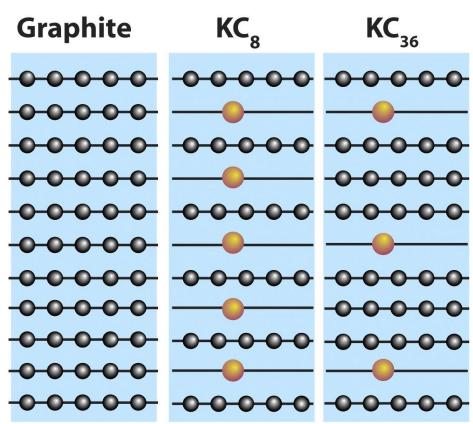
$$C$$
 (графит) + O_2 = CO_2

$$C$$
 (алмаз) \Leftrightarrow C (графит)

$$\Delta_{\phi,\Pi} G^{\circ}_{298} = -2.8 \text{ кДж/моль}$$

2. Окисление графита

12С (графит) + 18HNO₃ (конц)
$$\stackrel{t^o}{\to}$$
 С₆(CO₂H)₆ + 18NO₂ + 6H₂O


3. Интеркалирование графита

$$2C + F_2 = 2CF (HF, 450 °C) (sp^2 \rightarrow sp^3)$$

8C + K = KC₈ (180 °C) металл бронзового цвета
$$\delta$$
(C)<0

$$C + H_2SO_4(\kappa) = [C_{24}^+][HSO_4^-] \cdot 2H_2O(HNO_{3 \kappa O H L})$$
 $\delta(C) > 0$

Интеркалирование графита

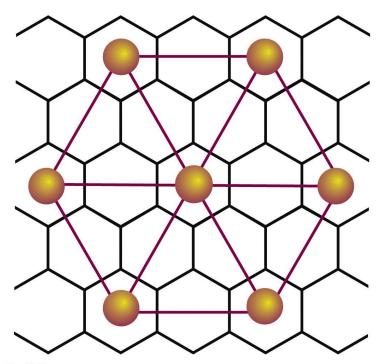
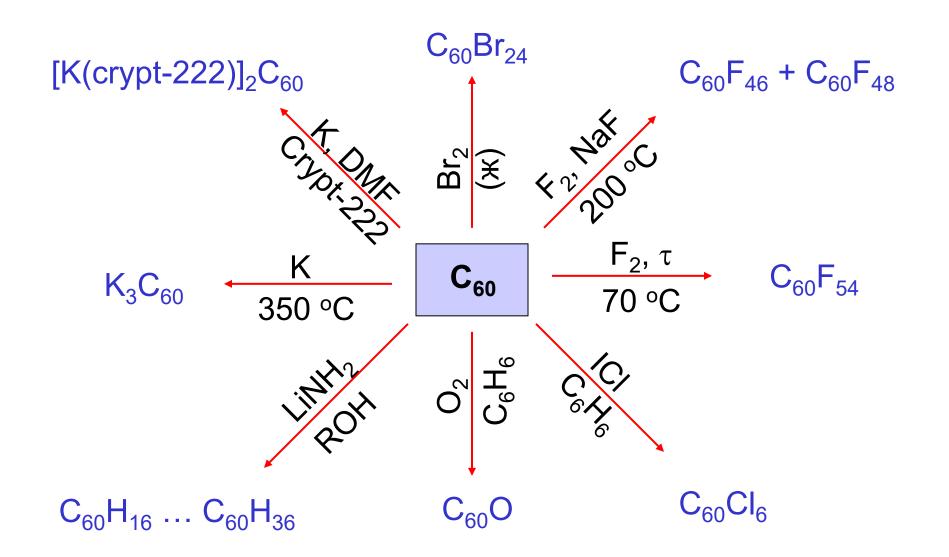
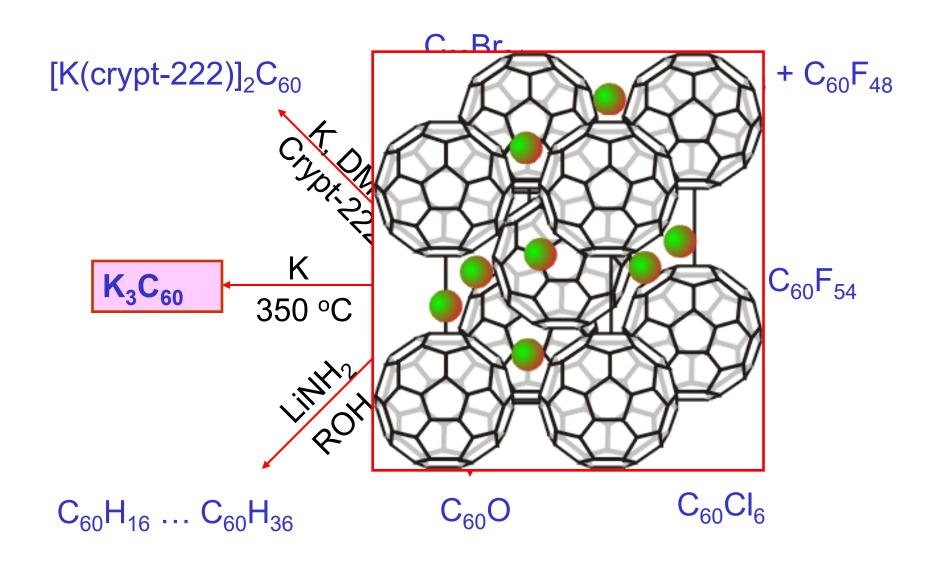




Figure 13-12
Shriver & Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D. F. Shriver, P.W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Свойства фуллерена С60

Свойства фуллерена С60

Свойства кремния

1. Si имеет большую реакционную способность, чем С

$$Si + 2F_2 = SiF_4$$
 при н.у.
 $Si + 2CI_2 = SiCI_4$ 400 °C
 $Si + O_2 = SiO_2$ 600 °C

2. Si растворяется в щелочах, но не в кислотах

$$Si + 2KOH + H_2O \xrightarrow{t^o} K_2SiO_3 + 2H_2$$

3. Si окисляется в присутствии F-

$$3Si + 4HNO_3 + 18HF = 3H_2SiF_6 + 4NO + 8H_2O$$

4. Si реагирует с Br_2 , I_2 , S, P, N, B при нагревании

$$Si + 2P = SiP_2$$
 600 °C

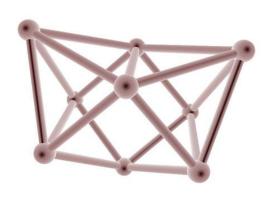
1. Реагируют при нагревании с галогенами, кислородом, серой

$$Ge + 2CI_2 = GeCI_4$$
 (Sn) +4
 $Sn + S = SnS$ +2
 $Sn + 2S = SnS_2$ +4
 $Pb + Br_2 = PbBr_2$ +2
 $Pb + S = PbS$ +2

2. Sn, Pb растворимы в кислотах

$$Sn + 2HCI = SnCl_2 + H_2$$
 (Pb?)

3. Ge, Sn, Pb окисляются кислотами-окислителями


4. Ge, Sn растворимы в щелочах при нагревании

Sn + 2KOH +
$$4H_2O = K_2[Sn(OH)_6] + 2H_2$$

Ge + 2KOH + $2H_2O_2 = K_2[Ge(OH)_6]$

5. Ge, Sn реагируют с растворами галогенов в неполярных растворителях

$$Sn + 2I_2 = SnI_4$$
 (60 °C, CCI₄)

6. Ge, Sn, Pb реагируют с растворами щелочных металлов в NH₃

Sn₉^{3–} Ge₉^{3–} Ge₉^{2–}

Ge₉⁴⁻ Sn₉⁴⁻

Pb₅²⁻ Sn₅²⁻

Анионы Цинтля

6. Ge, Sn, Pb реагируют с растворами щелочных

 ${\rm Sn_9}^{3-}$ ${\rm Ge_9}^{3-}$ ${\rm Ge_9}^{2-}$

Ge₉⁴⁻ Sn₉⁴⁻

Анионы Цинтля

Получение C, Si, Ge, Sn, Pb

- 1. С добывают в виде угля, графита и алмазов
- 2. Si из песка и силикатов

$$SiO_2 + 2C = 2CO + Si$$

 $SiO_2 + 2Mg = 2MgO + Si$

- 3. Ge из обогащенных отходов производства Zn, Ni $GeO_2 + 2H_2 = Ge + 2H_2O$
- 4. Sn u3 минерала касситерита $SnO_2 + C = Sn + CO_2$
- 5. Pb из сульфидных минералов (PbS галенит) $2\text{PbS} + 3\text{O}_2 = 2\text{PbO} + 2\text{SO}_2$ $2\text{PbO} + 2\text{CO}_2 = 2\text{PbO} + 2\text{CO}_2$

Применение С

Алмаз: украшения, абразивы, резцы

Графит: смазка, электроды, тугоплавкие материалы, замедлители нейтронов, покрытия, пенографит (d ~ 1 г/см³)

Сажа: краски, резина

Активированный уголь: адсорбент, в медицине

Волокна: усилители полимеров

Применение Si, Ge, Sn, Pb

Si: полупроводники, фотовольтаики, преобразователи солнечной энергии, силиконы

SiO₂: оптика, стекло, пьезодатчики, сенсоры, катализ, искусственные цеолиты

Ge: полупроводники, ИК-оптика

Sn: покрытия, производство сплавов (бронза, припои), аналитические цели, полупроводники

SnO₂: пигмент, сенсоры, прозрачные проводники

Pb: пигменты, свинцовые аккумуляторы

Гидриды C, Si, Ge, Sn, Pb

1. CH_4 , C_2H_6 , ... sp^3 d=154 пм E=346 кДж/моль C_2H_4 , ... sp^2 d=135 пм E=598 кДж/моль C_2H_2 , ... sp d=120 пм E=813 кДж/моль $AI_4C_3+12H_2O=3CH_4+4AI(OH)_3$ $CaC_2+2H_2O=C_2H_2+Ca(OH)_2$

2.
$$Mg_2Si + 4H_2O = \frac{SiH_4}{4} + 2Mg(OH)_2$$
 (кат. H⁺)

$$SiCl_4 + Li[AlH_4] \xrightarrow{Et_2O} SiH_4 + LiCl + AlCl_3$$

$$SiH_4 \xrightarrow{500 \text{ °C, Ar}} Si + 2H_2$$

$$SiH_4 + O_2 = SiO_2 + 2H_2O$$

SiH₄

Гидриды C, Si, Ge, Sn, Pb

3. GeH₄, SnH₄, PbH₄ неустойчивы

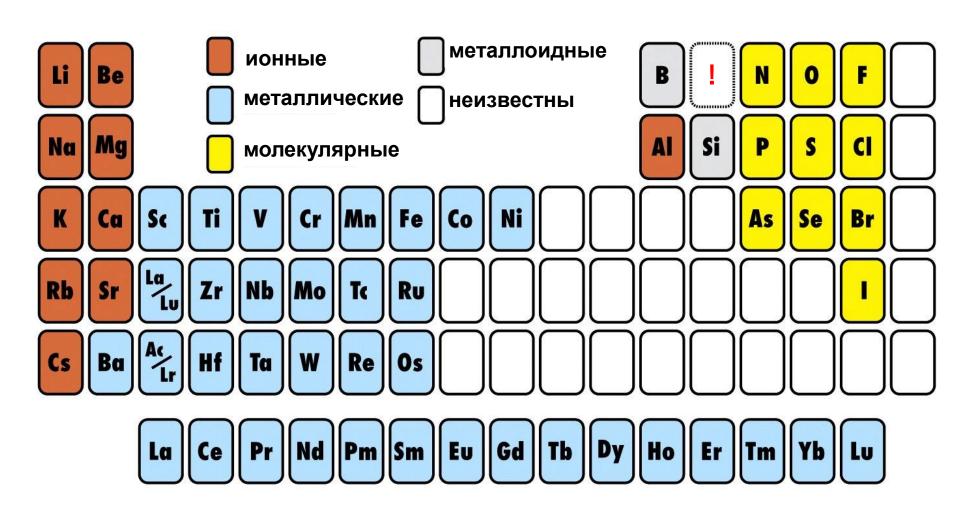
4.

CH₄

SiH₄

GeH₄

SnH₄


PbH₄

Уменьшение устойчивости

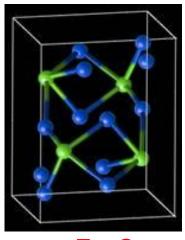
Увеличение полярности связи

Увеличение т.пл. и т.кип.

Карбиды

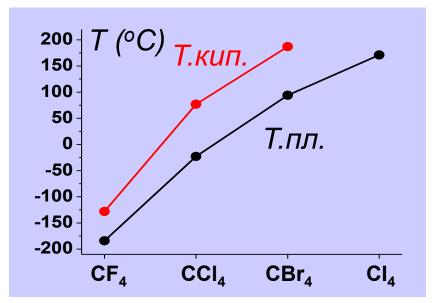
Карбиды

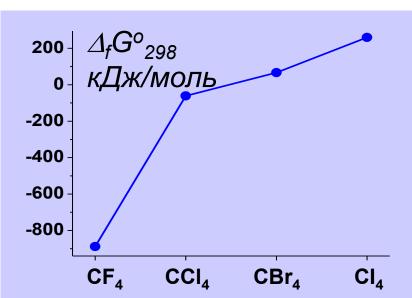
1. Карбиды активных металлов реагируют с водой

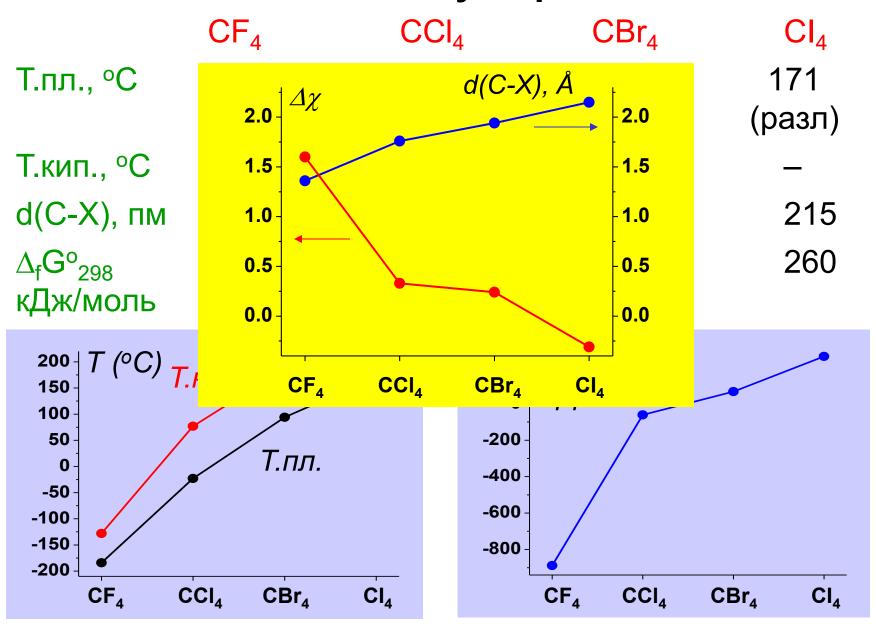

$$CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2$$

2. Карбиды ранних переходных металлов, кремния,

бора обладают высокой твердостью


(ковалентные карбиды)


- 3. Ковалентные карбиды химически инертны
- 4. Fe₃C цементит, составная часть чугуна т.пл. 1700 °C



Fe₃C

	CF ₄	CCI ₄	CBr ₄	CI ₄
Т.пл., ∘С	-184	-23	94	171
				(разл)
Т.кип., ∘С	-128	77	187	_
d(C-X), пм	136	176	194	215
$\Delta_{f}G^{o}{}_{298}$	-888	-61	67	260
кДж/моль				

Получение:

$$SiC + 4F_2 = SiF_4 + CF_4$$
 (очистка NaOH)

$$CS_2 + 2Cl_2 \xrightarrow{FeS} CCl_4 + 2S$$

 $3CCl_4 + 4AlBr_3 = 3CBr_4 + 4AlCl_3$

$$CCl4 + 4C2H5I \xrightarrow{AlCl3} CI4 + 4C2H5Cl$$

Свойства:

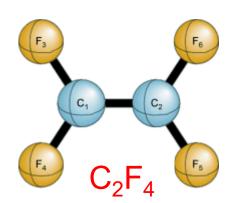
- 1. Низкая реакционная способность
- 2. Не реагируют с водой и не растворяются в ней
- 3. Не присоединяют Х-

4. CCI₄ – хлорирующий агент

$$La_2O_3 + 3CCI_4 = 2LaCI_3 + 3CO + 3CI_2$$

500 °C

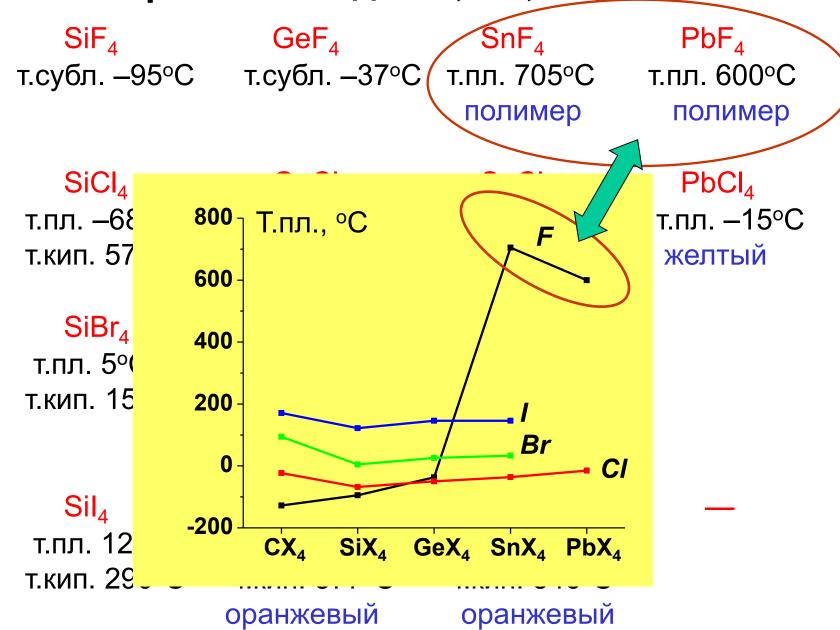
5. Смешанные галогениды


$$CCI_4 + F_2 \xrightarrow{t^o} CF_2CI_2 + CI_2$$

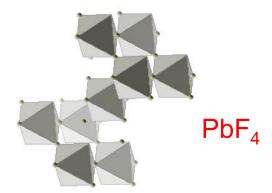
фреон-12

6. Известен фторид C_2F_4

$$SbF_5$$
 $CHCl_3 + 2HF \longrightarrow CHF_2Cl + 2HCl$


$$2CHF_2CI \xrightarrow{700 \circ C} C_2F_4 + 2HCI$$

SiF₄ PbF₄ SnF₄ GeF₄ т.субл. –95°С т.субл. –37°С т.пл. 705°С т.пл. 600°С полимер полимер SiCl₄ GeCl₄ SnCl₄ PbCl₄ т.пл. –68°С т.пл. –50°С т.пл. –36°С т.пл. –15°С т.кип. 57°C т.кип. 83°C т.кип. 114°C желтый SiBr₄ GeBr₄ SnBr₄ т.пл. 5°С т.пл. 26°C т.пл. 33°C т.кип. 153°C т.кип. 187°С т.кип. 203°C желтый Gel₄ Sil₄ Snl₄ т.пл. 122°С т.пл. 146°C т.пл. 146°C т.кип. 290°C т.кип. 377°C т.кип. 346°C


оранжевый

оранжевый

1. Все EX₄ (кроме PbCI₄) получают прямым галогенированием

$$Ge + 2Cl_2 = GeCl_4$$
 (to)

$$(NH_4)_2PbCl_6 + H_2SO_4 \xrightarrow{0 \circ C} PbCl_4 \downarrow + (NH_4)_2SO_4 + 2HCl_4 \downarrow + (NH_4)_2SO_5 + (NH_4)_2S$$

2. Все EX₄ (кроме SiCl₄, SiBr₄, Sil₄) легко присоединяют X⁻

$$2KF + SiF_4 = K_2SiF_6$$

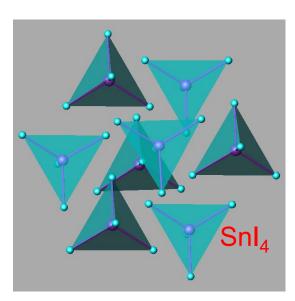
 $2NaCl + SnCl_4 = Na_2SnCl_6$

3. Все EX_4 (кроме SnF_4 , PbF_4) растворимы в органических растворителях, SnF_4 , PbF_4 имеют полимерное строение

4. Все EX_4 (кроме SnF_4 , PbF_4) гидролизуются при н.у.

$$3SiF_4 + 3H_2O = H_2SiO_3 + 2H_2SiF_6$$

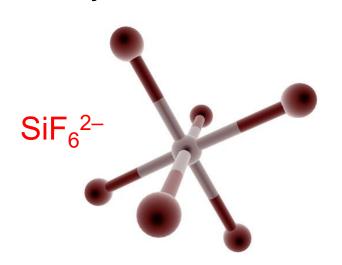
 $GeCl_4 + 2H_2O = GeO_2 + 4HCl$
 $Snl_4 + H_2O = SnOl_2 + 2Hl$


5. PbCl₄, Gel₄, Snl₄ разлагаются при несильном нагревании

$$SnI_4 \xrightarrow{\sim 380 \text{ °C}} SnI_2 + I_2$$

6. Известны галогенокислоты

$$SnCl_4 + 2HCl = H_2SnCl_6$$

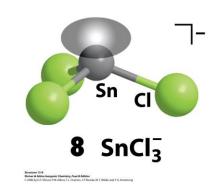

$$GeBr_4 + 2HBr = H_2GeBr_6$$

Кислота H₂SiF₆

Гексафторокремниевая кислота H₂SiF₆

$$pK_{a1} = -0.6$$
 существует только в водных растворах до 61%

d(Si-F) = 169 nm


$$3SiF_4 + 3H_2O = H_2SiO_3 \downarrow + 2H_2SiF_6$$

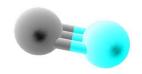
 $SiO_2 + 6HF (p-p) = H_2SiF_6 + 2H_2O$
 $SiF_4 + 2NaF (p-p) = Na_2SiF_6$

Дигалогениды Ge, Sn, Pb

GeF ₂	GeCl ₂	GeBr ₂	Gel ₂
т.пл. 111 °С	диспропорц.	т.пл. 143 °C	т.субл. 240 °С коричневый
SnF ₂	SnCl ₂	SnBr ₂	Snl ₂
т.пл. 210 °С	т.пл. 247 °C т.кип. 623 °C	т.пл. 232 °C т.кип. 660 °C	т.пл. 320 °C т.кип. 720 °C красный
PbF ₂	PbCl ₂	PbBr ₂	Pbl ₂
т.пл. 818 °C т.кип. 1292 °C	т.пл. 500 °C т.кип. 954 °C	т.пл. 373 °С т.кип. 916 °С	т.пл. 412 °С т.кип. 900 °С желтый

Дигалогениды Ge, Sn, Pb

- 1. EX₂ имеют полимерное строение, к.ч. от 6 (Ge) до 9 (Pb)
- 2. SnX_2 , PbX_2 образуют гидраты, SnX_2 растворимы в воде, PbX_2 (кроме PbF_2) нерастворимы, GeX_2 гидролизуются

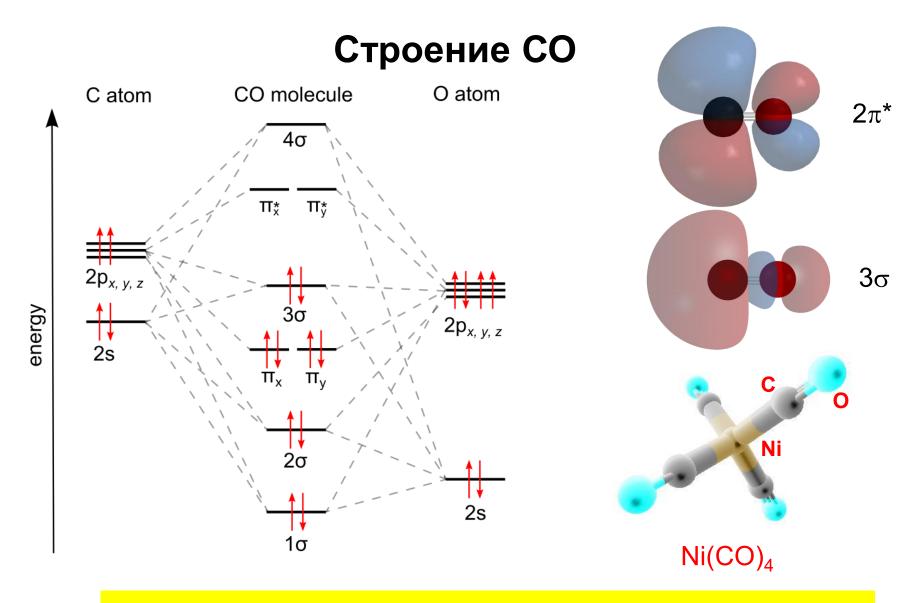


$$GeCl_2 + 2H_2O = Ge(OH)_2 + 2HCI$$

- 3. GeX_2 , SnX_2 , PbF_2 получают сопропорционированием $SnBr_4 + 2Sn = 2SnBr_2$ (to, Ar)
- 4. PbX_2 (кроме PbF_2) осаждают из раствора $Pb(CH_3COO)_2 + 2KI = PbI_2 ↓ + 2KCH_3COO$

Оксиды углерода

$$CO$$
, CO_2 , C_3O_2 ($O=C=C=C=O$)



CO

 CO_2

угарный газ углекислый газ

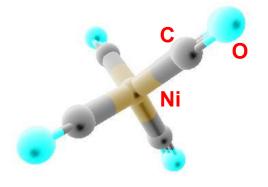
,	ı	
Т.пл., ∘С	-205	
Т.кип., ∘С	-191	- 78
$\Delta_{\mathrm{f}}H^{o}_{298}$ кДж/моль	-110.5	-393.5
$\Delta_{\mathrm{f}}G^{o}_{298}$ кДж/моль	-137	-394
Е связи, кДж/моль	1075	806
d(C-O), пм	113	116
μ, D	0.11	0
Электроны	10	16

 3σ (B3MO) – определяет донорные свойства $2\pi^*$ (HBMO) – определяет акцепторные свойства

1. Получение

$$CO_2 + C = 2CO$$

2. Нерастворим в воде, кислотах и щелочах при н.у.


CO + NaOH
$$\xrightarrow{p, t^o, \kappa a \tau}$$
 NaHCOO (формиат)

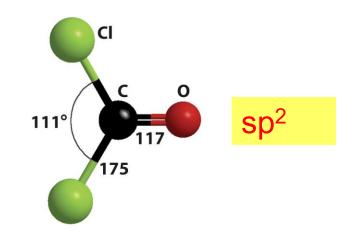
3. При высоких температурах

CO +
$$2H_2 \xrightarrow{t^o, \text{ кат.}}$$
 CH₃OH
CO + H₂O $\xrightarrow{t^o, \text{ кат.}}$ CO₂ + H₂

4. Образует карбонилы

$$4CO + Ni = Ni(CO)_4$$

H[CuCl₂] + CO = Cu(CO)Cl + HCl



Ni(CO)₄

Карбонил-галогениды

$$CO + Cl_2 \xrightarrow{\text{кат.}} COCl_2$$
 (карбонилхлорид, фосген)

$$COCl_2 + H_2O = CO_2 + 2HCI$$

 $COCl_2 + 2NH_3 = CO(NH_2)_2 + 2HCI$

Фосген COCI₂

$$3COCl_2 + 2SbF_3 + 2Cl_2 = 3COF_2 + 2SbCl_5$$

	COF ₂	COCI ₂	COBr ₂
Т.пл., °С	-114	-128	
Т.кип., ∘С	-83	8	65
$\Delta_{\mathrm{f}}G^{o}_{298}$, кДж/моль	-619	-205	-111

Свойства фосгена

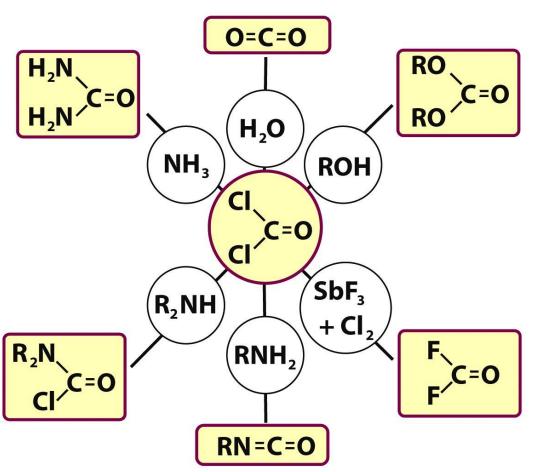
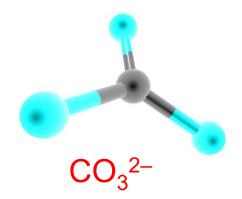


Figure 13-8

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong


1. Получение

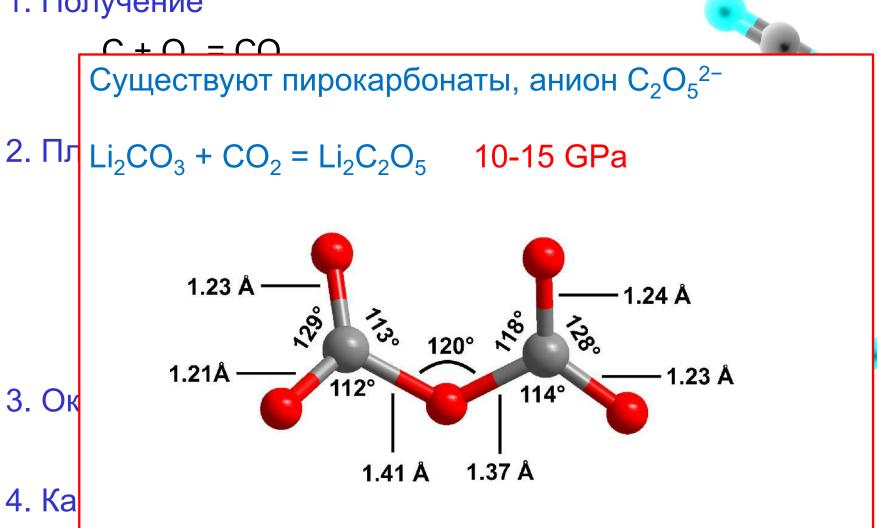
$$C + O_2 = CO_2$$

 $CaCO_3 + 2HCI = CO_2 + CaCI_2 + H_2O$

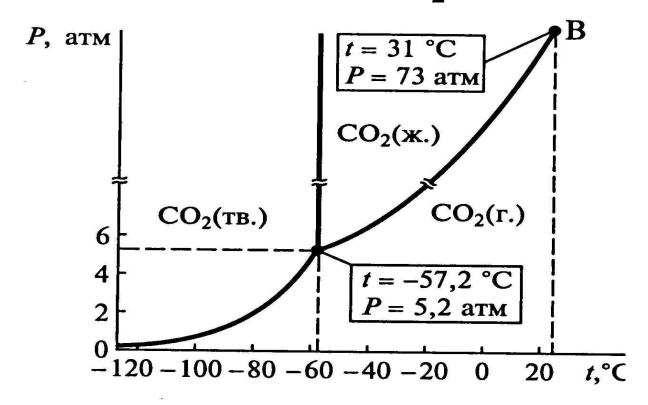
2. Плохо растворяется в воде, не поддерживает горение

$$CO_2 + H_2O \Leftrightarrow H_2CO_3$$

 $CO_2 + 2NaOH = Na_2CO_3 + H_2O$
 $H_2CO_3 \Leftrightarrow H^+ + HCO_3^- \Leftrightarrow 2H^+ + CO_3^{2-}$
 $pKa_1 = 3.9 \quad pKa_2 = 10.3$



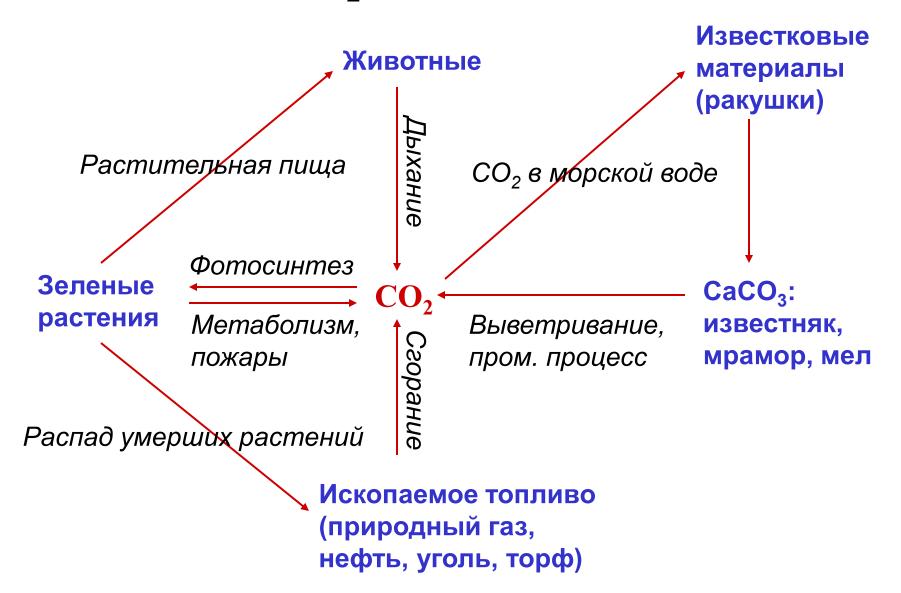
3. Окислитель при высокой температуре


$$2Fe + CO_2 = 2FeO + C$$

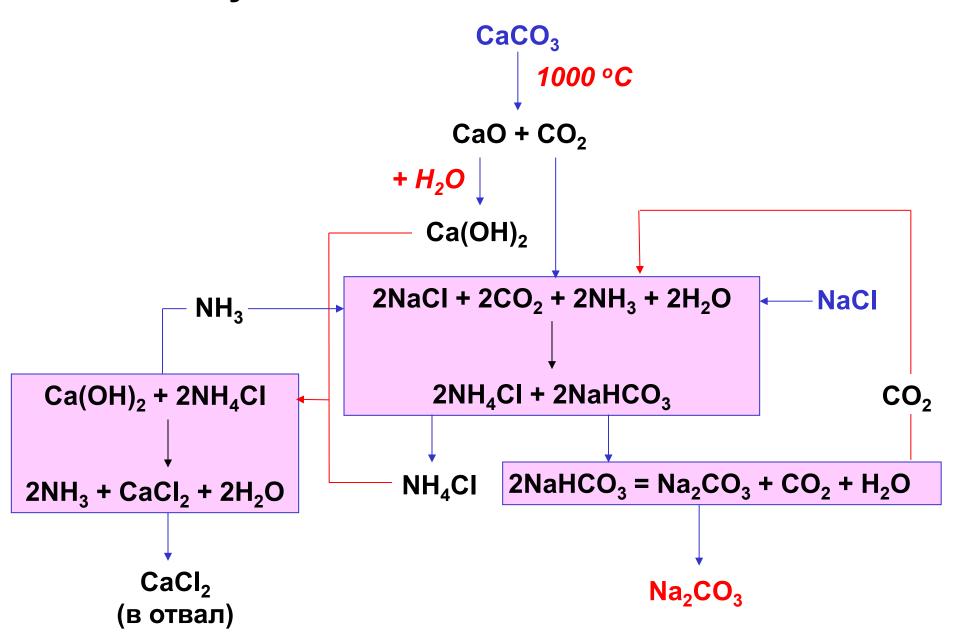
4. Карбонаты: HCO_3^- хорошо растворимы, CO_3^{2-} – плохо CO_3^{2-} + $H_2O \Leftrightarrow HCO_3^-$ + OH^-

1. Получение

 $CO_3^{2-} + H_2O \Leftrightarrow HCO_3^{-} + OH^{-}$


$$CO_{2 (ras)} + H_2O = CO_2 \cdot aq + H_2O$$
 (1)

$$CO_2 \cdot aq + H_2O = H_2CO_3 \cdot aq$$
 (2)


$$H_2CO_3 \cdot aq = H^+ \cdot aq + HCO_3^- \cdot aq$$
 (3)

$$H^{+} \cdot aq + HCO_{3}^{-} \cdot aq = 2H^{+} \cdot aq + CO_{3}^{2-} \cdot aq$$
 (4)

Оборот CO₂: парниковый газ

Получение соды методом Сольвэ

Оксиды Si, Ge, Sn, Pb

SiO

GeO

SnO

PbO

т.субл. 1700°C коричневый

т.субл. 770°С т.пл. 1040°С черный

черный

т.пл. 886°C красный (α)

желтый (β)

SiO₂

бесцветный

полиморфен

GeO₂ т.пл. 1116°С т.пл. 1728°C

бесцветный

SnO₂

т.пл. 1360°С

бесцветный

PbO₂

т.пл. 280°C

(разложение)

коричневый

Также известны:

 Pb_3O_4 (2PbO·PbO₂)

«сурик» - красный

 Pb_2O_3 (PbO·PbO₂)

черный (α), оранжевый (β)

$$2Pb_3O_4 \xrightarrow{550 \circ C} 6PbO + O_2$$

$$2Pb_2O_3 \xrightarrow{520 \text{ °C}} 4PbO + O_2$$

Свойства оксидов Si, Ge, Sn, Pb

1. SiO

GeO

SnO

PbO

увеличение устойчивости увеличение основности ослабление силы восстановителя

$$2SiO = SiO_2 + Si$$
 (медленно при н.у.)

$$SnO + 2HCI = SnCl_2 + H_2O$$

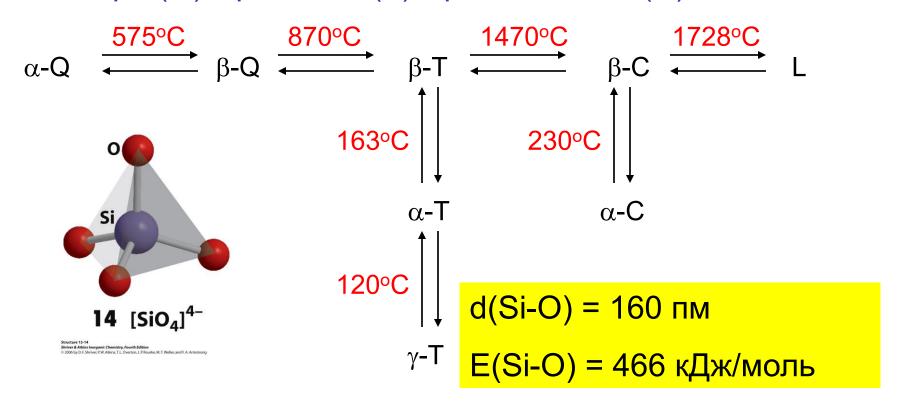
$$SnO + 2KOH + 3H_2O = K_2[Sn(OH)_4(H_2O)_2]$$

$$3GeO + 12HCI + 2BiCl_3 = 2Bi + 3H_2[GeCl_6] + 3H_2O$$

$$6Sn(NO_3)_2 + 12NH_3 + 8H_2O = Sn_6O_4(OH)_4 + 12NH_4NO_3$$

Свойства оксидов Si, Ge, Sn, Pb

PbO₂


2. SiO_2 GeO_2 SnO_2

уменьшение устойчивости усиление окислительных свойств уменьшение кислотности

$$3PbO_2 = Pb_3O_4 + O_2$$
 (280 °C)
 $5PbO_2 + 2Mn(NO_3)_2 + 6HNO_3 = 2HMnO_4 + 5Pb(NO_3)_2 + 2H_2O$
 $2PbO_2 + 2H_2SO_4 = 2PbSO_4 \downarrow + O_2 + 2H_2O$
 $SnO_2 + 2KOH + 2H_2O = K_2[Sn(OH)_6]$

Особенности SiO₂

1. Кварц (Q), тридимит (T), кристобаллит (C)

2. Высокий пьезоэлектрический коэффициент α -Q

Особенности SiO₂

3. Химически инертен

$$SiO_2 + H_2O \neq$$

 $SiO_2 + 2F_2 = SiF_4 + O_2$

$$SiO_2 + 2NaOH$$
 (конц) $\xrightarrow{t^o}$ $Na_2SiO_3 + H_2O$

Горячая концентрированная щелочь медленно разъедает стекло

4. Восстановление

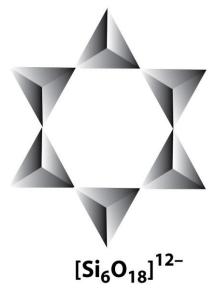
$$SiO_2 + Mg = MgO + SiO$$

 $SiO_2 + 2Mg = 2MgO + Si$
 $SiO_2 + 4Mg = Mg_2Si + 2MgO$

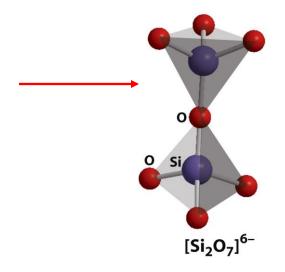
Особенности SiO₂

- **5.** Ортокремниевая кислота H_4SiO_4 растворима в воде, $pKa_1 = 9.65$
- 6. Метакремниевая кислота H₂SiO₃ не растворяется в воде
- 7. Силикаты соли кремниевых кислот, растворимы только Li⁺, Na⁺

$$Na_2CO_3 + CaCO_3 + 6SiO_2 = Na_2CaSi_6O_{14} + CO_2$$
 (стекло)


$$SiO_4^{4-} + H_2O \Leftrightarrow HSiO_4^{3-} + OH^ H_3SiO_4^{1-} + H_2O \Leftrightarrow H_4SiO_4 + OH^ 2H_3SiO_4^{1-} \Leftrightarrow H_4Si_2O_7^{2-} + H_2O$$

Гидролиз, «Жидкое стекло»


Силикаты

1. Объединение тетраэдров в битетраэдры Si₂O₇6-

2. Циклические силикаты

 $Be_3Al_2Si_6O_{18}$ — изумруд, берилл

- 3. Цепочечные силикаты:
- 2 общие вершины ${}^{1}_{\infty}[SiO_{3}]^{2-}$ LiAl(SiO₃)₂ (сподумен)

- разветвленные цепи ${}^{1}_{\infty}[\mathrm{Si}_{2}\mathrm{O}_{5}]^{2-}$ (асбесты)

Сульфиды C, Si, Ge, Sn, Pb

 CS_2 SiS_2 GeS_2 SnS_2

бесцветный бесцветный бесцветный желтый т.кип. 46°C т.возг. 1100°C т.возг. 840°C т.разл. 522°C

1. Особые свойства CS₂

Растворитель, токсичен, огнеопасен

$$CH_4 + 4S = CS_2 + 2H_2S$$
 (T = 900 K)
 $3CS_2 + 6NaOH = Na_2CO_3 + 2Na_2CS_3 + 3H_2O$

2. Гидролиз только SiS_2

$$SiS_2 + H_2O = H_2SiO_3 \downarrow + H_2S$$

3. Особенности SnS₂

$$H_2[SnCl_6] + 2H_2S = SnS_2 \downarrow + 6HCl$$

 $SnS_2 + Na_2S = Na_2SnS_3$

Сульфиды C, Si, Ge, Sn, Pb

GeS SnS PbS

красный

коричневый т.пл. 665°C т.пл. 881°C

черный т.пл. 1077°C

1. Получение

$$SnCl_2 + H_2S = SnS \downarrow + 2HCI$$

 $Pb(CH_3COO)_2 + H_2S = PbS \downarrow + 2CH_3COOH$

2. Растворение в полисульфидах (кроме PbS)

$$SnS + (NH_4)_2S_2 = (NH_4)_2SnS_3$$

3. Окисление

$$3SnS + 4HNO_3 = 3SnO_2 + 3S + 4NO + 2H_2O$$

PbS + $4H_2O_2 = PbSO_4 + 4H_2O$

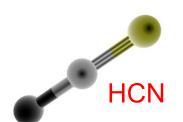
Кислоты HCN, HSCN

1. Циановодород HCN, т.пл. −13 °C, т.кип. 26 °C раствор в воде – синильная кислота рКа = 9.21

$$CaC_2 + N_2 = C + CaCN_2$$
 (цианамид, 1000 °C)

$$CaCN_2 + Na_2CO_3 + C = 2NaCN + CaCO_3$$

$$NaCN + H_2SO_4 = HCN^{\uparrow} + NaHSO_4$$


$$4NaCN + 5O_2 + 2H_2O = 4NaHCO_3 + 2N_2$$

$$4NaCN + 2CuSO_4 = 2CuCN + 2Na_2SO_4 + C_2N_2$$
 (дициан)

$$H-S-C=N \Leftrightarrow H-N=C=S$$
; $HSCN \Leftrightarrow H^+ + SCN^-$ pKa = 0.28

(реактив на Fe³⁺)

Общие закономерности

- 1. В группе усиливается «металлический» характер элементов. Олово и свинец – металлы.
- 2. Вниз по группе увеличиваются координационные числа до 9 для свинца.
- 3. Углерод полиморфен. Способность образовывать кратные связи и способность к катенации изменяются по одному ряду (C>>Si>Ge>Sn>Pb).
- 4. Вниз по группе уменьшается термическая устойчивость гидридов, увеличивается ионность оксидов и галогенидов.
- Бниз по группе уменьшается кислотность оксидов. В ряду Ge
 Sn Pb уменьшается устойчивость оксоанионов,
 увеличивается устойчивость катионов.
- 6. Только свинец проявляет сильные окислительные свойства в высшей степени окисления. В с.о. +2 все элементы, кроме свинца, проявляют восстановительные свойства.