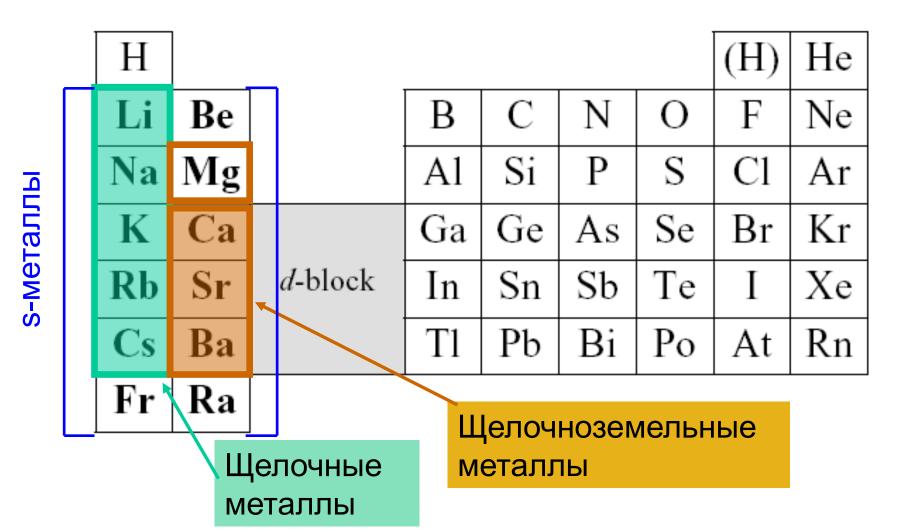
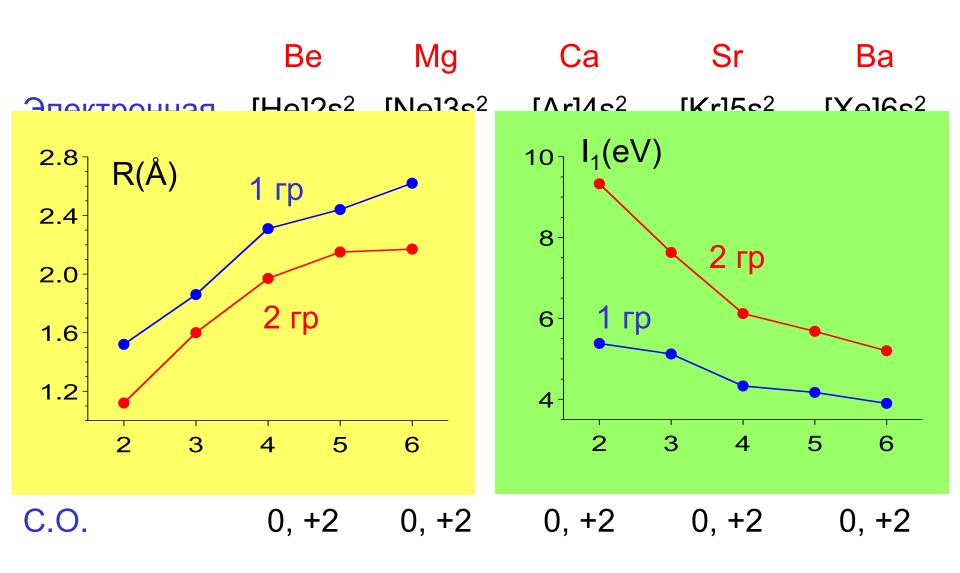
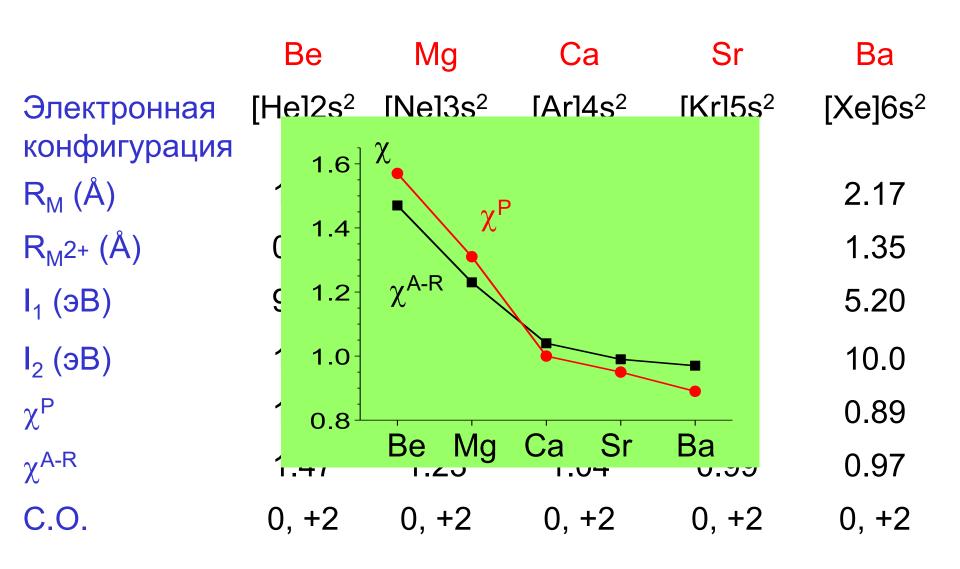
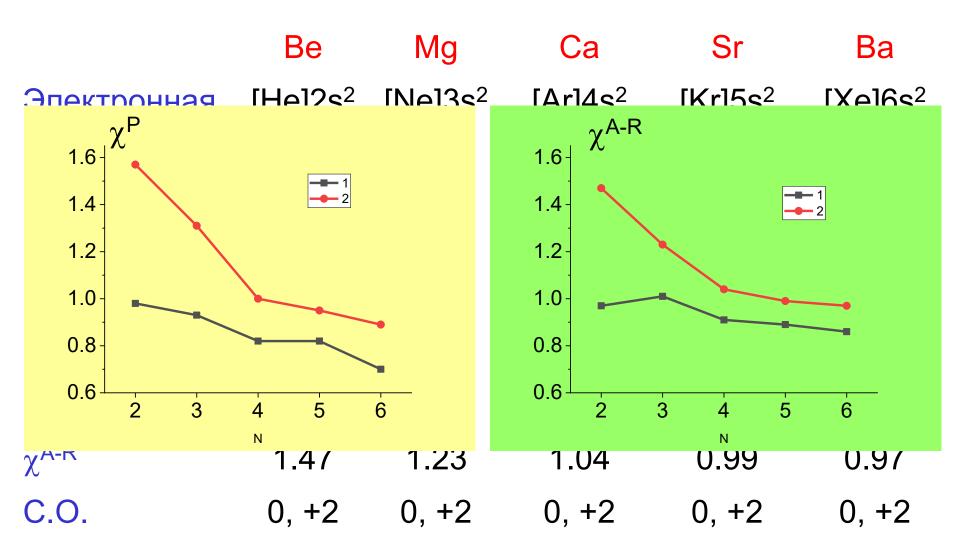


Элементы 2й группы

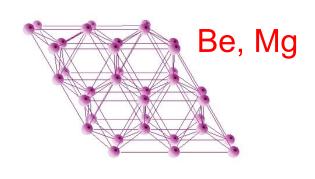

S-элементы в Периодической системе

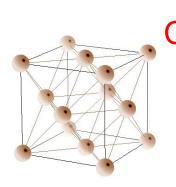

Щелочные и щелочноземельные металлы


1 2

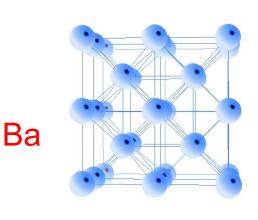

13 14 15 16 17 18

	Be	Mg	Ca	Sr	Ba
Электронная конфигурация	[He]2s ²	[Ne]3s ²	[Ar]4s ²	[Kr]5s ²	[Xe]6s ²
R _M (Å)	1.12	1.60	1.97	2.15	2.17
R _M 2+ (Å)	0.27	0.72	1.00	1.18	1.35
I ₁ (эВ)	9.33	7.63	6.12	5.68	5.20
I ₂ (эВ)	18.2	15.0	11.9	11.0	10.0
χ^{P}	1.57	1.31	1.00	0.95	0.89
χ^{A-R}	1.47	1.23	1.04	0.99	0.97
C.O.	0, +2	0, +2	0, +2	0, +2	0, +2





	Be	Mg	Ca	Sr	Ba
Электронная конфигурация	[He]2s ²	[Ne]3s ²	[Ar]4s ²	[Kr]5s ²	[Xe]6s ²
R _M (Å)	1.12	1.60	1.97	2.15	2.17
R _M 2+ (Å)	0.27	0.72	1.00	1.18	1.35
I ₁ (эВ)	9.33	7.63	6.12	5.68	5.20
I ₂ (эВ)	18.2	15.0	11.9	11.0	10.0
χ^{P}	1.57	1.31	1.00	0.95	0.89
χ^{A-R}	1.47	1.23	1.04	0.99	0.97
C.O.	0, +2	0, +2	0, +2	0, +2	0, +2

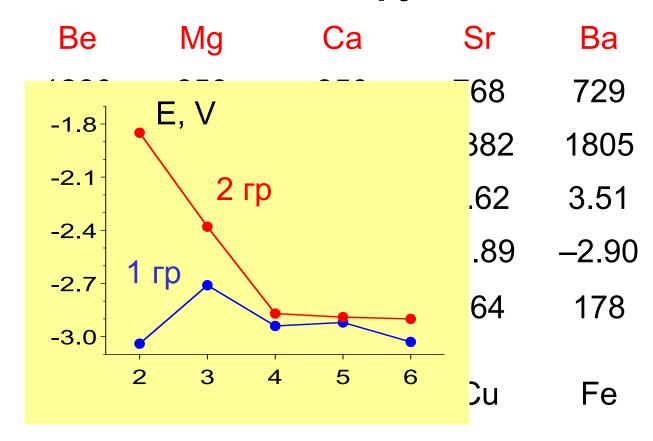

Свойства металлов 2 группы

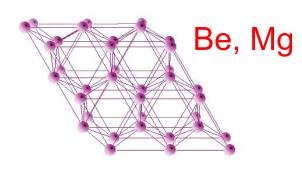
	Be	Mg	Ca	Sr	Ba
Т.пл. (°С)	1289	650	842	768	729
Т.кип. (°C)	2472	1090	1494	1382	1805
d (г/см ³)	1.85	1.74	1.54	2.62	3.51
E _{M²⁺/M} (B)	-1.85	-2.38	-2.87	-2.89	-2.90
$\Delta_{a T} H^0_{298}$	324	146	178	164	178
(кДж/моль)					
Стр. тип	Mg	Mg	Cu	Cu	Fe

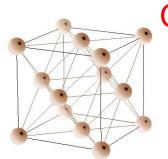
Ca, Sr

Свойства металлов 2 группы

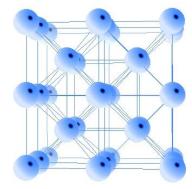
Т.пл. (°С)


Т.кип. (°С)


 $d(\Gamma/CM^3)$


 $E_{M^{2+}/M}(B)$

 $\Delta_{\text{ат}} \mathsf{H}^0{}_{298}$ (кДж/моль)


Стр. тип

Ca, Sr

Ba

Нахождение в природе

Be

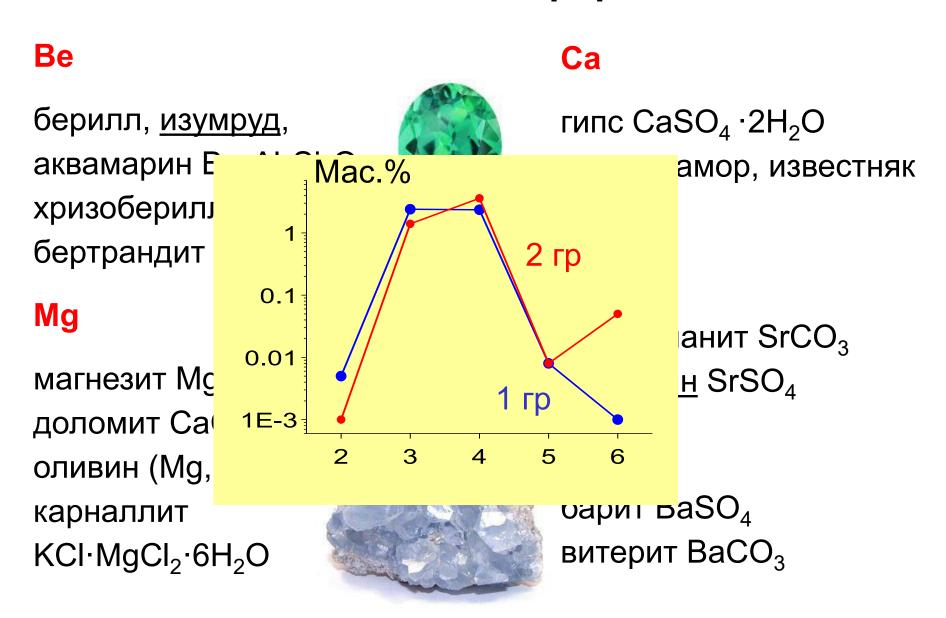
берилл, <u>изумруд</u>, аквамарин $Be_3Al_2Si_6O_{18}$ хризоберилл $Be(AlO_2)_2$ бертрандит $Be_4Si_2O_7(OH)_2$

Mg

магнезит $MgCO_3$ доломит $CaCO_3 \cdot MgCO_3$ оливин $(Mg,Fe)_2SiO_4$ карналлит $KCI \cdot MgCl_2 \cdot 6H_2O$

Ca

гипс $CaSO_4 \cdot 2H_2O$ мел, мрамор, известняк $CaCO_3$


Sr

стронцианит SrCO₃ целестин SrSO₄

Ba

барит BaSO₄ витерит BaCO₃

Нахождение в природе

Получение металлов

Получение магния из доломита:

Получение металлов

Получение магния из доломита:

```
MgCO_3 \cdot CaCO_3 = MgO + CaO + 2CO_2 (обжиг)

2MgO + 2CaO + FeSi = 2Mg + Fe + Ca_2SiO_4

Mg + 2HCI (б/в) = MgCI_2 + H_2

MgCI_2 = Mg + CI_2 (электролиз расплава)
```

<u>Другие металлы</u>:

$$BeF_2 + Mg = MgF_2 + Be$$
 1200°C
4CaO + 2AI = 3Ca + CaAI₂O₄ (алюмотермия)
Sr, Ba – аналогично Ca
или $BaCI_2 = Ba + CI_2$ (электролиз расплава)

Применение

Ве: в качестве нейтронных отражателей

для изготовления легких и прочных сплавов

Mg: в авиастроении

в медицине

в пиротехнике

в органическом синтезе

Ca: в оптике (CaF_2)

в металлургии

в медицине (фосфаты)

в производстве соды, цемента и бетона

Sr: в пиротехнике

Ва: для поглощения рентгеновских лучей

в красках и пигментах, пиротехнике

Основные химические свойства

1. Все металлы взаимодействуют с O_2 ; Ве и $Mg - c N_2$:

2Be +
$$O_2$$
 = 2BeO
Ba + O_2 = BaO₂ (500-700 °C)
3Mg + N_2 = Mg₃N₂ (500 °C)

2. Ca, Sr, Ba реагируют с водой, Mg – при нагревании:

$$Ca + 2H_2O = Ca(OH)_2 + H_2$$

3. Все металлы реагируют с кислотами,

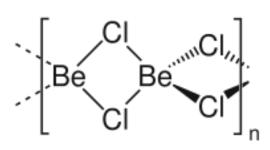
Ве пассивируется HNO₃ (конц)

$$Ca + 2CH3COOH = Ca(CH3COO)2 + H2$$

4. Бериллий растворяется в щелочах:

Be + 2KOH +
$$2H_2O = K_2[Be(OH)_4] + H_2$$

Основные химические свойства


5. Магний растворим в NH₄CI, бериллий – в NH₄F:

$$Mg + 2NH_4CI + 2H_2O = MgCl_2 + 2NH_3 \cdot H_2O + H_2$$

 $Be + 4NH_4F + 2H_2O = (NH_4)_2[BeF_4] + 2NH_3 \cdot H_2O + H_2$

6. Все металлы реагируют с галогенами, серой и

фосфором

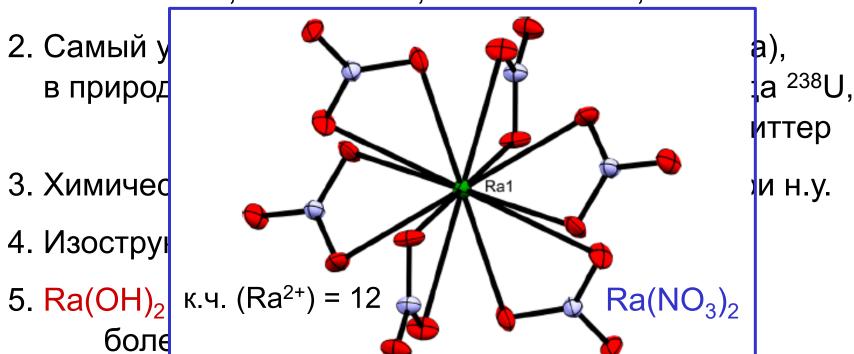
Be +
$$Cl_2$$
 = $BeCl_2$
 $Ca + S = CaS$
 $4Ba + 3P_4 = 4BaP_3$

7. Ca, Sr, Ва растворяются в жидком аммиаке:

$$Sr + 2NH_3(x) = Sr(NH_2)_2 + H_2$$

8. Все металлы образуют гидриды МН₂

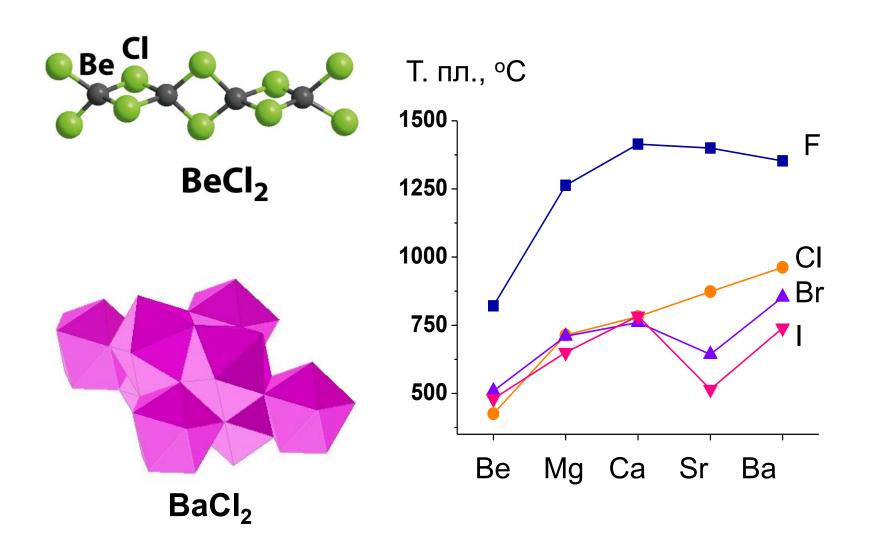
Радий и его свойства


- 1. Ra металл, т.пл. 699 °C, т.кип. 1535 °C, d = 5.0 г/см³
- 2. Самый устойчивый изотоп 226 Ra ($\tau_{1/2}$ = 1622 года), в природе как промежуточный продукт распада 238 U, α -эмиттер
- 3. Химически очень активен, реагирует с O_2 , N_2 при н.у.
- 4. Изоморфен барию (стр. тип α -Fe)
- 5. $Ra(OH)_2$ умеренно растворим, более сильное основание, чем $Ba(OH)_2$
- 6. Нерастворимые соли:

```
RaSO_4, RaCO_3, Ra_3(PO_4)_2

RaCl_2 + Na_2SO_4 = RaSO_4 \downarrow + 2NaCl (для выделения)
```

Радий и его свойства


1. Ra – металл, т.пл. 699 °C, т.кип. 1535 °C, d = 5.0 г/см³

6. Нерастворимые соли:

RaSO₄, RaCO₃, Ra₃(PO₄)₂ RaCl₂ + Na₂SO₄ = RaSO₄ \downarrow + 2NaCl (для выделения)

Галогениды металлов 2 группы

Получение МХ₂

1. Прямое галогенирование

$$Mg + Cl_2 = MgCl_2$$
 200 °C

$$Ba + Br_2 = BaBr_2$$
 500 °C

2. Галогенирование оксидов

$$2BeO + CCI_4 = 2BeCI_2 + CO_2$$

800 °C

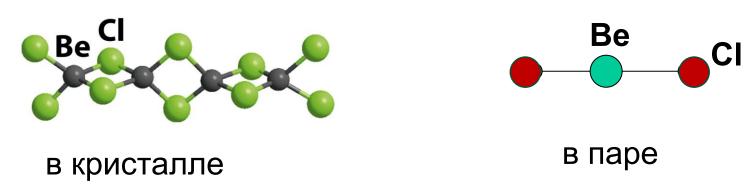
$$BeO + C + Cl_2 = BeCl_2 + CO$$

700 °C

3. Обезвоживание гидратов в токе HCI, HBr (кроме Be)

$$CaCl_2 \cdot 6H_2O = CaCl_2 + 6H_2O$$

400 °C


4. Гидрогалогенирование

$$BeO + 2HCI = BeCl_2 + H_2O$$

250 °C

Свойства МХ2

1. Все MX₂ кипят без разложения

2. Образование оксогалогенидов

MgCl2·6H2O = MgCl2·4H2O + 2H2O	120 °C
MgCl2·4H2O = MgCl2·2H2O + 2H2O	150 °C
$MgCl_2 \cdot 2H_2O = MgCl_2 \cdot H_2O + H_2O$	240 °C
2MgCl2·H2O = Mg2OCl2 + 2HCl + H2O	400 °C

Свойства МХ2

3. Взаимодействие с водой

$$CaCl_2 + 6H_2O = CaCl_2 \cdot 6H_2O$$
 Т.пл.(мин) = -55 °C

4. Гидролиз хлорида бериллия

$$[Be(H_2O)_4]Cl_2 = \frac{Be(OH)_2}{\kappa} + 2HCl + 2H_2O$$
 кипячение p-pa

5. Фториды (кроме BeF_2) плохо растворимы в воде

$$Ca(NO_3)_2 + 2KF = CaF_2 \downarrow + 2KNO_3$$

6. BeF₂ образует комплексные фториды

$$BeCl_2 + 4(NH_4)F = (NH_4)_2[BeF_4] + 2NH_4CI$$

 $(NH_4)_2[BeF_4] = BeF_2 + NH_4F$ 800 °C

	BeO	MgO	CaO	SrO	BaO
Т. пл., ∘С	2470	2850	2614	2420	1920
∆ _f H ⁰ ₂₉₈ , кДж/моль	– 598	-602	-636	– 590	- 558
Твердость	9.0	6.5	4.5	3.5	3.0
К.ч. металла	4	6	6	6	6

1. Растворяются в кислотах

BeO + 2HCI = BeCl₂ + H₂O
SrO + 2CH₃COOH =
$$Sr(CH_3COO)_2 + H_2O$$

2. BeO растворяется в щелочах BeO + 2NaOH + $H_2O = Na_2[Be(OH)_4]$

- 3. SrO и BaO окисляются до пероксида $2BaO + O_2 \Leftrightarrow 2BaO_2 = 500-700 \, ^{\circ}C$
- 4. Реагируют (кроме BeO) с оксидами d-металлов при нагревании

- 5. BeO, MgO теряют реакционную способность после прокаливания
- 6. Пероксиды SrO₂, BaO₂ образуются при нагревании металлов или оксидов на воздухе, CaO₂, MgO₂ неустойчивы, BeO₂ неизвестен
- 7. Пероксиды SrO_2 , BaO_2 выделяют O_2 в кислой среде $SrO_2 + H_2SO_4 = SrSO_4 \downarrow + H_2O + \frac{1}{2}O_2$
- 8. Пероксиды SrO_2 , BaO_2 окислители $BaO_2 + CO = BaCO_3$ $2BaO_2 + S = SO_2 + 2BaO$

9. Образуют гидроксиды

```
CaO + H_2O = Ca(OH)_2

MgCl_2 + 2KOH = 2KCI + Mg(OH)_2

BeCl_2 + 2NH_3 + 2H_2O = Be(OH)_2 + 2NH_4CI
```

10. $Ca(OH)_2$, $Sr(OH)_2$, $Ba(OH)_2$ растворимы в горячей воде, $Mg(OH)_2$ – в p-рах солей аммония $Mg(OH)_2$ (тв) + $2NH_4CI$ (aq) = $MgCI_2$ + $2NH_3\cdot H_2O$

$$pK_{b} = 2.6$$

11. $Be(OH)_2$ $Mg(OH)_2$ $Ca(OH)_2$ $Sr(OH)_2$ $Ba(OH)_2$

Увеличение силы основания

Соли кислородных кислот

1. Фосфаты, гидрофосфаты, карбонаты и сульфаты Са-Ва плохо растворимы

$$BaCl_2 + Na_2SO_4 = BaSO_4 \downarrow + 2NaCl$$

 $SrCl_2 + Na_2CO_3 = SrCO_3 \downarrow + 2NaCl$
 $CaCl_2 + Na_2HPO4 = CaHPO_4 \downarrow + 2NaCl$
 $MgCl_2 + 2NaHCO_3 = MgCO_3 \downarrow +$
 $2NaCl + H_2O + CO_2$

2. Карбонаты разлагаются при нагревании

$$SrCO_3 = SrO + CO_2$$
 (T)

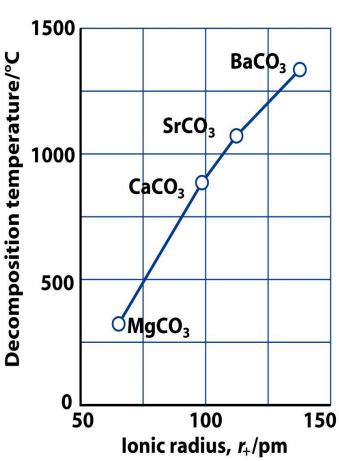


Figure 11-4

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D.F. Shriver, P.W. Atkins, T.L., Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Соли кислородных кислот

3. Растворение за счет образования кислых солей

$$CaCO_3 \downarrow + CO_2 + H_2O = Ca(HCO_3)_2$$

 $CaSO_4 \downarrow + H_2SO_4(\kappa) = Ca(HSO_4)_2$

4. Ве и Mg образуют гидроксосоли

$$5\text{MgCl}_2 + 5\text{Na}_2\text{CO}_3 + 2\text{H}_2\text{O} = \frac{\text{Mg}(\text{OH})_2 \cdot 3\text{MgCO}_3}{\text{Mg}(\text{HCO}_3)_2} + 10\text{NaCI} + \frac{\text{Mg}(\text{HCO}_3)_2}{\text{Mg}(\text{HCO}_3)_2}$$

$$2\text{BeCl}_2 + 2\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} = \frac{\text{Be}(\text{OH})_2 \cdot \text{BeCO}_3}{\text{Be}(\text{OH})_2 \cdot \text{BeCO}_3} + 4\text{NaCI} + \text{CO}_2$$

$$2\text{Be}(\text{OH})_2 \cdot \text{BeCO}_3 + 3(\text{NH}_4)_2\text{CO}_3 = 2(\text{NH}_4)_2[\text{Be}(\text{CO}_3)_2] + 2(\text{NH}_3 \cdot \text{H}_2\text{O}_3)$$

Проявление различной основности гидроксидов!

Жесткость воды

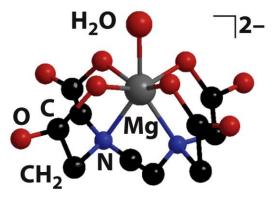
Жесткость воды — присутствие растворимых солей Следствие — образование осадков и взвеси $MgCO_3$, $CaCO_3$, $CaSO_4$, $Fe_2O_3 \cdot xH_2O$

Временная жесткость — $M(HCO_3)_2$, M = Mg, Ca, Fe Удаление кипячением

$$Ca(HCO_3)_2 = CaCO_3 \downarrow + CO_2 \uparrow + H_2O$$

Постоянная жесткость — MSO_4 , MCI_2 , M = Mg, Ca, Fe Удаление карбонатным методом

$$CaSO_4 + Na_2CO_3 = CaCO_3 \downarrow + Na_2SO_4$$


или деминерализацией через ионообменные смолы

Комплексные соединения

- 1. Ве образует комплексные соединения с простыми лигандами
- 2. Ве образует летучие комплексные соединения

$$4Be(OH)_2 + 6CH_3COOH = Be_4O(CH_3COO)_6 + 7H_2O$$

 $2[Be(OH)_2 \cdot BeCO_3] + 6CH_3COOH = Be_4O(CH_3COO)_6 + 2CO_2 + 5H_2O$

- 3. Mg, Ca образуют устойчивые комплексы с полидентатными лигандами
- 4. Sr, Ba образуют комплексы с краун-эфирами (аналогия с щелочными металлами)

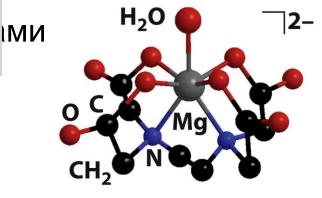
6 [Mg(edta)(OH₂)]²⁻

Комплексные соединения

1. Ве образует комплексные соединения с простыми

лигандами

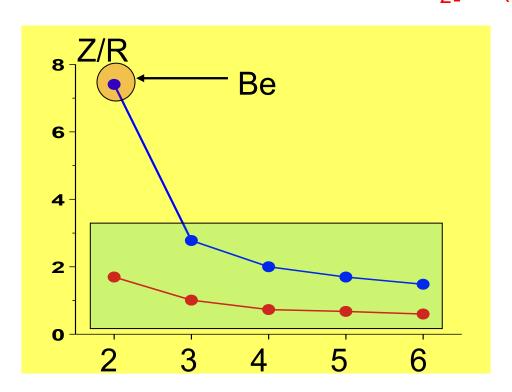
2. Ве образует

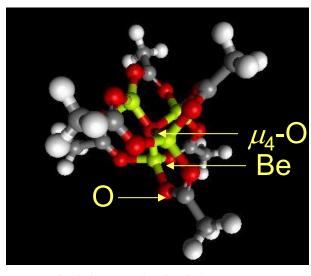

 $4Be(OH)_{2} + 6C$

2[Be(OH)₂·BeC

3. Mg, Ca обрасно он комплексы с

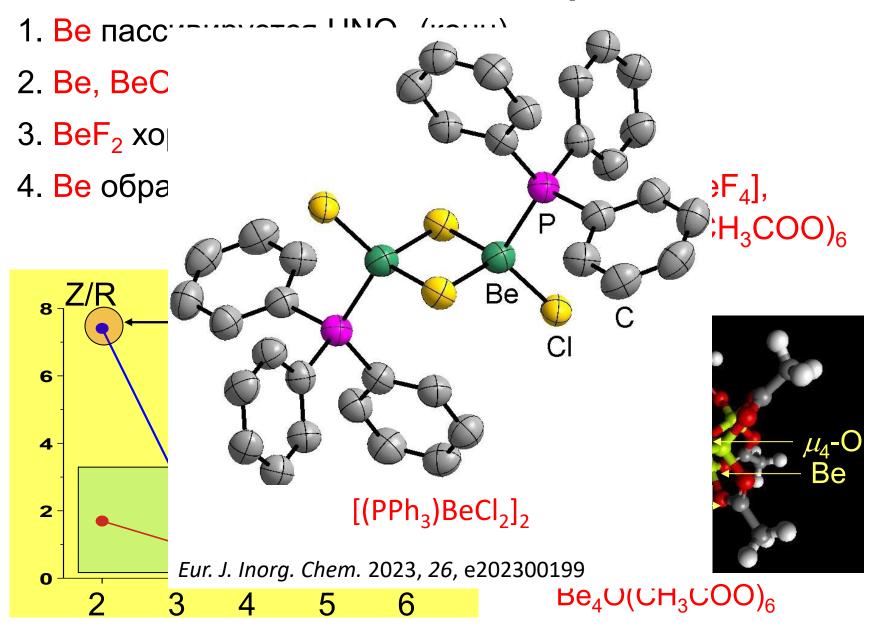
4. Sr, Ba образуют комплексы с краун-эфирами (аналогия с щелочными металлами)


динения $OH_6 + 7H_2O$ $COO)_6 + 2CO_2 + 5H_2O$



6 $[Mg(edta)(OH_2)]^{2-}$

Особые свойства бериллия

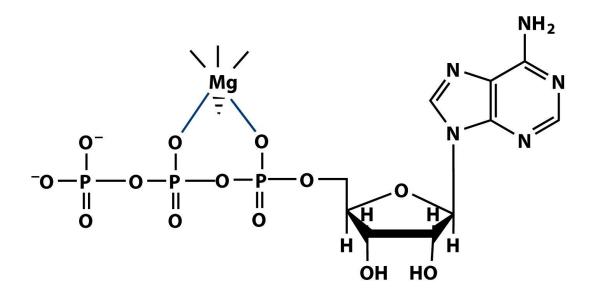

- 1. Ве пассивируется HNO₃ (конц)
- 2. Ве, ВеО растворяются в щелочах
- 3. BeF₂ хорошо растворим в воде
- 4. Ве образует комплексные соединения $M_2[BeF_4]$, $M_2[Be(CO_3)_4]$, $Be_4O(CH_3COO)_6$

Be₄O(CH₃COO)₆

Особые свойства бериллия

Диагональное сходство

Основная причина: близость Z/R (Z²/R)


$Li \leftrightarrow Mg$:

- 1. Реагируют с N₂
- 2. Не образуют пероксидов при взаимодействии с О2
- 3. Образуют малорастворимые гидроксиды, фториды
- 4. Нитраты разлагаются до оксидов при невысокой T

$$4\text{LiNO}_3 = 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$$

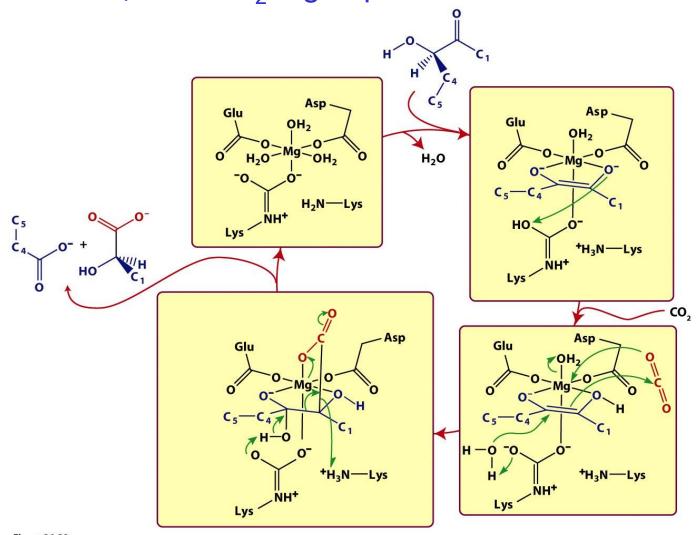
 $2\text{Mg}(\text{NO}_3)_2 = 2\text{MgO} + 4\text{NO}_2 + \text{O}_2$

Биологическая роль Mg, Ca

1. АТФ существует в виде комплекса с Mg²⁺

1 Mg-ATP complex

Structure 26-1


Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P.W. Atkins, T.L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

2. Фосфаты Ca²⁺ вместе с коллагеном формируют кости

Биологическая роль Mg, Ca

3. Поглощение CO₂ Mg-карбоксилазой

