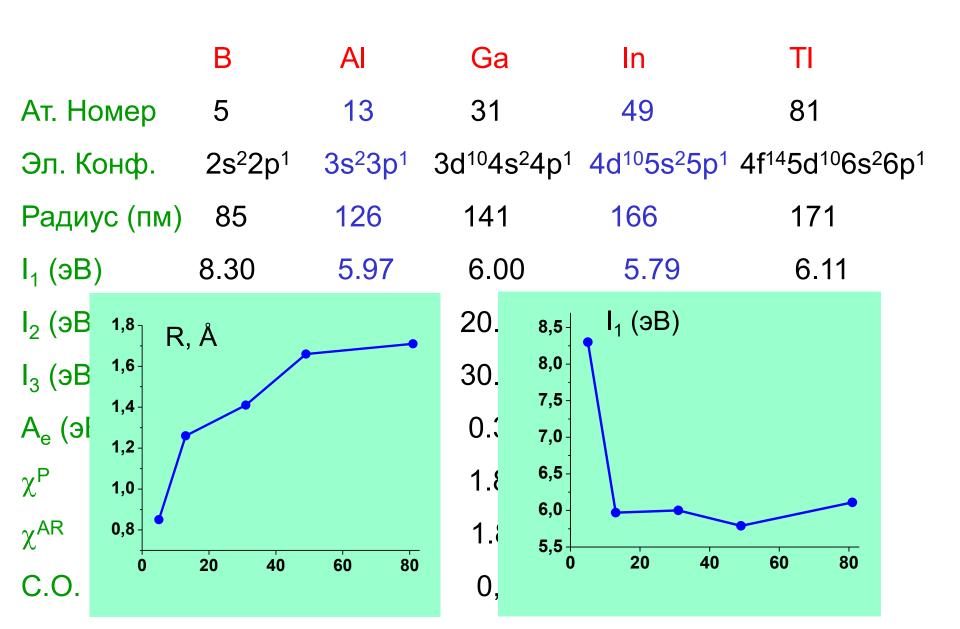
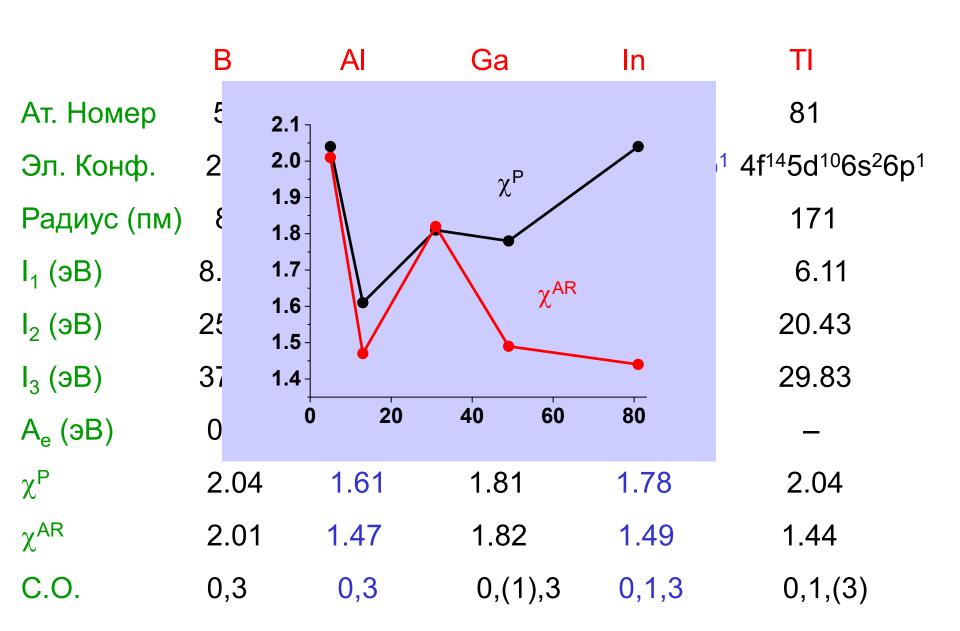


Элементы 13 группы

Элементы 13 группы


1 2

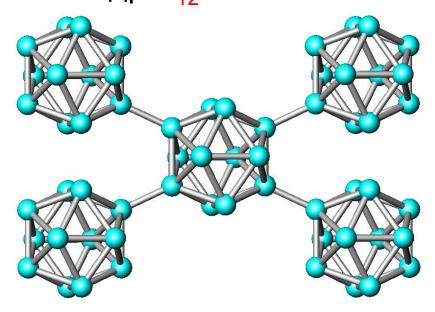
<u>13</u> 14 15 16 17 18


Н							(H)	Не
Li	Ве		В	С	N	О	F	Ne
Na	Mg		Al	Si	P	S	C1	Ar
K	Ca		Ga	Ge	As	Se	Br	Kr
Rb	Sr	d-block	In	Sn	Sb	Te	Ι	Xe
Cs	Ba		Tl	Pb	Bi	Po	At	Rn
Fr	Ra							

В – бор, Al – алюминий, Ga – галлий, In – индий, Tl – таллий

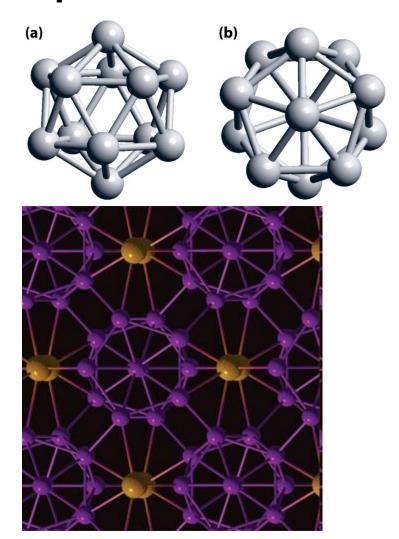
	В	Al	Ga	In	TI
Ат. Номер	5	13	31	49	81
Эл. Конф.	$2s^22p^1$	$3s^23p^1$	$3d^{10}4s^24p^1$	4d ¹⁰ 5s ² 5p ¹	4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹
Радиус (пм)	85	126	141	166	171
I ₁ (эВ)	8.30	5.97	6.00	5.79	6.11
I ₂ (эВ)	25.15	18.83	20.51	18.87	20.43
I ₃ (эВ)	37.93	28.45	30.71	28.03	29.83
A _e (эВ)	0.28	0.44	0.30	0.30	_
χ^{P}	2.04	1.61	1.81	1.78	2.04
χ^{AR}	2.01	1.47	1.82	1.49	1.44
C.O.	0,3	0,3	0,(1),3	0,1,3	0,1,(3)

	В	Al	Ga	In	TI
Ат. Номер	5	13	31	49	81
Эл. Конф.	$2s^22p^1$	$3s^23p^1$	$3d^{10}4s^24p^1$	4d ¹⁰ 5s ² 5p ¹	4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹
Радиус (пм)	85	126	141	166	171
I ₁ (эВ)	8.30	5.97	6.00	5.79	6.11
I ₂ (эВ)	25.15	18.83	20.51	18.87	20.43
I ₃ (эВ)	37.93	28.45	30.71	28.03	29.83
A _e (эВ)	0.28	0.44	0.30	0.30	_
χ^{P}	2.04	1.61	1.81	1.78	2.04
χ^{AR}	2.01	1.47	1.82	1.49	1.44
C.O.	0,3	0,3	0,(1),3	0,1,3	0,1,(3)

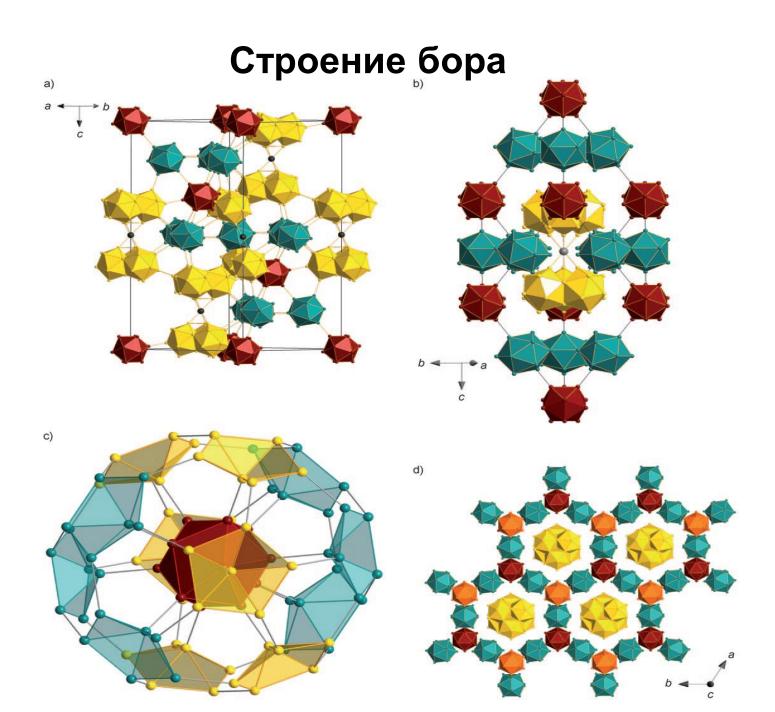

	В	Al	Ga	In	TI
Ат. Номер	5	13	31	49	81
Эл. Конф.	$2s^22p^1$	$3s^23p^1$	$3d^{10}4s^24p^1$	4d ¹⁰ 5s ² 5p ¹	4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹
Радиус (пм)	85	126	141	166	171
I ₁ (эВ)	8.30	5.97	6.00	5.79	6.11
I ₂ (эВ)	25.15	18.83	20.51	18.87	20.43
I ₃ (эВ)	37.93	28.45	30.71	28.03	29.83
A _e (эВ)	0.28	0.44	0.30	0.30	_
χ^{P}	2.04	1.61	1.81	1.78	2.04
χ^{AR}	2.01	1.47	1.82	1.49	1.44
C.O.	0,3	0,3	0,(1),3	0,1,3	0,1,(3)

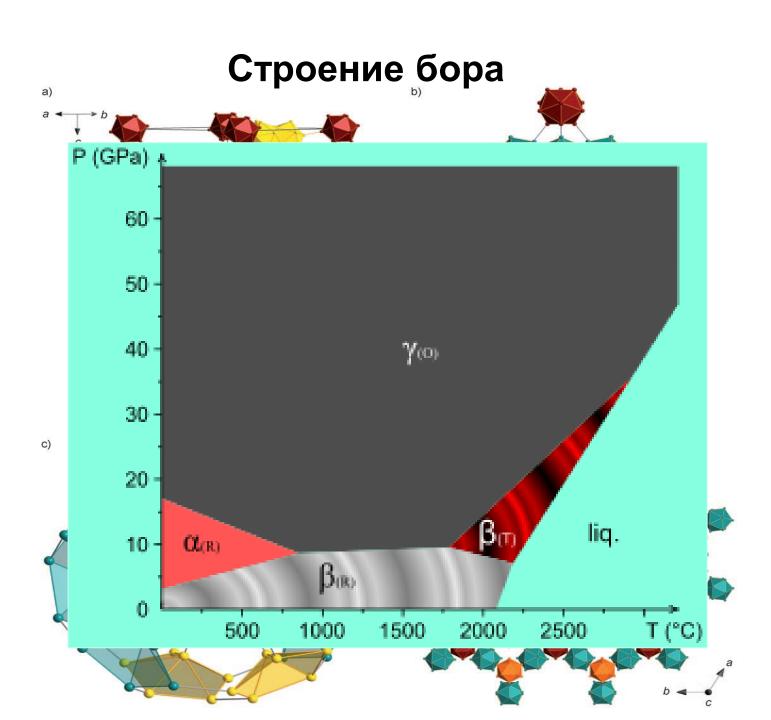
Свойства бора

- 1. Единственный неметалл в 13 группе
- 2. Очень высокие т.пл. (2093 °C) и т.кип. (3660 °C)
- 3. $d = 2.35 \text{ г/см}^3 \text{черный, кристаллический бор}$ $d = 1.73 \text{ г/см}^3 \text{коричневый, аморфный бор}$
- 4. Кристаллический бор очень твердый (9.5 по шкале Mooca)
- 5. Кристаллический бор полупроводник, $E_g = 1.55 \text{ } \text{э} \text{В}$
- 6. Бор имеет 2 стабильных изотопа ¹⁰B, ¹¹B
 - $^{10}_{5}$ B + $^{1}_{0}$ n = $^{4}_{2}$ He + $^{7}_{3}$ Li поглощение нейтронов
- 7. Бор восстановитель, $E^{\circ}(H_3BO_3/B) = -0.87 B$


Строение бора

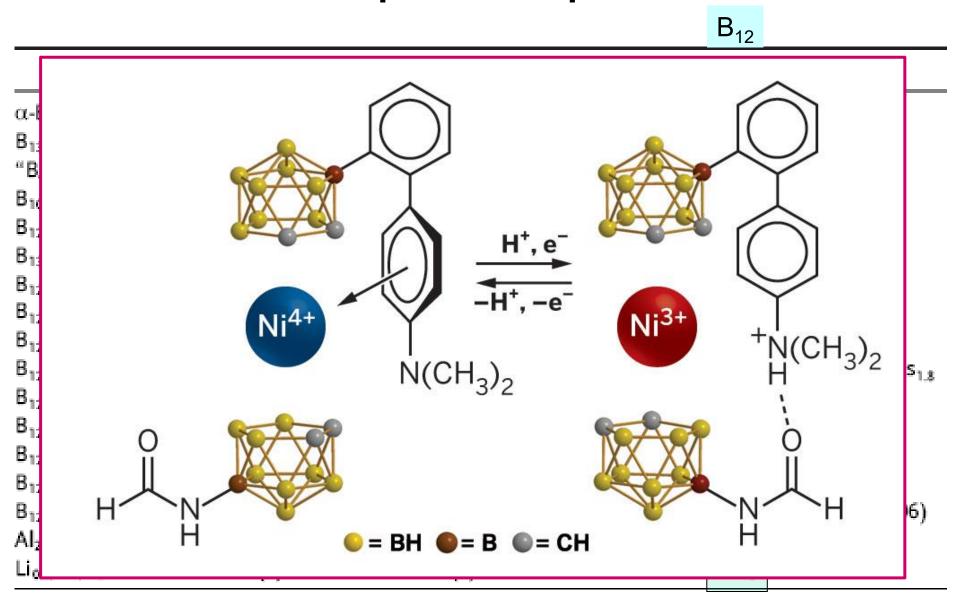
В основе кристаллического строения бора лежит икосаэдр B₁₂




d(B-B) = 202 пм в икосаэдре B_{12}

d(B-B) = 173 пм между икосаэдрами В₁₂

Новая форма — ионный бор высокого давления $(B_2 + B_{12})$



Строение бора

				B ₁₂
	a [pm]	с [рт]	c/a	Structural units
α-Β	490.75(9)	1255.9(3)	2.559	B ₁₂
B ₁₃ C ₂	561.7(1)	1209.9(4)	2.154	B ₁₂ CBC
"B ₄ C"	560.33(8)	1207.5(2)	2.155	B ₁₁ C, CBC
B _{10.2} Si _{3.8}	630.8(1)	1272.9(3)	2.018	B ₁₀₂ Si _{1.8} , Si ₂
$B_{12}N_2$	545.7(7)	1224(2)	2.234	B ₁₂ N ₂
B ₁₃ N ₂	544.55(2)	1226.49(9)	2.252	B ₁₂ NBN
$B_{12}P_{2}$	597.71(7)	1185.4(2)	1.983	B ₁₂ P ₂
B ₁₂ P ₂	600.0(4)	1185.7(8)	1.976	B ₁₂ , P ₂
$B_{12}P_{2-x}B_{x}$	596.78(4)	1180.79(7)	1.981	B ₁₂ , P _{1.36} B _{0.64}
$B_{12}As_{2-x}$	613.88(4)	1197.07(7)	1.950	B ₁₂ , As _{1.76} B _{0.24} , or As _{1.8}
$B_{12}As_2$	61 4.9 (2)	1191.4(3)	1.938	B ₁₂ , As ₂
$B_{12}O_{2-x}$	538.24(4)	1232.2(1)	2.289	B ₁₂ O
$B_{12}O_{2}$	539.02(1)	1221.25(2)	2.284	B ₁₂ , O
B ₁₂ S	580	1190	2.05	B ₁₂ BS
$B_{12}Se_{2-x}B_x$	590.41(4)	1194.7(1)	2.023	B_{12} $Se_{2-x}B_x$ (x = 1.06)
$AI_{2x}B_{13-x}C_2$	565.61(8)	1244.2 (2)	2.200	B ₁₂ CBC/2 Al
$Li_{0.25}B_{13}C_2$	561.5(2)	1225.6(5)	2.183	B ₁₂ , CBC, Li

Строение бора

Химические свойства бора

- 1. Бор химически инертен. Не реагирует с водой, кислотами и щелочами при н.у.
- 2. При нагревании реагирует с неметаллами

$$4B + 3O_2 = 2B_2O_3$$
 700 °C
 $2B + 3CI_2 = 2BCI_3$ 800 °C
 $2B + N_2 = 2BN$ 900 °C

3. При Т>1000 °С реагирует со многими

металлами и оксидами

$$2B + AI = AIB_2$$

 $20B + 6P_2O_5 = 3P_4 + 10B_2O_3$
 $2B + 3H_2O = 3H_2 + B_2O_3$

4. Окисляется кислотами-окислителями

и в щелочных расплавах

$$B + 3HNO_3$$
 (конц) = $H_3BO_3 + 3NO_2$ ~100 °C
2B + $KCIO_3 + 2KOH = 2KBO_2 + KCI + H_2O$ (t°)

Получение бора

Бор встречается в виде оксидных минералов

 $Na_2B_4O_7 \cdot 10H_2O$

бура

 $Na_2B_4O_7\cdot 4H_2O$

кернит

 $MgCaB_6O_{11} \cdot 6H_2O$ гидроборацит

Получение аморфного бора

1)
$$MgCaB_6O_{11} \cdot 6H_2O + 4HCI + H_2O = 6H_3BO_3 + CaCI_2 + MgCI_2$$

$$2H_3BO_3 \xrightarrow{t^o} B_2O_3 + 3H_2O$$

$$B_2O_3 + 3Mg = 3MgO + 2B$$

2)
$$Na_2B_4O_7 + 3Mg = 2NaBO_2 + 3MgO + 2B$$

Получение кристаллического бора

$$2BBr_3 + 3H_2 = 6HBr + 2B$$

$$B_2H_6 = 2B + 3H_2(t^0)$$

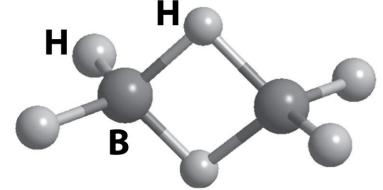
Бор кристаллический

Применение бора

- 1. Электроника акцепторная примесь
- 2. Химическая промышленность восстановитель
- 3. Металлургия легирующая добавка
- 4. В композитных материалах упрочняющая добавка
- 5. MgB_2 сверхпроводник
- 6. H_3BO_3 в медицине и химической промышленности
- 7. 10 В в медицине (БНЗТ)
- 8. В боросиликатном стекле для повышения прочности
- 9. ¹⁰В для поглощения нейтронов в ядерных реакторах

Диборан

1. BH₃ крайне неустойчив. Простейший боргидрид – B₂H₆


$$MgB_2 + 2Mg + 6HCI = 3MgCI_2 + B_2H_6$$

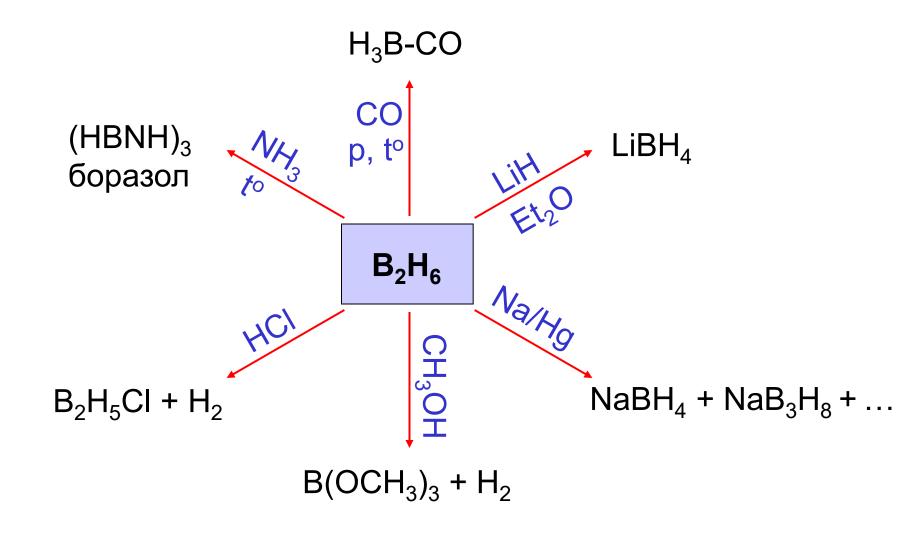
 $2BF_3 + 6NaH = 6NaF + B_2H_6$

2. Гидролиз, окисление B_2H_6

$$B_2H_6 + 6H_2O = 2H_3BO_3 + 6H_2$$

 $B_2H_6 + 3O_2 = 2H_3BO_3$

3. Строение B_2H_6


В–Н	В–Н–В
4 связи	2 связи
2c-2e	3c-2e

В: sp³-гибридные орбитали

Всего 12e⁻: электрондефицитное соединение

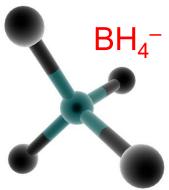
Свойства диборана

Тетрагидробораты

1. Получение

$$B_2H_6 + 2LiH = 2Li[BH_4]$$

2. $Na[BH_4]$ растворим в воде, $Li[BH_4]$ – гидролизуется


$$Li[BH_4] + 2H_2O = 4H_2 + LiBO_2$$

3. Восстановительные свойства

$$Li[BH_4] + 2I_2 = BI_3 + LiI + 2H_2$$

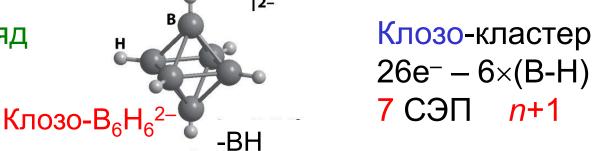
 $Li[BH_4] + GeCI_4 = GeH_4 + BCI_3 + LiCI$
 $4Li[BH_4] + 9H_2O = Li_2B_4O_7 + 16H_2 + 2LiOH$

$$Na[B_3H_8], K[B_9H_{14}], K[B_{11}H_{14}]$$

Ряды боргидридов

Hидо-B₅H₉

 $B_{n}H_{n}^{2-}$ анионный ряд


 $B_6H_6^{2-}, B_{12}H_{12}^{2-}, \dots$

В_nH_{n+4} непредельный ряд Штока

 $B_2H_6, B_5H_9, ...$

В_пН_{п+6} предельный ряд Штока

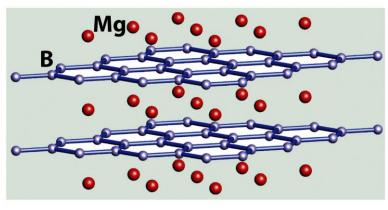
 $B_4H_{10}, B_5H_{11}, \dots$

Нидо-кластер $24e^- - 5 \times (B-H)$ 7 СЭП n+2

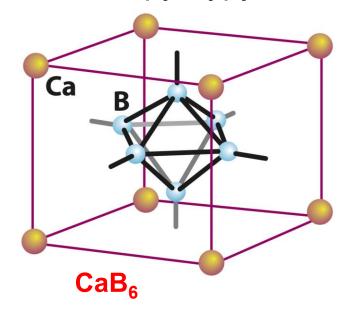
Арахно-кластер 22e⁻ – 4×(B-H) 7 СЭП *n*+3

+4H

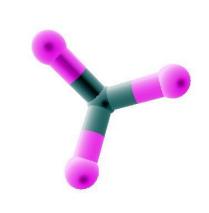
-2e⁻


-BH

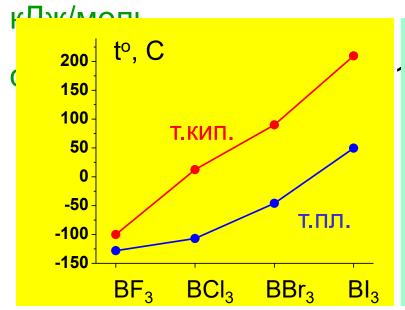
Shriver & Atkins Inorganic Chemistry, Fourth Edition

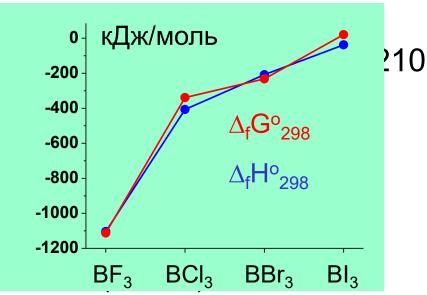

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

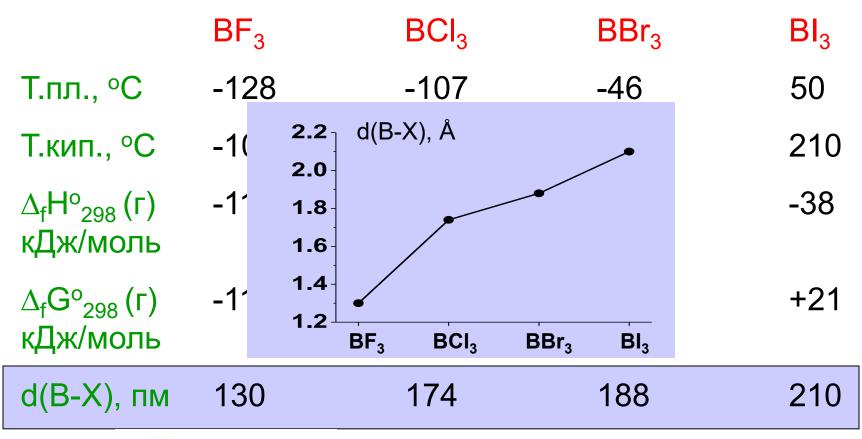
Бориды


- 1. Образуются большинством металлов
- 2. Бориды d-металлов тугоплавки, часто нестехиометричны т.пл. (ZrB) = 2996 °C
- 3. Получаются прямым взаимодействием при высокой to
- 4. По кристаллическому строению делятся на 2 группы
- образованные внедрением атомов В в структуру металла
- содержащие кластеры В

MgB₂


	BF_3	BCl ₃	BBr ₃	BI_3
Т.пл., ∘С	-128	-107	-46	50
Т.кип., ∘С	-100	13	90	210
∆ _f Н° ₂₉₈ (г) кДж/моль	-1104	-407	-208	-38
∆ _f G° ₂₉₈ (г) кДж/моль	-1112	-339	-232	+21
d(B-X), пм	130	174	188	210

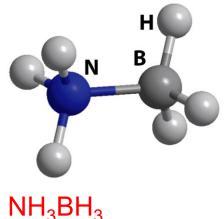



 BX_3

Плоская молекула ∠(X-B-X) = 120°

	BF_3	BCl ₃	BBr ₃	BI_3
Т.пл., °С	-128	-107	-46	50
Т.кип., ∘С	-100	13	90	210
∆ _f H° ₂₉₈ (г) кДж/моль	-1104	-407	-208	-38
$\Delta_{\mathrm{f}}\mathrm{G}^{\mathrm{o}}_{298}\left(\Gamma\right)$	-1112	-339	-232	+21

 BX_3


Плоская молекула ∠(X-B-X) = 120°

1. Получение

$$B_2O_3 + 3CaF_2 + 3H_2SO_4 = 2BF_3^{\uparrow} + 3CaSO_4 + 3H_2O$$

 $B_2O_3 + 3C + 3CI_2 = 2BCI_3^{\uparrow} + 3CO$
 $BF_3 + AIBr_3 = BBr_3 + AIF_3$
 $Na[BH_4] + 2I_2 = BI_3 + NaI + 2H_2$

2. Гидролиз

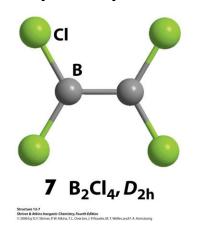
$$BCI_3 + 3H_2O = H_3BO_3 + 3HCI$$

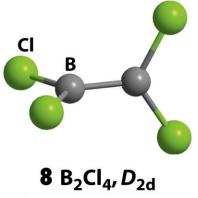
 $4BF_3 + 3H_2O = H_3BO_3 + 3H[BF_4]$

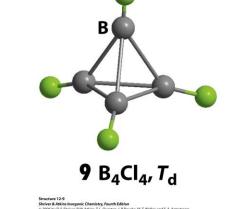
3. Реакции с основаниями Льюиса

$$BF_3$$
 (газ) + NH_3 (газ) = F_3B-NH_3 (тв)
трифторборазан

4. Тетрафтороборная кислота $H[BF_4]$


Существует только в растворе сильная кислота pKa = -0.2


Соли – тетрафторобораты.


Устойчивы, хорошо растворимы, не гидролизуются

5. Другие галогениды бора

 B_2F_4 , B_2CI_4 , B_2Br_4 , B_2I_4 , B_4CI_4 — все легко диспропорционируют

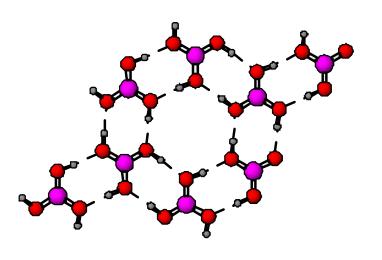
BF₄-

Structure 12-8
Shriver & Atkins Inorganic Chemistry, Fourth Edition
© 2006 by D.F. Shriver, P.W.Atkins, T.L. Overton, J.P.Rourke, M. T. Weller, and F.A. Armstrong

Кислородные соединения бора

1. Оксид бора B_2O_3

т.пл. 577 °С, т.кип. 1860 °С $\Delta_{\rm f} {\rm G^0}_{298} = -1193.7 \; кДж/моль$


ангидрид борной кислоты, легко переходит в аморфное состояние (<u>стекло</u>)

$$B_2O_3 + 3H_2O = 2H_3BO_3$$

2. Ортоборная кислота Н₃ВО₃

твердое белое вещество растворимое в воде (~15% при н.у.) одноосновная кислота

$$H_3BO_3 + H_2O \Leftrightarrow H^+ + [B(OH)_4]^-$$

pKa = 9.2

Кислородные соединения бора

3. Тетраборная кислота $H_2B_4O_7$

Твердое белое вещество, хорошо растворимо в воде двухосновная кислота $pKa_1 = 4.1$; $pKa_2 = 5.1$ образуются только двузамещенные соли

$$H_3BO_3 \xrightarrow{t^o} HBO_2 \xrightarrow{t^o} H_2B_4O_7 \xrightarrow{t^o} B_2O_3$$

4. Эфиры борной кислоты окрашивают пламя в зеленый цвет

$$H_3BO_3 + 3CH_3OH \xrightarrow{H_2SO_4} B(OCH_3)_3 + 3H_2O$$

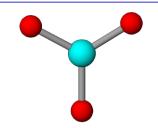
Кислородные соединения бора

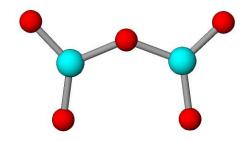
5. Бораты (в растворе только тетрабораты)

$$4H_3BO_3 + 2NaOH = Na_2B_4O_7$$
 $Na_2B_4O_7 + 7H_2O = 4H_3BO_3 + 2NaOH$ гидролиз
 $Na_2B_4O_7 + 2HCI + 5H_2O = 4H_3BO_3 \downarrow + 2NaCI$

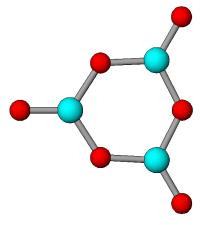
$$3Na_2CO_3(тв) + 2H_3BO_3(тв) \xrightarrow{t^o} 2Na_3BO_3 + 3H_2O + 3CO_2$$

$$Na_2B_4O_7 + CoO \xrightarrow{t^o} Co(BO_2)_2 + 2NaBO_2$$
 перлы буры

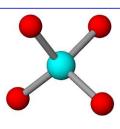

$$2B_2O_3 + 2Na_2O_2 \xrightarrow{t^0} 4NaBO_2 + O_2$$

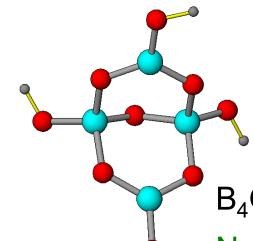

Борат-анионы

$$\kappa.4. = 3$$


$$sp^2$$

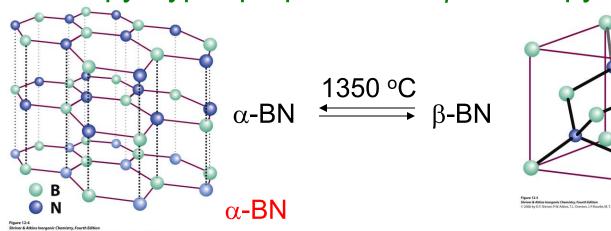
$$d(B-O) = 136$$
 пм

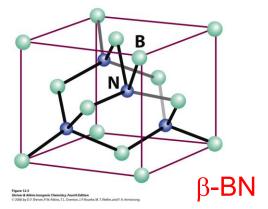



$$B_2O_5^{4-}Mg_2B_2O_5$$

$$\kappa$$
.ч. = 4 sp³ $d(B-O) = 148$ пм

$$B(OH)_4^- H_3BO_3$$

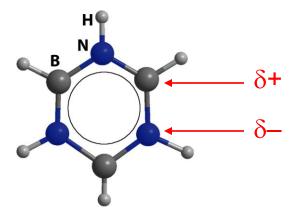

 $\kappa.4. = 3, 4$ sp^2, sp^3


 $B_4O_5(OH)_4^{2-}$ $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$ $(Na_2B_4O_7 \cdot 10H_2O)$

Соединения бора с азотом

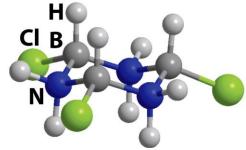
Нитрид бора

 α -BN структура графита β -BN структура алмаза


B₂O₃ (ж) + 2NH₃ (г)
$$\xrightarrow{1200 \text{ °C}}$$
 2α-BN + 3H₂O

$$4F_3B-NH_3$$
 (TB) $\xrightarrow{400 \text{ °C}}$ α -BN + $3NH_4BF_4$

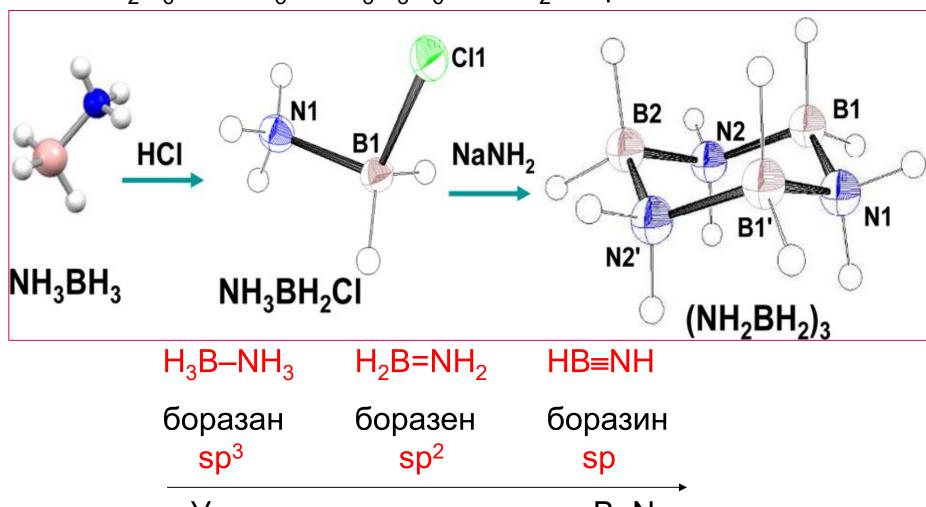
$$2B + 2NH_3 \xrightarrow{t^0} 2\beta - BN + 3H_2$$


Соединения бора с азотом

$$3B_2H_6 + 6NH_3 = 2B_3N_3H_6 + 12H_2$$
 боразол

Ароматичность!

$$B_3N_3H_6 + 3HCI = B_3N_3H_9CI_3$$

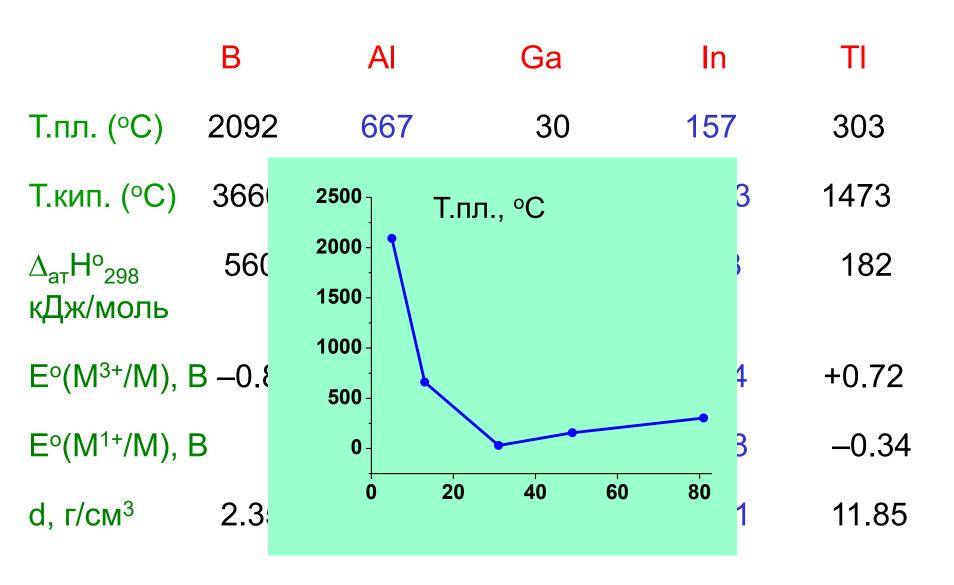

Аналог трихлорциклогексана

$$H_3B-NH_3$$
 $H_2B=NH_2$ $HB\equiv NH$ боразан боразен боразин sp^3 sp^2 sp

Увеличение энергии связи B-N

Соединения бора с азотом

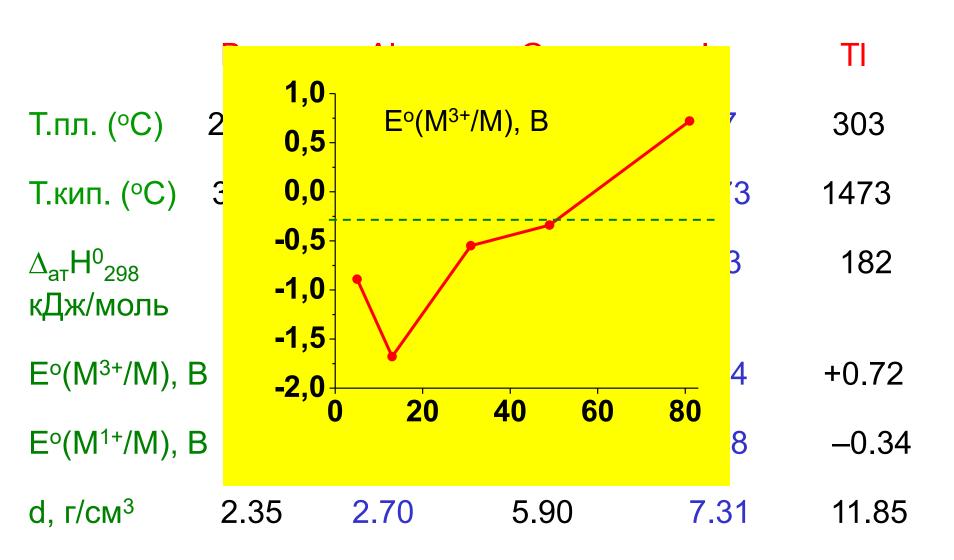
$$3B_2H_6 + 6NH_3 = 2B_3N_3H_6 + 12H_2$$
 боразол


Увеличение энергии связи B-N

	В	Al	Ga	In	TI
Ат. Номер	5	13	31	49	81
Эл. Конф.	$2s^22p^1$	$3s^23p^1$	$3d^{10}4s^24p^1$	4d ¹⁰ 5s ² 5p ¹	4f ¹⁴ 5d ¹⁰ 6s ² 6p ¹
Радиус (пм)	85	126	141	166	171
I ₁ (эВ)	8.30	5.97	6.00	5.79	6.11
I ₂ (эВ)	25.15	18.83	20.51	18.87	20.43
I ₃ (эВ)	37.93	28.45	30.71	28.03	29.83
A _e (эВ)	0.28	0.44	0.30	0.30	_
χ^{P}	2.04	1.61	1.81	1.78	2.04
χ^{AR}	2.01	1.47	1.82	1.49	1.44
C.O.	0,3	0,3	0,(1),3	0,1,3	0,1,(3)

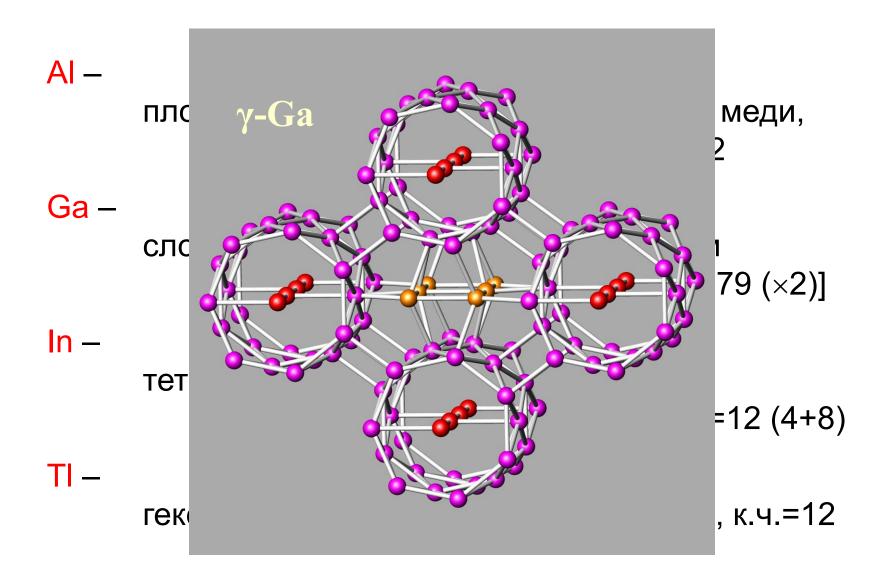
Свойства простых веществ

	В	Al	Ga	In	TI
Т.пл. (°С)	2092	667	30	157	303
Т.кип. (°C)	3660	2519	2204	2073	1473
∆ _{ат} Н° ₂₉₈ кДж/моль	560	330	286	243	182
E°(M ³⁺ /M),	B -0.89	-1.68	-0.55	-0.34	+0.72
E ^o (M ¹⁺ /M),	В		-0.8	-0.18	-0.34
d, г/см ³	2.35	2.70	5.90	7.31	11.85


Свойства простых веществ

Свойства простых веществ

	В	Al	Ga	In	TI
Т.пл. (°С)	2092	667	30	157	303
Т.кип. (°C)	3660	2519	2204	2073	1473
∆ _{ат} Н° ₂₉₈ кДж/моль	560	330	286	243	182
E°(M ³⁺ /M),	B -0.89	-1.68	-0.55	-0.34	+0.72
E°(M ¹⁺ /M),	В		-0.8	-0.18	-0.34
d, г/см ³	2.35	2.70	5.90	7.31	11.85


Свойства простых веществ

Строение простых веществ

- AI плотнейшая кубическая решетка типа меди, к.ч.=12
- Ga сложная структура, d(Ga–Ga) = 247 пм [+270+274+279 (×2)]
- In тетрагональная решетка, искажение структуры меди, к.ч.=12 (4+8)
- TI гексагональная структура типа магния, к.ч.=12

Строение простых веществ

Химические свойства AI, Ga, In, TI

1. Все металлы растворимы в кислотах-неокислителях

$$2AI + 6HCI = 2AICI_3 + 3H_2$$
 AI^{3+}
 $2In + 3H_2SO_4 = In_2(SO_4)_3 + 3H_2$ In^{3+}
 $2TI + 2CH_3COOH = 2TICH_3COO + H_2$ TI^{1+}

- 2. Только AI пассивируется концентрированной HNO₃
- 3. Al, Ga, In растворимы в щелочах

$$2Ga + 2KOH + 10H2O = 2K[Ga(OH)4(H2O)2] + 3H2$$

4. Только AI реагирует с водой

$$2AI + 6H_2O = 2AI(OH)_3 + 3H_2$$

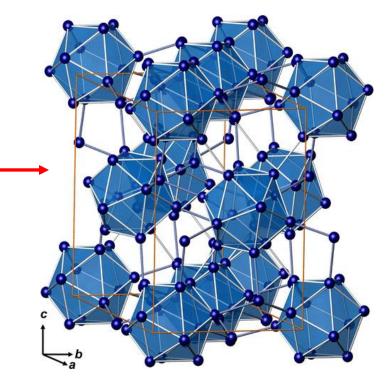
5. Реагируют с неметаллами

$$4AI + 3O_2 = 2AI_2O_3$$
 $\Delta_f H^o_{298} = -1676 \text{ кДж/моль}$ $2TI + S = TI_2S$ $2TI + 3CI_2 = 2TICI_3$

Химические свойства Al, Ga, In, Tl

6. Реагируют с металлами

$$Fe + 2AI = FeAI_2$$


$$3Fe + Ga = Fe_3Ga$$

$$2Na + 7Ga = Na_2Ga_7$$

Каркас состава Ga_{12} В структуре Na_2Ga_7

$$4Fe + 13AI = Fe4AI13$$

$$Fe + 3Ga = FeGa3$$

Получение Al

AI – самый распространенный на Земле металл 8.5 массовых процентов в земной коре Основные минералы:

бокситы $Al_2O_3 \cdot nH_2O$ каолинит $Al_2O_3 \cdot SiO_2 \cdot 2H_2O$

корунд Al_2O_3 криолит Na_3AlF_6

Основной метод получения:

Электролиз Al_2O_3 в расплаве Na_3AlF_6

Получение Al

Электролиз Al₂O₃ в расплаве Na₃AlF₆ с графитовым электродом

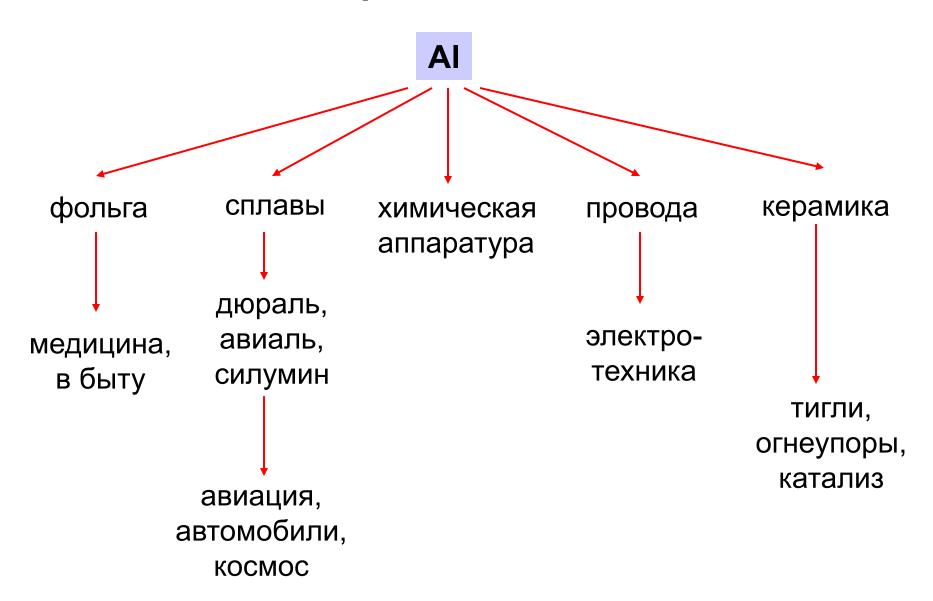
Основной катодный процесс: $Al^{3+} + 3e^{-} = Al$

Основной анодный процесс: $2O^{2-} - 4e^- + C = CO_2$

Химические реакции:

$$Al_2O_3 = 2Al + 1.5 O_2$$
 (1)

$$C + O_2 = CO_2 \tag{2}$$


Суммарная:
$$Al_2O_3 + 1.5C = 2Al + 1.5 CO_2$$
 (3)

$$C + CO_2 = 2CO \tag{4}$$

$$2AI + AIF_3 = 3AIF$$

 $AI + 3NaF = AIF_3 + 3Na (AI)$

Обратная: Al $_{pactb.}$ + CO $_2$ = Al $_2$ O $_3$ + CO

Применение Al

Получение и применение Ga, In, TI

Ga, In, TI своих значимых минералов не имеют

Ga, In – из отходов производства AI, Sn или Zn

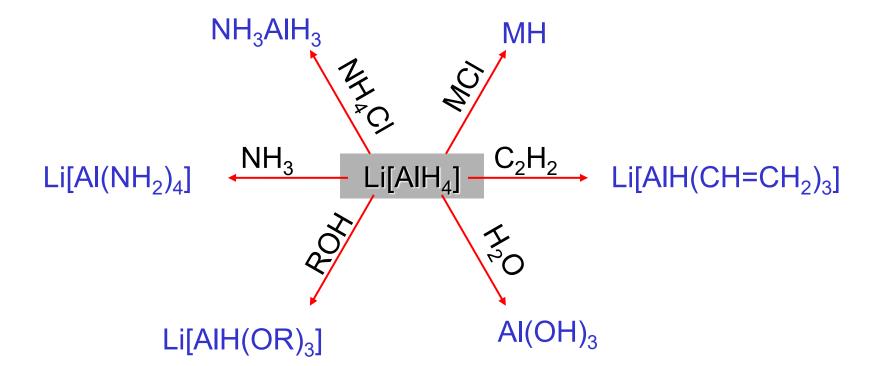
TI – сопутствует свинцу в сульфидных рудах

Ga, In, TI получают электролизом <u>водных растворов</u> солей, очищают переплавкой в инертной атмосфере

Ga, In применяют:

- 1. В качестве жидкой эвтектики или в составе легкоплавких сплавов
- 2. В полупроводниковой технике в виде GaN, GaP, GaAs, InP, InAs

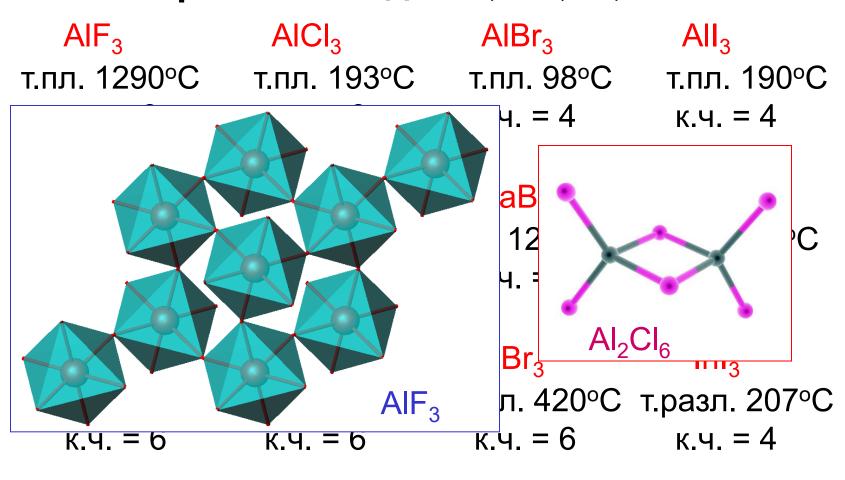
TI практически не применяется ввиду высокой


токсичности

Соединения AI, Ga, In, TI с водородом

1. Получение

$$4LiH + AlCl_3 \xrightarrow{Et_2O} Li[AlH_4] + 3LiCl$$
 $2Li[AlH_4] + H_2SO_4 = 2AlH_3 + 2H_2 + Li_2SO_4$ полимер


2. Гидриды In, TI неустойчивы

Тригалогениды AI, Ga, In, TI

$$TIF_3$$
 $TICI_3$ $TIBr_3$ TII_3 $T.пл. 550°C$ т.разл. 153°C — — $TI(I_3)$ $TI(I_3)$

Тригалогениды AI, Ga, In, TI

$$TIF_3$$
 $TICI_3$ $TIBr_3$ TII_3 TII_3 $T.пл. 550°C$ т.разл. 153°C — — $K.4. = 6$ $K.4. = 6$ $K.4. = 6$ $TI(I_3)$

Получение и свойства МХ₃

1. Все MX₃ (кроме TICI₃, TIBr₃, TII₃) синтезируют прямым взаимодействием или галогенированием оксидов

$$2\ln + 3Cl_2 = 2\ln Cl_3$$
 400 °C
 $2Al + 3l_2 = 2All_3$
 $Ga_2O_3 + 3C + 3Cl_2 = 2GaCl_3 + 3CO$ 600 °C

2. Получение TICl₃, TII₃

TICI + 2NOCI =
$$TICI_3$$
 + 2NO
 $TINO_3$ + I_2 + HI = $TI(I_3)$ + HNO_3

3. Все MX_3 (кроме MF_3) растворимы в полярных растворителях

Получение и свойства МХ₃

4. MX₃ не гидролизуются нацело, образуют гидраты, комплексы

$$AICI_{3} + 6H_{2}O = AICI_{3} \cdot 6H_{2}O \Leftrightarrow [AI(H_{2}O)_{6}]^{3+} + 3CI^{-}$$

$$K_{3}[InCI_{6}] \Leftrightarrow 3K^{+} + [InCI_{6}]^{3-}$$

$$AICI_{3} + CI^{-} \xrightarrow{THF} AICI_{4}^{-}$$
THE

5. GaX₃ – окислители в расплаве

$$2La + 12GaCl_3 = Ga_2Cl_4 + 2Ga[La(GaCl_4)_4]$$

6. TIX_3 — сильные окислители

$$2\text{TICl}_3 + 3\text{Na}_2\text{S} = \text{TI}_2\text{S} + 2\text{S} + 6\text{NaCl}$$

 $\text{TICl}_3 + 2\text{FeCl}_2 = 2\text{FeCl}_3 + \text{TICl}$

Получение и свойства МХ₃

7. TIX₃ легко разлагаются при нагревании

$$TICI_3 = TICI + CI_2$$

$$2\mathsf{TIBr}_3 = \mathsf{TI}_2\mathsf{Br}_4 + \mathsf{Br}_2$$

8. Комплексы Ga, In, TI разлагаются при нагревании

$$(NH_4)_3InF_6 \xrightarrow{t^0} InN + 2NH_3 + 6HF$$

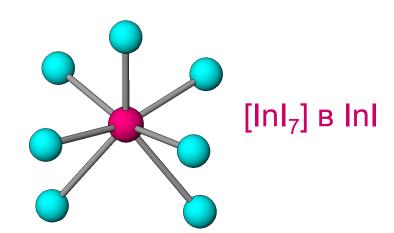
$$(NH_4)_3GaF_6 \xrightarrow{t^o} GaF_3 + 3NH_4F$$

$$(NH_4)_3InCl_6 \xrightarrow{t^0} (NH_4)_2InCl_5 + NH_4CI$$

Окраска пламени летучими солями индия

Низшие галогениды Ga, In, TI

- 1. Известны все МХ (кроме GaF, InF)
- 2. Только TIF хорошо растворим в воде
- 3. GaX, InX диспропорционируют при нагревании


$$3Gal \xrightarrow{t^o} Gal_3 + 2Ga$$

4. TIX, InI не гидролизуются

$$3InCl + H2O = 2In + In(OH)Cl2 + HCl$$

5. Известны $M_2X_4 \equiv M^I[M^{III}X_4]$

Низшие галогениды TI

TIF т.пл. 322 °C т.кип. 826 °C стр. РbО

ТІСІ т.пл. 430 °С т.кип. 720 °С стр. CsCl, NaCl

TIBr т.пл. 460 °C т.кип. 815 °C стр. CsCl, NaCl

ТІІ разл. тв. – стр. ТІІ, CsCI

1. Только TIF хорошо растворим в воде, очень ядовит

$$TINO_3 + KBr = TIBr \downarrow + KNO_3$$

 $TIF + NaCl = TICl \downarrow + NaF$

2. Разлагаются серной и фосфорной кислотами

TICI +
$$H_3PO_4$$
 (κ) $\xrightarrow{t^o}$ TI H_2PO_4 + $HCI\uparrow$

3. TII фоточувствителен

$$2TII \xrightarrow{hv} 2TI + I_2 \qquad (25 \, {}^{\circ}C)$$

Оксиды AI, Ga, In, TI

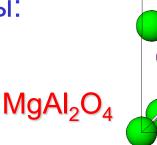
	Al_2O_3	Ga_2O_3	In_2O_3	TI_2O_3
Цвет	белый	белый	желтый	коричневый
Т.пл., ∘С	2045	1795	1900	716 (p)
К.ч.	6	6	6	6
$\Delta_{f}G^{o}{}_{298}$	-1570	-996	-837	-318
кДж/моль				

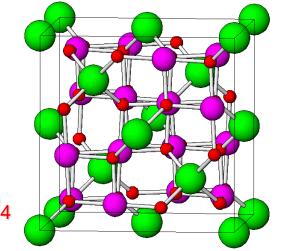
- **1**. Al_2O_3 , Ga_2O_3 имеют 2 модификации
- 2. ln_2O_3 имеет собственный структурный тип
- 3. Tl₂O₃ разлагается при нагревании

$$Tl_2O_3 \xrightarrow{t^0} Tl_2O + O_2$$

Оксиды AI, Ga, In, TI

4. Оксиды и гидроксиды алюминия


$$\gamma$$
-Al₂O₃ $\xrightarrow{t^{\circ}}$ α -Al₂O₃ α -Al₂O₃ – корунд, d=4.0 г/см³ 2AlO(OH) = γ -Al₂O₃ + H₂O 400 °C d=3.5 г/см³


$$\alpha$$
-Al₂O₃ + H₂SO₄ \neq α -Al₂O₃ + KOH \neq

$$\alpha$$
-AlO(OH) диаспор α -Al(OH) $_3$ гидрогиллит γ -AlO(OH) бёмит γ -Al(OH) $_3$ гиббсит

5. Al_2O_3 образует сложные оксиды:

 $BeAl_2O_4$ — хризоберилл, $MgAl_2O_4$ — шпинель

Оксиды AI, Ga, In, TI

6. Амфотерность $AI(OH)_3$

2AICl₃ + 3Na₂CO₃ + 3H₂O = 2AI(OH)₃ + 3CO₂ + 6NaCl
AICl₃ + 3NH₃ + 3H₂O = AI(OH)₃ + 3NH₄Cl
2AI(OH)₃ + 3H₂SO₄ = Al₂(SO₄)₃ + 6H₂O
AI(OH)₃ + 3KOH + 2H₂O = K[AI(OH)₄(H₂O)₂]

$$\gamma$$
-Al₂O₃ + 2KOH + 7H₂O = 2K[AI(OH)₄(H₂O)₂]

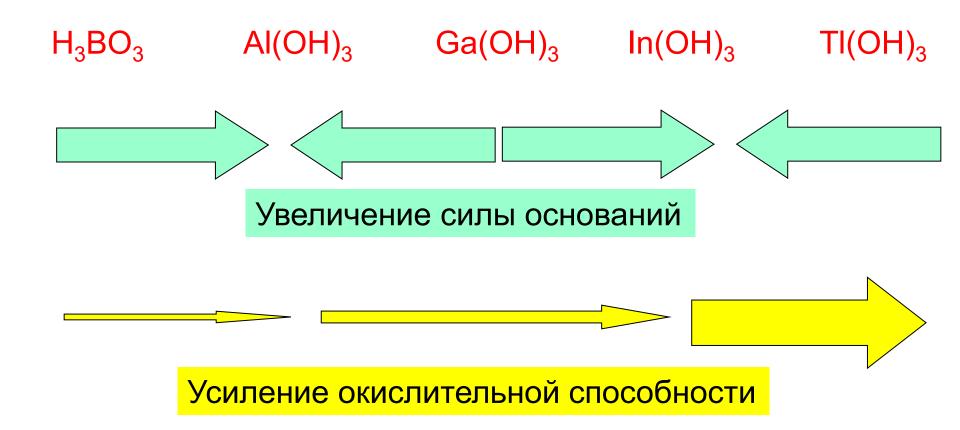
7. Гидроксиды Ga аналогичны по строению и свойствам гидроксидам AI

$$Ga(OH)_3$$
: pKa₁ = 6.8 pKb₁ = 6.9 "идеальная" амфотерность

Оксиды Al, Ga, In, Tl

8. $In(OH)_3$ – более сильное основание, чем $Al(OH)_3$, $Ga(OH)_3$ $2GaCl_3 + 3Na_2S + 6H_2O = 2Ga(OH)_3 \downarrow + 6NaCl + 3H_2S$ $2InCl_3 + 3Na_2S = In_2S_3 \downarrow + 6NaCl$

9. TI(OH)₃ крайне неустойчив


$$2TI(NO_3)_3 + 6KOH = TI_2O_3 + 6KNO_3 + 3H_2O$$

10. Только Tl_2O_3 – сильный окислитель Tl_2O_3 + 6HCl = 2TlCl↓ + 2Cl₂ + 3H₂O

11. Соединения TI(III) – сильные окислители в растворе

$$TI(NO_3)_3 + K_2SO_3 + H_2O = TINO_3 + K_2SO_4 + 2HNO_3$$

Сравнение кислот/гидроксидов B, AI, Ga, In, TI

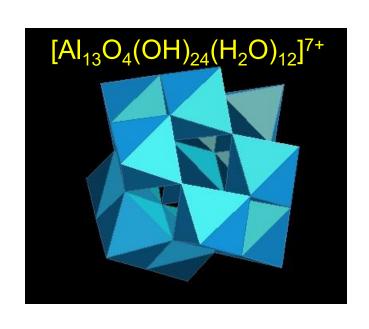
Немонотонность свойств как следствие особенностей электронной конфигурации

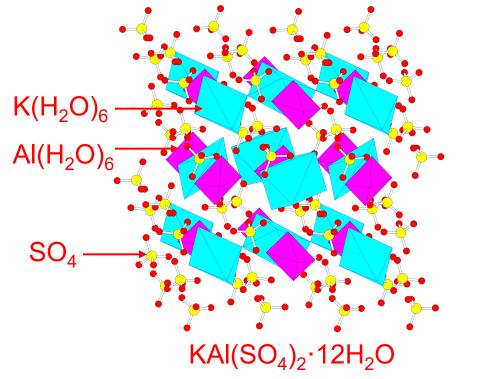
Аквакомплексы Al

 $AI(H_2O)_6^{3+} \Leftrightarrow [AI(H_2O)_5(OH)]^{2+} + H^+$

гидролиз

 $[AI(H_2O)_5(OH)]^{2+} \Leftrightarrow [(H_2O)_4AI(OH)_2AI(H_2O)_4]^{4+}$


димеризация


Также известны $[Al_3(OH)_6]^{3+}$, $[Al_6(OH)_{15}]^{3+}$, $[Al_8(OH)_{22}]^{2+}$,

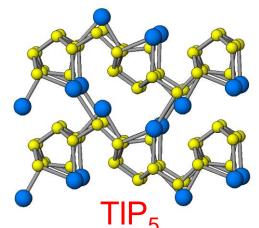
 $[AI_{13}(OH)_{32}]^{7+}$, $[AI_{13}(OH)_{35}]^{4+}$, $[AI_{13}O_4(OH)_{24}(H_2O)_{12}]^{7+}$

$$K_2SO_4 + AI_2(SO_4)_3 + 24H_2O = 2KAI(SO_4)_2 \cdot 12H_2O$$

квасцы

Полупроводниковые соединения А^{III}В^V

AIN	АІР	AIAs	AISb
вюртцит	сфалерит	сфалерит	сфалерит
5.9 эВ	2.4 эВ	2.1 эВ	1.5 эВ
GaN	GaP	GaAs	GaSb
вюртцит	сфалерит	сфалерит	сфалерит
3.5 эВ	2.2 эВ	1.4 эВ	0.4 эВ
InN	InP	InAs	InSb
вюртцит	сфалерит	сфалерит	сфалерит
2.1 эВ	1.4 эВ	0.4 эВ	0.2 эВ


Соединения TI(I)

1. Оксид и гидроксид TI(I) устойчивы

$$TI_2O_3 = TI_2O + O_2$$
 (t°) черный, т.пл. 300 °C $TI_2O + H_2O = 2TIOH$ желтый $TI_2SO_4 + Ba(OH)_2 = 2TIOH + BaSO_4 \downarrow$

2. ТІОН – сильное основание

TIOH +
$$CO_2$$
 = TIHCO₃
TIOH + HI = $TII \downarrow$ + H₂O
TINO₃ + Na₂S = $TI_2S \downarrow$ + NaNO₃

3. TI(I) не образует устойчивых комплексов

TICI +
$$NH_3 \cdot H_2O \neq$$

4. TI(I) окисляется в щелочной среде

$$2TINO_3 + 6KOH + 2CI_2 = TI_2O_3 + 4KCI + 2KNO_3 + 3H_2O$$

Стабилизация In(I)

 $In(OSO_2CF_3) \cdot [18]crown-6$

 $\{ln \cdot 2[15]crown-5\}^+$

Диагональное сходство

В периоде: электроотрицательность растет, радиус падает В группе: электроотрицательность падает, радиус растет

$Be \leftrightarrow Al$:

- 1. Пассивируются в HNO₃ (конц)
- 2. Растворяются в щелочах, выделяя Н2
- 3. Образуют амфотерные гидроксиды
- 4. Образуют прочные комплексы с F, O
- 5. Образуют летучие оксо-комплексы

Общие закономерности

- 1. В группе усиливается «металлический» характер элементов. Все элементы, кроме бора металлы. Химия бора существенно отличается от химии остальных элементов группы.
- 2. Бор образует большое число полиморфных модификаций.
- 3. Для всех элементов не характерно образование кратных связей. Бор образует электрон-дефицитные производные.
- 4. Вниз по группе уменьшается кислотность оксидов. Только бор образует кислородные кислоты. В ряду AI Ga In TI уменьшается устойчивость оксоанионов, увеличивается устойчивость катионов.
- 5. Вниз по группе увеличивается ионность оксидов и галогенидов. TI(+1) образует ионные галогениды аналогично щелочным металлам.
- 6. Только таллий проявляет сильные окислительные свойства в высшей степени окисления. Для него характерна основная степень окисления +1.