Вариант 2. Определение порядка скорости радикальной полимеризации по концентрации мономера.

<u>Цель работы:</u> Проверка уравнения скорости радикальной полимеризации. Определение порядка скорости реакции полимеризации метилметакрилата в толуоле по концентрации мономера в присутствии динитрила азо-*бис*-изомасляной кислоты.

<u>Реактивы:</u> Метилметакрилат (перегнанный), динитрил азо- δuc -изомасляной кислоты (перекристаллизованный), толуол, инертный газ (Ar или N_2).

<u>Приборы и посуда:</u> Термостат, катетометр, секундомер, дилатометр стеклянный на 10 мл, колбы конические на 30-50 мл (2 шт.), цилиндры мерные на 10 и 25 мл, воронка с оттянутым концом, часовое стекло, груша резиновая.

Методика работы.

Включают термостат, установив предварительно на контактном термометре температуру $60^{\circ}\mathrm{C}$.

Для определения порядка скорости реакции полимеризации по концентрации мономера необходимо приготовить реакционные смеси с постоянной концентрацией инициатора (ДАК) и разными концентрациями мономера (ММА). Сначала готовят по 20 мл растворов одинаковой концентрации (0.002 г/мл) инициатора в мономере и в растворителе – толуоле.

Необходимые для этого навески ДАК взвешивают на часовом стекле на аналитических весах и растворяют одну в ММА, другую в толуоле. Другие рабочие растворы готовят перед их измерением, смешивая в разных соотношениях исходные растворы ДАК в ММА и в толуоле согласно таблице:

	Объем в мл			
Концентрация мономера	исх. раствора ДАК в	исх. Раствора ДАК в		
в рабочем растворе, моль/л	MMA	толуоле		
	с=0.002 г/мл	с=0.002 г/мл		
	6	6		
	3	9		
	9	3		

Пустой чистый, сухой дилатометр закрепляют в лапке штатива (обязательно используя резиновую прокладку) так, чтобы шарик и нижняя часть (не более 1 см) трубки дилатометра были погружены в термостатирующую жидкость. Далее готовят катетометр к работе, заполняют дилатометр (предварительно продувают рабочий раствор инертным газом) и проводят измерения по методике, описанной выше. По завершении измерений реакционную смесь быстро выливают из дилатометра, выдавливая жидкость с помощью груши с капилляром, споласкивают дилатометр и капилляр растворителем, просушивают и готовят к измерениям с другим составом реакционной смеси.

Выполняют аналогичные измерения с растворами двух других концентраций мономера. После окончания всех измерений выливают содержимое дилатометра в банку для слива, моют дилатометр, капилляр и другую использовавшуюся посуду растворителем и сушат на воздушной сушилке.

Результаты измерений для трех концентраций мономера записывают в таблицу:

$[M_1] = , log[M_1] =$		$[M_2] = , log[M_2] =$			$[M_3] = ,log[M_3] =$			
t, мин	h(t),мм	h _i -h _o , мм	t, мин	h(t),мм	h _i -h _o , мм	t, мин	h(t),мм	h _i -h _o , мм
$V_1 = (\text{моль/(л c)})$			$V_2 = (\text{моль/(л·c}))$			$V_3 = (MOЛЬ/(Л°C))$		
$\log V_1 =$			$\log V_2 =$			$\log V_3 =$		

Обработка результатов.

В одних осях координат строят три графика зависимостей h_i - h_o (мм) от времени t (мин) для трех концентраций инициатора. Для каждой прямой находят тангенс угла наклона dh/dt (мм/мин), пересчитав полученные значения в (см/с), подставляют их в формулу (3) и рассчитывают скорости полимеризации в моль/(л·с).

Для определения порядка скорости реакции по концентрации мономера строят зависимость скорости полимеризации от концентрации мономера в логарифмических координатах, тангенс угла наклона этой прямой равен порядку реакции по концентрации мономера. При обработке результатов измерений использовать МНК.

Задание: Написать уравнение реакций всех элементарных стадий полимеризации ММА в присутствии ДАК. На основании полученного значения порядка скорости реакции по концентрации мономера сделать вывод об участии мономера в элементарных стадиях полимеризации.

Данный вариант задачи, как и предыдущий, могут быть выполнена по заданию преподавателя с заменой мономера на стирол, а инициатора на пероксид бензоила.