Инструкции

- В выданном вам комплекте объемом 50 страниц имеются 8 задач и периодическая таблица.
- На выполнение работы отводится **5** часов. **Начинайте** работу только после команды **СТАРТ**.
- Пользуйтесь только выданными вам ручкой и калькулятором.
- Все решения записывайте в соответствующие поля для ответов. Записи вне полей ответов не проверяются и не оцениваются. Используйте оборотную сторону выданных листов как черновик.
- Во всех расчетных вопросах приводите вычисления только в этом случае вы получите полный балл.
- Закончив работу, положите свои бумаги в конверт и не заклеивайте его.
- Вы должны прекратить работу сразу после команды СТОП.
- Не покидайте свое рабочее место без разрешения преподавателя.
- В любой момент Вы можете попросить официальную английскую версию заданий для прояснения непонятных формулировок.

Физические константы, формулы и уравнения

Постоянная Авогадро, $N_{\rm A} = 6.0221 \times 10^{23} \ {\rm моль}^{-1}$

Постоянная Больцмана, $k_{\rm B} = 1.3807 \times 10^{-23} \, \text{Дж} \cdot \text{K}^{-1}$

Универсальная газовая постоянная, $R = 8.3145 \, \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1} = 0.08205 \, \text{атм} \cdot \text{л} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$

Скорость света, $c = 2.9979 \times 10^8 \text{ м·c}^{-1}$

Постоянная Планка, $h = 6.6261 \times 10^{-34}$ Дж·с

Масса электрона, $m_e = 9.10938215 \times 10^{-31} \ \mathrm{kr}$

Стандартное давление, P = 1 бар = 10^5 Па

Атмосферное давление, $P_{\text{атм}} = 1.01325 \times 10^5 \,\text{Пa} = 760 \,\text{мм.рт.ст.} = 760 \,\text{Торр}$

Ноль шкалы Цельсия, 273.15 К

1 нанометр (μ м) = 10^{-9} м

1 пикометр (nм) = 10^{-12} м

Уравнение окружности, $x^2 + y^2 = r^2$

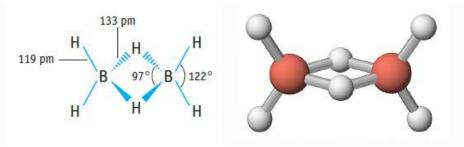
Площадь круга, πr^2

Длина окружности, $2\pi r$

Объем шара, $4\pi r^3/3$

Площадь сферы, $4\pi r^2$

Закон Брэгга-Вульфа: $\sin \theta = n\lambda/2d$


1	1 1.00794 H 0.28	2											13	14	15	16	17	18 2 4.00260 He 1.40
2	_	9.01218 Be		Ато	мный ном	мер——▶	1 1.00794 H 0.28		мная мас в ол элем е нтный рад	ента			5 10.811 B 0.89	6 12.011 C 0.77	7 14.0067 N 0.70	8 15.9994 O 0.66	9 18.9984 F 0.64	20.1797 Ne
_	11 22.9898 Na	12 24.3050 Mg	3	4	5	6	7	8	9	10	11	12	13 26.9815 Al	14 28.0855 Si 1.17	15 30.9738 P 1.10	16 32.066 S 1.04	17 35.4527 CI 0.99	18 39.948 Ar 1.80
			21	22	23	24	25	26	27	28	29	30		32	33	34	35	36
3	39.0983		44.9559				54.9381			58.6934	63.546	65.39 7	69.723		74.9216	78.96	79.904	83.80
4	K	Ca	Sc	Ti 1.46	V 1.33	Cr 1.25	Mn 1.37	Fe	Co 1.25	Ni 1.24	Cu 1.28	Zn 1.33	Ga 1.35	Ge 1.22	As 1.20	Se 1.18	Br 1.14	1.90
3	37	38	39								47	48		50	51	52	53	54
8	85.4678		88.9059		92.9064		(97.905)		102.906			112.41	114.818			127.60	126.904	131.29
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln l	Sn	Sb	Te		Xe
_	55	56	57-71	1.60 72	1.43 73	1.37 74	1.36 75	1.34 76	1.34 77	1.37 78	1.44 79	1.49 80	1.67 81	1.40 82	1.45 83	1.37 84	1.33 85	2.10 86
	132.905		31-11		180.948		186.207		192.217	195.08	196.967		204.383	207.2	208.980	(208.98)	(209.99)	(222.02)
	Cs		La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
6				1.59	1.43	1.37	1.37	1.35	1.36	1.38	1.44	1.50	1.70	1.76	1.55	1.67		2.20
			89-103		105									114	115	116	117	118
()	(223.02)		A			(263.12)		(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)	(292)	(294)	(294)
7	Fr	Ra 2.25	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	UUo
	•	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71		<u> </u>
		138.906		140.908		(144.91)		151.965		158.925		164.930						
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm				
		1.87		_				2.04									<u>: </u>	
		89 (227 03)	90 232 038	91 231.036	92 238 029	93 (237.05)	94 (244.06	95 (243.06)	96 (247.07)	97 (247 07)	98 (251.08)	99 (252.08)	100 (257 10)	101 (258 10)	102 (259.1)	103 (260.1)		
		(227.03) AC				, ,		(243.00) Am	_							, ,		
		1.88						1.73	1.74						''	<u> </u>		
							1.59											

ЗАДАЧА 1 7.5 балла

a–i	a–ii	a-iii	b	c	очки	Баллы
4	2	2	2	10	20	7.5

а. Гидриды и другие соединения бора

Химию гидридов бора впервые исследовал Альфред Сток (1876-1946). Он охарактеризовал более двадцати нейтральных молекулярных гидридов бора (боранов) с общей формулой B_xH_y . Самым простым гидридом бора является диборан B_2H_6 .

 ${f i.}$ Используя приведенные ниже данные, выведите молекулярные формулы двух других гидридов бора, ${f A}$ и ${f B}$.

Вещество	Агрегатное состояние (25°C, 1 бар)	Массовая доля бора, %	Молярная масса (г/моль)
A	жидкость	83.1	65.1
В	твердое вещество	88.5	122.2

A :	B:

іі. Вильям Липскомб получил Нобелевскую премию по химии в 1976 г. за «изучение структуры гидридов бора, проясняющее некоторые проблемы химической связи». Липскомб установил, что во всех гидридах бора каждый атом В образует обычную двухэлектронную связь хотя бы с одним атомом водорода (связь В–Н). Однако, встречаются и связи других типов. Липскомб разработал схему для описания структуры любого борана, в которой она характеризуется так называемым числом styx, где:

s =число мостиков B-H-B в молекуле,

t = число трехцентровых связей BBB в молекуле

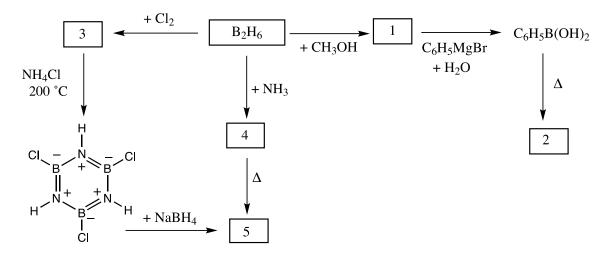
у = число двухцентровых связей В-В в молекуле,

x =число группировок BH_2 в молекуле.

Число styx для B_2H_6 равно 2002. Изобразите структурную формулу тетраборана B_4H_{10} , для которого число styx равно 4012.

ііі. Неизвестное соединение имеет молекулярную формулу B_4CCl_6O . Спектроскопические исследования показали, что в его молекуле имеются только два типа атомов B: с тетраэдрической и плоской тригональной геометрией, в соотношении 1:3, соответственно. Спектры также указывают на наличие тройной связи $C \equiv O$. Изобразите структурную формулу этого соединения.

Структура:	


b. Термохимия соединений бора	. термо	ХИМИХ	соединении	oopa
--------------------------------------	---------	-------	------------	------

Вычислите энтальпию диссоциации одинарной связи B-B в $B_2Cl_4(\Gamma)$, используя следующую информацию:

следующую информацию:	иации одинарной связи \mathbf{D} - \mathbf{D} в \mathbf{D}_2 С14 (1), используя
Связь	Энтальпия диссоциации связи (кДж/моль)
B–Cl	443
Cl-Cl	242
Соединение	$\Delta_{ m f} H^{\circ}$ (кДж/моль)
$BCl_3(\Gamma)$	-403
$B_2Cl_4(\Gamma)$	-489
Энтальпия диссоциации =	

с. Химия диборана

На схеме ниже имеются пять неизвестных веществ 1-5, каждое из которых содержит бор.

Установите структуры этих соединений, если известно следующее:

- а. Температура кипения вещества **5** равна 55 °C.
- b. Во всех реакциях использовались избытки реагентов.
- с. Понижение температуры замерзания раствора, содержащего $0.312~\rm F$ вещества **2** в $25.0~\rm F$ бензола равно $0.205~\rm ^{\circ}C$. Криоскопическая константа для бензола равна $5.12~\rm ^{\circ}C$ кг/моль.

Номер	Структурная формула соединения
1	
2	
3	
4	
5	

ЗАДАЧА 2 7.8 баллов

a–i	a–ii	b-i	b-ii	С	очки	баллы
4	4	6	1	5	20	7.8

Соединения платины(II), изомеры, транс-влияние.

Платина и другие платиновые металлы образуют плоскоквадратные комплексы; механизмы реакций с участием таких комплексов хорошо изучены. Например, известно, что реакции замещения в таких комплексах проходят с сохранением стереохимической конфигурации.

Также известно, что скорость замещения лиганда X лигандом Y зависит от природы лиганда, находящегося в *транс*-положении по отношению к X, то есть, от лиганда X. Это называется **транс-влиянием**. Ниже приведен ряд лигандов X; в этом ряду скорость реакции замещения лиганда, находящегося в *транс*-положении к X, убывает слева направо.

$$CN^- > H^- > NO_2^-$$
, $\Gamma > Br^-$, $Cl^- > пиридин, NH3, OH^-, H2O$

При синтезе *цис*- и *транс*- $Pt(NH_3)_2Cl_2$ следует учитывать *транс*-влияние. Синтез *цис*-изомера, который используется в химиотерапии рака и имеет тривиальное название цисплатин, включает реакцию K_2PtCl_4 с аммиаком.

$$\begin{bmatrix} CI & CI \\ Pt & CI \end{bmatrix}^{2-} \xrightarrow{NH_3} \begin{bmatrix} CI & CI \\ Pt & NH_3 \end{bmatrix}^{-} \xrightarrow{NH_3} CI \xrightarrow{NH_3} CI \xrightarrow{NH_3}$$

і. Изобразите структурные формулы всех возможных изомеров плоскоквадратных комплексов платины(II), имеющих состав $Pt(py)(NH_3)BrCl$ (где $py = пиридин, C_5H_5N$).

іі. Для каждого из стереоизомеров [$Pt(NH_3)(NO_2)Cl_2$] укажите способ его получения в водном растворе, используя в качестве реагентов $PtCl_4^{2-}$, NH_3 и NO_2^- . В каждом случае запишите схему синтеза с указанием промежуточных(ой) частиц(ы). Учтите, что реакции кинетически контролируются *транс*-влиянием.

цис-изомер:

 CI
 CI

 CI
 CI

b. Изучение кинетики реакций замещения с участием плоскоквадратных комплексов

Замещение лиганда X лигандом Y в плоскоквадратных комплексах

$$ML_3X + Y \rightarrow ML_3Y + X$$

может проходить по любому из двух описанных ниже механизмов или параллельно по обоим механизмам:

• *Прямое замещение:* Входящий лиганд Y присоединяется к центральному атому металла, образуя пяти-координационный комплекс, который затем отщепляет лиганд X и переходит в продукт ML_3Y .

$$ML_3X$$
 $\xrightarrow{+Y}$ $[ML_3XY]$ $\xrightarrow{-X}$ ML_3Y

** = скорость-лимитирующая стадия; константа скорости $k_{\rm Y}$

• Замещение с участием растворителя: Молекула растворителя S присоединяется к центральному атому с образованием ML_3XS , который затем отщепляет X с образованием ML_3S . Затем лиганд Y быстро замещает S с образованием ML_3Y .

$$ML_3X$$
 $\xrightarrow{+S}$ $[ML_3XS]$ $\xrightarrow{-X}$ $[ML_3S]$ $\xrightarrow{+Y}$ ML_3Y

** = скорость-лимитирующая стадия; константа скорости $k_{\rm S}$

Общее кинетическое уравнение всех реакций замещения такого типа имеет вид:

$$r = k_{\rm S}[\mathrm{ML}_3\mathrm{X}] + k_{\rm Y}[\mathrm{Y}][\mathrm{ML}_3\mathrm{X}]$$

Если $[Y] >> [ML_3X]$, то $r = k_{obs}[ML_3X]$.

Значения k_S и k_Y зависят от реагентов и растворителя.

Рассмотрим замещение лиганда $C\Gamma$ в плоскоквадратном комплексе платины(II), ML_2X_2 , пиридином (C_5H_5N). (Все сказанное выше о механизмах для ML_3X , применимо и к ML_2X_2 .)

Кинетические данные для реакции при 25 °C в метаноле, где концентрация

пиридина >> концентрации комплекса платины, приведены в таблице.

Концентрация пиридина (моль/л)	$k_{\mathrm{obs}}\ (\mathrm{c}^{-1})$
0.122	7.20×10^{-4}
0.061	3.45×10^{-4}
0.030	1.75×10^{-4}

і. Рассчитайте значения $k_{\rm S}$ и $k_{\rm Y}$, приведите размерности для каждой из констант скорости.

При желании можете воспользоваться сеткой.

1 1			

1.	_			

$$k_{\rm Y} =$$

іі. Если концентрация пиридина равна 0.10 моль/л, то какое одно из указанных ниже утверждений справедливо? (Поставьте галочку в соответствующей ячейке.)

Бо́льшая часть комплекса, содержащего пиридин, образуется по механизму «замещение с участием растворителя» $(k_{\rm S})$.
Бо́льшая часть комплекса, содержащего пиридин, образуется путем прямого замещения $(k_{ m Y})$
Сравнимые количества продукта образуются по каждому из механизмов.
Нельзя сделать вывод об относительных количествах продукта, образуемых по каждому из механизмов.

с. Средство для химиотерапии рака

Для более эффективной доставки цисплатина в раковые клетки комплекс платины(IV) присоединили к олигонуклеотиду, который был привит к наночастицам золота.

В эксперименте использовались наночастицы золота диаметром 13 нм. К каждой наночастице присоединено 90 олигонуклеотидных групп, 98% которых связаны с комплексом Pt(IV). Наночастицы находятся в растворе объемом 1.0 мл, в котором общая концентрация платины составляет 1.0 х 10^{-6} М. **Рассчитайте массы золота и платины в этом растворе**. (Плотность золота 19.3 г/см³)

 $m_{\rm Pt} =$ _____ $m_{\rm Au} =$ _____

Фамилия: Ustinovich

Код: RUS-4

Задача 3 7.5 балла

a	b	c-i	c-ii	очки	баллы
4	12	6	12	34	7.5

Тиомолибдат-ионы получаются из молибдат-иона ${\rm MoO_4}^{2^-}$ заменой атомов кислорода на серу. В природе тиомолибдаты можно найти, например, в глубоких водах Черного моря, где много сероводорода.

В разбавленных растворах, содержащих молибдат- и тиомолибдат-ионы, устанавливаются следующие равновесия:

$$MoS_4^{2^-} + H_2O(ж.)$$
 \longrightarrow $MoOS_3^{2^-} + H_2S(p-p)$ $K_1 = 1.3 \times 10^{-5}$ $MoO_2S_2^{2^-} + H_2O(ж.)$ \longrightarrow $MoO_2S_2^{2^-} + H_2S(p-p)$ $K_2 = 1.0 \times 10^{-5}$ $MoO_2S_2^{2^-} + H_2O(ж.)$ \longrightarrow $MoO_3S^{2^-} + H_2S(p-p)$ $K_3 = 1.6 \times 10^{-5}$ $MoO_3S^{2^-} + H_2O(ж.)$ \longrightarrow $MoO_4^{2^-} + H_2S(p-p)$ $K_4 = 6.5 \times 10^{-6}$

а. Равновесная концентрация MoO_4^{2-} равна 1×10^{-7} M, а равновесная концентрация растворенного H_2S равна 1×10^{-6} M. Найдите равновесную концентрацию MoS_4^{2-} .

 $[MoS_4^{2-}] =$ ______

Растворы, содержащие $MoO_2S_2^{2-}$, $MoOS_3^{2-}$ и MoS_4^{2-} , поглощают в видимой области при 395 и 468 нм. Остальные ионы и сероводород в видимой области практически не поглощают. Молярные коэффициенты поглощения (коэффициент экстинкции (ϵ)) даны в таблице:

	ε при 468 нм, л моль ⁻¹ см ⁻¹	ε при 395 нм, л моль ⁻¹ см ⁻¹
MoS_4^{2-}	11870	120
$MoOS_3^{2-}$	0	9030
$MoO_2S_2^{2-}$	0	3230

b. В растворе, <u>не находящемся в равновесии</u>, из молибденсодержащих частиц присутствуют только MoS_4^{2-} , $MoOS_3^{2-}$ и $MoO_2S_2^{2-}$. Общая концентрация Mo в этом растворе равна 6.0×10^{-6} M. Оптическая плотность этого раствора в кювете с длиной оптического пути 10.0 см составляет 0.365 при 468 нм и 0.213 при 395 нм. Рассчитайте концентрации всех молибденсодержащих частиц.

MoS₄²⁻: _____

MoO₂S₂²⁻: _____

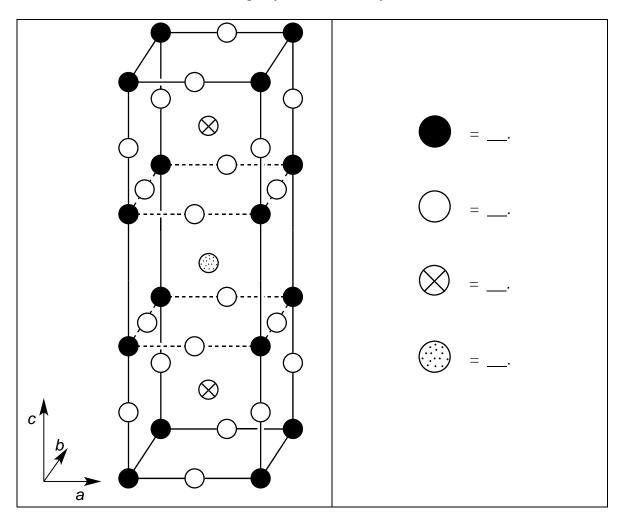
MoOS₃²⁻: _____

c. В растворе с начальной концентрацией $MoS_4^{\ 2-} 2.0 \times 10^{-7}\ M$ происходит гидролиз. Образующийся H_2S остается в растворе. Рассчитайте равновесные концентрации $H_2S(p-p)$ и всех ионов, содержащих молибден $(MoO_4^{\ 2-},MoO_3S^{2-},MoO_2S_2^{\ 2-},MoOS_3^{\ 2-}$ и $MoS_4^{\ 2-})$. Диссоциацией сероводорода на ионы пренебречь.

і. Запишите шесть независимых алгебраических уравнений, необходимых для расчета равновесных концентраций всех указанных выше частиц.

іі. Сделав разумные допущения, рассчитайте равновесные концентрации указанных выше частиц. Ответ запишите с точностью две значащие цифры.

H₂S _____ MoO₄²⁻ ____ MoO₃S²⁻____


 $MoO_2S_2^{2-}$ $MoOS_3^{2-}$ MoS_4^{2-} _____

ЗАДАЧА 4 7.8 балла

a	b	С	d-i	d-ii	d-iii	d-iv	e-i	e-ii	Очки	Баллы
12	14	10	4	2	2	4	4	8	60	7.8

В 1980-х годах был открыт класс керамических материалов, которые проявляют сверхпроводящие свойства при необычно высоких температурах (90 К и выше). Одним из таких материалов (обозначается как "YBCO") является соединение, в состав которого входят иттрий, барий, медь и кислород. Его идеализированная брутто-формула $YBa_2Cu_3O_7$, но реальный состав может изменяться в соответствии с формулой $YBa_2Cu_3O_7$ - δ (где $0 < \delta < 0.5$).

а. Ниже приведена одна элементарная ячейка идеализированного YBCO. Расшифруйте обозначение элементов в ячейке. Напротив каждого кружочка запишите символ элемента, которому он соответствует.

Это соединение имеет орторомбическую сингонию кристаллической решетки $(a \neq b \neq c)$, однако в достаточно хорошем приближении можно считать, что оно имеет тетрагональную сингонию с параметрами элементарной ячейки $a \approx b \approx (c/3)$.

b. Образец YBCO с $\delta=0.25$ исследовали методом рентгеновской дифракции с использованием $\mathrm{Cu}_{K\alpha}$ излучения (длина волны $\lambda=154.2$ пм). Дифракционный пик с наименьшим значением угла отражения наблюдается при значении $2\theta=7.450^\circ$. На основании этих данных рассчитайте значения параметров a и c элементарной ячейки, считая, что a=b=(c/3).

<i>a</i> =
c =

c. Рассчитайте плотность данного образца YBCO в г·см $^{-3}$. Если вы оказались бараном и не смогли рассчитать значения параметров ячейки в пункте (**b**), используйте следующие величины: a = 500 пм, c = 1500 пм.

Плотность = $\underline{\Gamma \text{ см}^{-3}}$.

d. При растворении образца YBCO в водном растворе HCl с концентрацией $1.0~\mathrm{M}$ наблюдается выделение O_2 . Полученный раствор прокипятили в течение $10~\mathrm{M}$ минут для удаления растворенных в нем газов, а затем охладили и добавили избыток раствора KI. Раствор приобрел желто-коричневую окраску. Этот раствор может быть оттитрован тиосульфатом с крахмалом в качестве индикатора. При растворении точно такого же образца YBCO в водном растворе, который содержит одновременно KI и HCl (оба в концентрации $1~\mathrm{M}$) в атмосфере аргона, окраска раствора также изменяется на желто-коричневую, однако выделения газа при этом не наблюдается.

i.	Запишите протекающе выделением	ей пр	юнном и раствој		• •	-	коэффициентами, ом растворе HCl с
ii.	Запишите протекающе среде после	ей пр		одейств	вии раствора		коэффициентами, ітком KI в кислой

Фамилия: Ustinovich Код: RUS-4
 ііі. Запишите в ионном виде уравнение реакции с коэффициентами, протекающей при титровании раствора, полученного в п. (іі), раствором тиосульфата (S₂O₃²⁻).
 іv. Запишите в ионном виде уравнение реакции с коэффициентами, протекающей при растворении твердого YBa₂Cu₃O₁-δ в водном растворе HCl, содержащем избыток KI, в атмосфере аргона.

е. Было взято два идентичных образца YBCO с неизвестным значением δ . Один из них растворили в 5 мл водного раствора HCl (1.0 M), при этом происходило выделение O_2 . После кипячения полученного раствора для удаления растворенных газов с последующим охлаждением к нему добавили 10 мл 0.7 M раствора KI в атмосфере аргона. На титрование полученного раствора было израсходовано $1.542 \cdot 10^{-4}$ моль тиосульфата.

Второй образец YBCO был растворен в 7 мл раствора, в котором одновременно находились KI $(1.0\ M)$ и HCl $(0.7\ M)$ в атмосфере аргона. На титрование полученного раствора было израсходовано $1.696\cdot 10^{-4}$ моль тиосульфата.

і. Рассчитайте	количество	вещества	Cu (B	молях)	В	каждом	ИЗ	исследуемых
образцов ҮВСС).							
n(Cu) =	MO	ль.						
іі. Рассчитайте з	значение δ в	этих образ	цах ҮВ	CO.				
		F	1					
<u>δ</u> =	<u>•</u>							

ЗАДАЧА 5 7.0 баллов

a-i	a-ii	b	С	d	e	f	Очки	Баллы
2	4	4	2	12	6	4	34	7.0

Дезоксирибонуклеиновая кислота (ДНК) — одна из важнейших молекул жизни. В этой задаче рассматриваются пути модификации структуры ДНК, как происходящие в природе, так и придуманные человеком.

- **а.** Рассмотрим пиримидиновые основания: цитозин (**C**) и тимин (**T**). При модификации одноцепочечной молекулы ДНК алкилируется атом азота N-3 (помечены звездочками на рис. ниже) только в одном из этих оснований.
- **і.** <u>Обведите кружком</u> обозначение того основания (С или Т), атом азота N-3 в котором более нуклеофилен и, следовательно, подвергается алкилированию.

$$\begin{array}{c|c} NH_2 & O \\ \\ N \\ N \\ O \\ C \end{array}$$

$$\begin{array}{c} Me \\ \\ N \\ N \\ O \\ H \end{array}$$

$$\begin{array}{c} NH_2 \\ NH \\ NH \\ O \\ H \end{array}$$

(i)			
	\mathbf{C}	T	

іі. <u>Приведите</u> две резонансные структуры молекулы, выбранной вами в ответе на вопрос **і**, которые обосновывают ваш выбор. Укажите все отличные от нуля формальные заряды на атомах в этих структурах.

(ii)		

b. Один из основных путей модификации ДНК в природе – метилирование гуанина (\mathbf{G}) по атому азота (помечен *) S-аденозилметионином (SAM). Изобразите структурные формулы обоих продуктов реакции между гуанином и SAM.

с. Одним из первых синтетических ДНК-алкилирующих агентов является иприт.

Сначала иприт во внутримолекулярной реакции образует высокореакционный интермедиат \mathbf{A} , который непосредственно алкилирует ДНК с образованием продукта, указанного на схеме выше. <u>Нарисуйте</u> структурную формулу реакционноспособного интермедиата \mathbf{A} .

Код: RUS-4

d. Азотистые аналоги иприта реагируют с ДНК таким же образом (смотри схему в пункте **c**). Активность азотистых аналогов иприта можно изменять, варьируя третий заместитель при атоме азота. Активность азотистых ипритов возрастает с увиличением нуклеофильности «центрального» атома азота. Выберите (укажите цифру) наиболее активный и наименее активный азотистый аналог иприта в каждой из приведенных ниже серий.

i.

Наиболее активный:

Наименее активный:

ii.

Наиболее активный:

Наименее активный:

iii.

Наиболее активный:

Наименее активный:

е. Природные соединения некоторых классов также могут выступать ДНК-алкилирующими агентами. Одним из таких классов являются дуокармицины (**duocarmycins**). Ниже приведен фрагмент асимметрического синтеза природного соединения (+)-**Duocarmycin SA**. <u>Нарисуйте</u> структурные формулы соединений **J** и **K**, которые можно выделить в индивидуальном виде.

$$H_3COOC$$
 $OODDOBN$
 $OODDOBN$

J	K

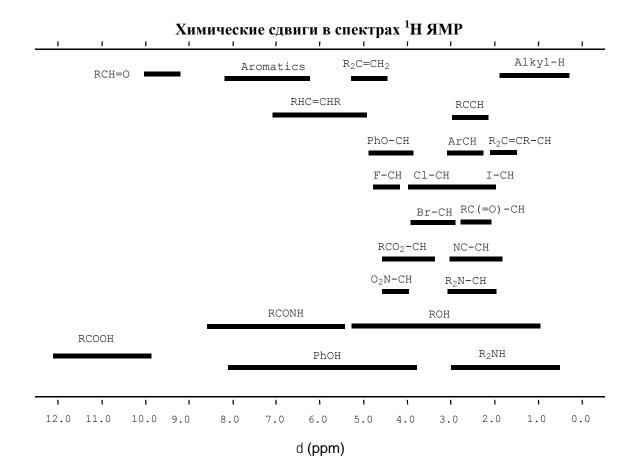
 ${f f.}$ Для того чтобы изучить, каким образом действуют дуокармицины, были синтезированы их аналоги. Одним из них является изображенный ниже тиоэфир (слева на схеме). ${f Hapucyŭte}$ структурную формулу реакционноспособного вещества ${f Z.}$

$$CI \xrightarrow{N} OBn \xrightarrow{NaHCO_3} Z \xrightarrow{N} OBn \xrightarrow{NaHCO_3} C_{21}H_{18}N_2O_4S$$

$$C_{21}H_{19}CIN_2O_4S$$

ЗАДАЧА 6 6.6 балла

a	b	С	d	Очки	Баллы
2	4	6	8	20	6.6


Препарат «Varenicline» разработан как средство борьбы с никотинозависимостью. Его можно синтезировать по схеме, представленной ниже. Все соединения, обозначенные буквами ($\mathbf{A} - \mathbf{H}$), являются нейтральными веществами, и их можно выделить в индивидуальном виде.

а. Нарисуйте структурную формулу соединения А.

A		

b. В спектре 1 Н-ЯМР соединения **B** присутствуют такие сигналы: δ 7.75 (синглет, 1H), 7.74 (дублет, 1H, J = 7.9 Γ ц), 7.50 (дублет, 1H, J = 7.1 Γ ц), 7.22 (мультиплет, 2 неэквивалентных H), 4.97 (триплет, 2H, J = 7.8 Γ ц), 4.85 (триплет, 2H, J = 7.8 Γ ц). Изобразите структурную формулу **B**, согласующуюся с этими данными.

В		

с. Изобразите структурные формулы соединений С, **D** и **F**.

С	D
F	

d. Изобразите структурные формулы реагентов X и Y, используемых для превращения вещества G в *varenicline*, и промежуточного продукта H, который можно выделить в индивидуальном виде.

X	Y
Н	

ЗАДАЧА 7 7.5 баллов

a	b	С	d	e	f	Очки	Баллы
9	15	8	6	8	6	52	7.5

Недавно был получен искусственный фермент, связывающий два субстрата, показанных ниже, и катализирующий реакцию Дильса-Альдера между ними.

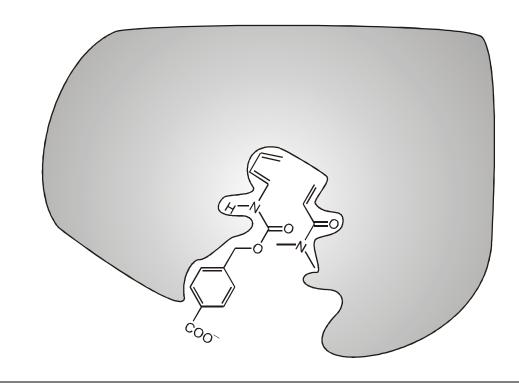
- **а.** В случае неферментативной реакции Дильса-Альдера между данными веществами (субстратами) возможно образование 8 продуктов.
- і. Изобразите структурные формулы **любых** двух продуктов, являющих **региоизомерами** по отношению друг к другу. Используйте клинья (—) и штрихи (——) для указания стереохимии обоих продуктов. Используйте **R** и **R'** для обозначения приведенных ниже фрагментов, которые не изменяются в ходе реакции.

Фамилия: Ustinovich Код: RUS-4 іі. Изобразите структурные формулы любых двух продуктов, являющихся **энантиомерами** по отношению друг к другу. Используйте клинья (—) и штрихи (.....) для указания стереохимии обоих продуктов. Используйте \mathbf{R} и $\mathbf{R'}$ для обозначения фрагментов, которые не изменяются в ходе реакции (так же как в $\Pi.(i)$ ііі. Изобразите структурные формулы любых двух продуктов, являющихся диастереомерами по отношению друг к другу. Используйте клинья (—) и штрихи (······) для указания стереохимии обоих продуктов. Используйте **R** и **R'** для обозначения фрагментов, которые не изменяются в ходе реакции (так же как в $\Pi.(i)$

b. Скорость и региоселективность реакции Дильса-Альдера зависят от того насколько подходят друг другу с точки зрения распределения электронной плотности, два вступающих в реакцию вещества. Ниже в ячейках приведены структуры диена и диенофила, рассмотренные в части (**a**).

i. Обведите кружком атом углерода диена, обладающий повышенной электронной плотностью. Рядом с диеном изобразите одну его резонансную структуру, подтверждающую ваш ответ. Укажите все отличные от нуля формальные заряды на атомах изображенной вами резонансной структуры.

іі. Обведите кружком атом углерода диенофила, обладающий пониженной электронной плотностью. Рядом с диенофилом изобразите одну его резонансную структуру, подтверждающую ваш ответ. Укажите все отличные от нуля формальные заряды на атомах изображенной вами резонансной структуры.


ііі. Основываясь на выводах, сделанных вами в пунктах (і) и (іі), предскажите региохимию продукта неферментативной реакции Дильса-Альдера между диеном и диенофилом. Изобразите этот продукт без учета стереохимии. Используйте **R** и **R**′ для обозначения фрагментов, которые не изменяются в ходе реакции (см. п. (а))

Фамилия: Ustinovich

Код: RUS-4

с. На рисунке ниже представлены диен и диенофил, связанные с активным центром фермента до начала реакции. Серая область показывает сечение фермента. Связанный диенофил располагается **по**д плоскостью сечения, а связанный диен — **на**д плоскостью сечения фермента.

Изобразите структуру продукта катализируемой ферментом реакции Дильса-Альдера. Для указания стереохимии продукта и неизменяемых фрагментов молекул используйте обозначения, принятые в п. (a).

d. Проанализируйте каждое из приведенных ниже утверждений о ферментах. Для каждого из утверждений укажите, является оно истинным или ложным (обведите кружком "Истина" или "Ложь").

i. Фермент более прочно связан с интермедиатом в переходном состоянии (фермент-субстратный комплекс), чем с исходными реагентами и продуктом реакции.

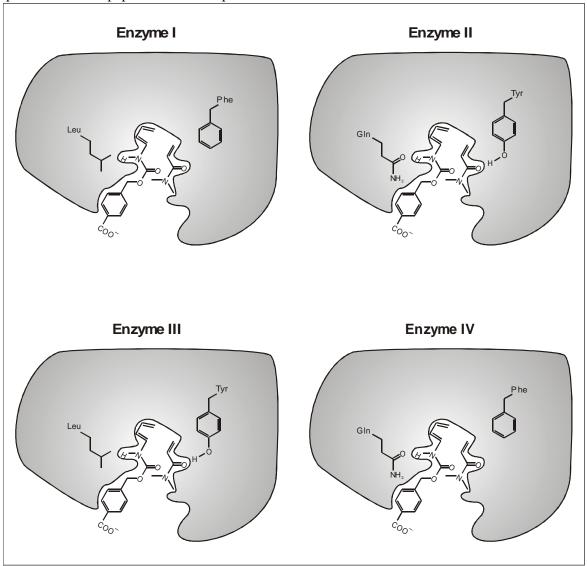
Истина

Ложь

іі. Ферменты сдвигают положение равновесия в сторону продуктов.

Истина

Ложь

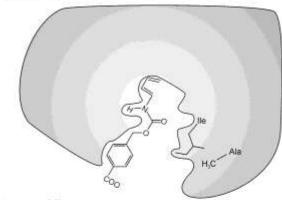

ііі. При ферментативном катализе энтропия активации реакции всегда выше по сравнению с аналогичной неферментативной реакцией.

Истина

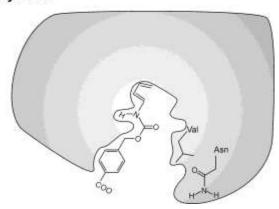
Ложь

е. В лаборатории была получена серия искусственных ферментов, различающихся каталитической активностью (ферменты (**Enzyme**) I, II, III и IV, см. ниже). На рисунках указаны аминокислоты, варьирующиеся в разных ферментах. Считайте, что изображенные на рисунке функциональные группы аминокислот располагаются в непосредственной близости от соотвествующих фрагметов диена и диенофила при образовании переходного состояния.

Из приведенных ниже ферментов выберите тот (запишите номер), каталитическое действие которого приведет к наибольшему ускорению по сравнению с неферментативной реакций.



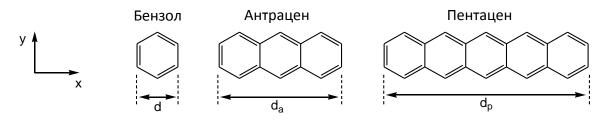
Номер фермента


f. Субстратная специфичность искусственных ферментов V и VI (см. ниже) была изучена с использованием диенофилов 1 - 6, приведеных ниже.

Диенофил ${f 1}$ реагировал наиболее быстро в случае фермента ${f V}$. В то же время, наибольшая скорость реакции в случае фермента ${f V}{f I}$ наблюдалась для другого диенофила. Из шести приведенных выше диенофилов выберите тот (запишите номер), реакция Дильса-Альдера с которым будет протекать наиболее быстро в случае катализа ферментом ${f V}{f I}$.

Enzyme V

Enzyme VI



Номер диенофила

Задача 8 8.3 балла

a	b-i	b-ii	b-iii	b-iv	b-v	c-i	c-ii	c-iii	Очки	Баллы
2	3	4	6	4	2	5	8	2	36	8.3

В задаче рассматриваются полициклические ароматические углеводороды (ПАУ). В линейных ПАУ центры бензольных колец находятся на одной прямой, а размер молекулы по одной из осей совпадает с размером бензольного кольца. Примерами таких углеводородов служат бензол, антрацен и пентацен. Их физические и химические свойства зависят от степени делокализации π -электронного облака в молекуле.

а. Ширина бензольного кольца составляет d = 240 пм. Рассчитайте ширину антрацена и пентацена, $d_{\rm a}$ и $d_{\rm p}$, соответственно.

Антрацен, $d_{\rm a}$ = Пентацен, $d_{\rm p}$ =

b. Предположим, что π -электроны в бензоле описываются моделью «частица в двумерном ящике». В этой модели сопряженные π -электроны рассматриваются как свободные частицы в бесконечно высокой прямоугольной яме (основание ямы лежит в плоскости x-y).

Для π -электронов в двумерном ящике с координатами x и y уровни энергии описываются формулой:

$$E_{n_x,n_y} = \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\right) \frac{h^2}{8m_e}$$

где n_x и n_y — квантовые числа (натуральные числа, которые независимо друг от друга могут принимать все значения от 1 до ∞), h — постоянная Планка, $m_{\rm e}$ — масса электрона, L_x и L_y — размеры ящика. Эту модель можно использовать для описания π -электронов во всех ПАУ.

і. Предположим, что бензольное кольцо имеет размер d в каждом из двух измерений, x и y. Выведите и запишите общую формулу для уровней энергии с квантовыми числами n_x и n_y в линейном ПАУ, содержащем w сочлененных бензольных колец размера d.

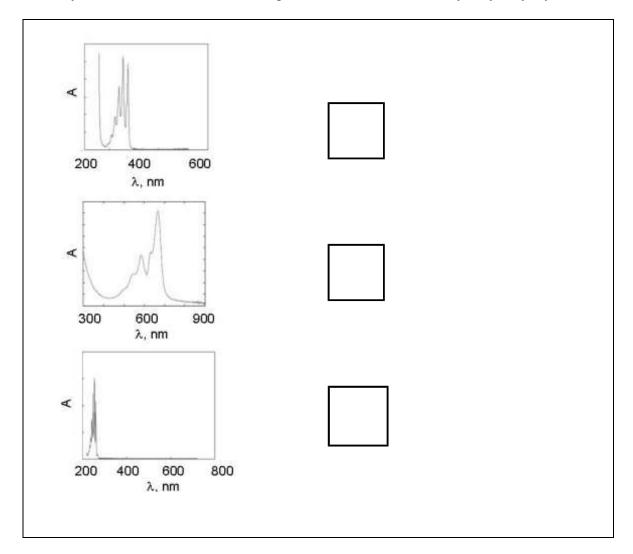
іі. Приведенная ниже диаграмма качественно правильно показывает расположение энергетических уровней π -электронов для пентацена. Приведены все заполненные уровни энергии и низший свободный. В скобках указаны значения квантовых чисел $(n_x; n_y)$.

Пентацен:

 $\begin{array}{c} (3;2) \\ \uparrow \downarrow (9;1) \\ \uparrow \downarrow (2;2) \\ \uparrow \downarrow (1;2) \\ \uparrow \downarrow (8;1) \\ \uparrow \downarrow (6;1) \\ \uparrow \downarrow (5;1) \\ \uparrow \downarrow (4;1) \\ \uparrow \downarrow (2;1) \\ \uparrow \downarrow (1;1) \end{array}$

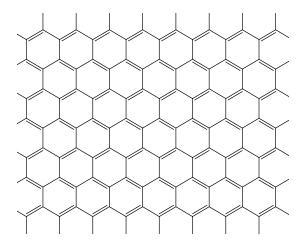
Ниже приведена схема энергетических уровней для антрацена. Обратите внимание, что некоторые уровни имеют одно и то же значение энергии. Заполните эту диаграмму с помощью стрелок «вверх» и «вниз», обозначающих электроны. В скобках укажите соответствующие значения квантовых чисел n_x , n_y для всех занятых уровней энергии и низшего свободного уровня.

Антрацен:			
(;)			
(; _)(_; _)			
(;)			
(;)			
(;)			
(;)			
(;)			
(;)			
(;)			
ііі . Используйте модель двумерного ящика для молекулы бензола. Составьте диаграмму уровней энергии (всех занятых и низшего свободного), обозначьте уровни квантовыми числами n_x , n_y и заполните диаграмму π -электронами. (Имейте в виду, что эта модель не дает точного описания всех уровней энергии бензола.)			


iv. Реакционная способность многих ПАУ обратно пропорциональна разности энергий ΔE между высшим занятым и низшим свободным уровнями энергии π -электронов. Рассчитайте значения ΔE (в Джоулях) для бензола, антрацена и пентацена. Для этого используйте ответы на вопросы ii) и iii) для антрацена и бензола, соответственно. Если вы баран и не смогли ответить на них, примите значение (2, 2) для высшего занятого уровня и (3, 2) для низшего вакантного уровня этих двух молекул (эти значения не обязательно совпадают с истинными).

Бензол $\Delta E =$ _____Дж Антрацен $\Delta E =$ _____Дж Пентацен $\Delta E =$ _____Дж Расставьте бензол (В), антрацен (А) и пентацен (Р) в порядке увеличения реакционной способности. Наименее активный -----> Самый активный

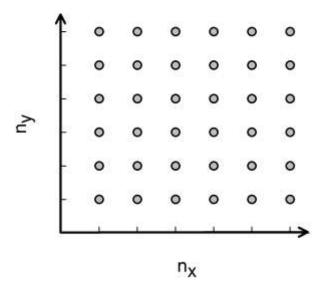
Фамилия: Ustinovich


Код: RUS-4

v. На рисунке приведены электронные спектры (оптическая плотность как функция длины волны) для бензола (**B**), антрацена (**A**) и пентацена (**P**). Основываясь на качественном понимании модели «частица в ящике», укажите какой спектр к какой молекуле относится. В каждый квадратик впишите соответствующую букву.

с. Графен – это двумерная решетка, состоящая из атомов углерода, соединенных в шестиугольники. Его можно рассматривать как предельный случай ПАУ с очень большими размерами в обоих измерениях. За открытие графена Нобелевскую премию в 2010 году получили Андрей Гейм и Константин Новоселов.

Рассмотрим лист графена с размерами $L_{x} = 25$ нм и $L_{y} = 25$ нм. Фрагмент листа приведен ниже.



і. Площадь углеродного шестиугольника примерно равна $52400~\text{пm}^2$. Рассчитайте общее число π -электронов в листе графена ($25~\text{нм} \times 25~\text{нм}$). Числом электронов на краях листа можно пренебречь.

Число π-электронов =

іі. π -Электроны в графене можно описать, используя модель «частица в двумерном ящике».

В системах с большим числом электронов трудно указать единственный высший заполненный уровень, так как довольно много уровней имеют очень близкую энергию. Все заполненные уровни с наивысшей энергией образуют так называемый уровень Ферми. В графене уровень Ферми характеризуется большим набором квантовых чисел n_x и n_y . Определите энергию уровня Ферми листа графена размером 25 нм × 25 нм. Учтите, что низший заполненный уровень имеет практически нулевую энергию по сравнению с уровнем Ферми. Для ответа на этот вопрос полезно рассмотреть квантовые состояния (n_x, n_y) как точки на двумерной решетке (см. ниже) и определить, какую область образуют точки, соответствующие занятым уровням. Число электронов в листе графена возьмите из ответа на вопрос (\mathbf{i}) или, если вы баран, используйте значение 1000 (которое отнюдь не обязано быть верным).

Фамилия: Ustinovich		Код: RUS-4			
Энергия уровня Ферми =	:				
ііі. Электропроводность графеноподобных материалов обратно пропорциональна разности энергий ΔE между высшим занятым и низшим свободным уровнями энергии π -электронов. Укажите, больше, меньше или равна электропроводность квадратного листа графена размером 25 нм \times 25 нм электропроводности листа графена 1 м \times 1 м при одной и той же температуре. Обведите правильный ответ.					
меньше	равна	больше			