Задача 13 (автор А.И.Жиров)

1. Кубические оксиды (ГЦК) могут иметь состав ЭО (тип NaCl), ЭО₂ (тип CaF₂), Э₃О₄ (тип шпинели MgAl₂O₄). ЭО₃ (тип ReO₃) — примитивная кубическая решетка.

Для ГЦК число формульных единиц, приходящихся на ячейку (n) равно 4. Тогда плотность оксида будет равна: $d = 4M/V \cdot N_A = 4M/(5,4223 \cdot 10^{-8})^3 \times \times 6,02 \cdot 10^{23} = 11,21 \ (г/см^3)$. $M = 268,98 \ (г/моль)$

 Оксид
 A
 Э

 ЭО
 253
 ?

 ЭО₂
 237
 Np

 Э₃О₄
 51,2
 (V-Cr не образуют оксидных фаз со структурой шпинели)

 (Э₂О₃
 110,5
 ?)

Таким образом, оксид I — NpO_2 . (Для этого элемента навески 0,25 г вполне реальны.)

2.

Состав шихты		ν , 10^4 моль	$v_I:v_i:v_j$	Δm, %	состав продукта	d, г/см ³
в-во	т, мг					
Li ₂ O	65	21,8			Li ₅ NpO ₆	
I	232	8,62	1:2,5	6,8	II	5,33
Li ₂ O ₂	21	4,58			Ba ₂ LiNpO ₆	
BaO_2	306	18,07	1:0,5:2	2,6	III	6,98
I	243	9,03				
Na_2O_2	36	4,62			Ba ₂ NaNpO ₆	
BaO_2	312	18,4	1:0,5:2	2,5	IV	6,61
I	248	9,22				

3. Ba₂NaNpO₆

По правилам Кемпбела степени окисления для Na — +1; Ba — +2; O — -2. Тогда степень окисления для Np — $(6\times2-1-2\times2=7)$ равна +7.

- 4. Соединения Np(VII) были впервые получены Николаем Николаевичем Кротом в соавторстве с Анной Дмитриевной Гельман и Виктором Ивановичем Спицыным. А.Д.Гельман и В.И.Спицыну в этом году исполнилось 100 лет со дня рождения. Это открытие было официально зарегистрировано в реестре открытий в СССР.
- 5. Первая работа была опубликована в 1967 году. (Нептуний был открыт в начале 40-х годов XX-го века. Весовые количества стали доступны только в 60-х годах.)

6.

$$\begin{aligned} \text{Li}_2\text{SO}_4 + \text{Ba}(\text{OH})_2 &= \text{BaSO}_4 \downarrow + 2\text{LiOH} \\ 2\text{LiOH} + \text{H}_2\text{O}_2 &= \text{Li}_2\text{O}_2 \cdot 2\text{H}_2\text{O} \downarrow \\ \text{Li}_2\text{O}_2 \cdot 2\text{H}_2\text{O} \rightarrow \text{Li}_2\text{O}_2 + 2\text{H}_2\text{O} \uparrow \\ 2\text{Li}_2\text{O}_2 \rightarrow 2\text{Li}_2\text{O} + \text{O}_2 \uparrow \end{aligned}$$

$$Ba(OH)_2 + H_2O_2 + 8H_2O = BaO_2 \cdot 8H_2O$$
↓
 $BaO_2 \cdot 8H_2O \rightarrow BaO_2 + 8H_2O$ ↑ (нагревание выше 200 °C)
 $2Na + O_2 \rightarrow Na_2O_2$ (сжигание натрия в кислороде)

7.

$$\begin{aligned} &10Li_{2}O+4NpO_{2}+3O_{2}=4Li_{5}NpO_{6}\\ &Li_{2}O_{2}+4BaO_{2}+2PuO_{2}=2Ba_{2}LiNpO_{6}+O_{2}\uparrow\\ &Na_{2}O_{2}+4BaO_{2}+2PuO_{2}=2Ba_{2}NaNpO_{6}+O_{2}\uparrow \end{aligned}$$