химфак МГУ, весна 2017

Строение кристаллических веществ и материалов

лекция № 7

Элементы теории дифракции. Рентгеноструктурный анализ

Дифрактограммы разных соединений с близкими параметрами элементарных ячеек

Wavelength: 1.54056

22.556, 10418 h, k, l = 0, 2, 2

Рентгеноструктурный анализ (РСА)

- Монокристалл, монохроматическое излучение, повороты кристалла на трехкружном или 4-кружном гониометре
- Регистрация интегральных интенсивностей рефлексов
- Определение координат атомов в элементарной ячейке кристалла (кристаллической структуры) и параметров тепловых колебаний атомов
- Кембриджский банк структурных данных CSD (>800 тыс. структур)
- Банк неорганических структурных данных ICSD (~250 тыс. структур)
- Банк кристаллических структур белков PDB (>100 тыс. структур)

Что такое обратная решетка («решетка рефлексов»)

$2d_{hkl}\sin\theta = \lambda$

Чем меньше длина волны λ , тем больше отражающих систем плоскостей $\{d_{hkl}\}$, т.е. рефлексов (но тем ниже их интенсивности $\{I_{hkl}\}$)

[u v w]: векторы в решетке

(h k l): плоскости в решетке

Индексы (hkl) рефлексов {I_{hkl}} можно считать координатами узлов в некоторой абстрактной ОБРАТНОЙ РЕШЕТКЕ.
Это позволяет наглядно представить все узлы, попадающие в «сферу» рефлексов, которые могут проявиться при данной длине волны λ

Рентгенограмма монокристалла $SeGe_2O_4$ (Mo K α + K β)

В узлах обратной решетки располагаются «пятна» рефлексов, которые имеют разную интенсивность: **«непериодическая решетка»**

Дифракция электронов (λ~0.05 Å) на монокристалле

Обратная решетка: построение

$$2\sin\theta /\lambda = s_{hkl} = 1/d_{hkl}$$

 $[\lambda(CuK\alpha)/\lambda(MoK\alpha)]^3 = (1.54/0.71)^3 \approx 10.2$

Систематические погасания рефлексов

Открытые элементы симметрии: систематические погасания рефлексов

пример: ось $2_1 \parallel a$

 $2d_{hkl}sin \ \theta = \lambda$

рефлекс 100: разность хода лучей от соседних плоскостей на расстоянии a, $\delta=2AC=\lambda$ (см. вывод ф-лы Брегга), но из-за оси 2_1 есть атомные плоскости на расстоянии a/2с $\delta=2AC'=\lambda/2$ – рефлекс 100 погашен Для отражений 200 (другой угол θ !) от плоскостей, расположенных через a, $\delta=2\lambda$, а если через a/2- то $\delta=\lambda$, т.е. рефлекс 200 не погашен. В общем случае для оси $2_1 \parallel a$ ненулевую интенсивность могут иметь только рефлексы h00 c h=2n

Правила погасания рефлексов: связь с открытыми элементами симметрии

Центрированные решетки: рефлексы общего индекса hkl (h,k,l≠0) А-решетка: *k*+*l*=2*n*, B: *h*+*l*=2*n*; *C*: *h*+*k*=2*n*; *I*: *h*+*k*+*l*=2*n*; *F*: *h*+*k*=2*n*, *h*+*l*=2*n*, *k*+*l*=2*n* (все четные или все нечетные), «гексагон. **R**»: −**h**+*k*+*l*=3**n**

Плоскости скользящего отражения:

a(xz): h0l, h=2n; a(xy): hk0, h=2n; n(yz): 0kl, k+l=2n, d(yz): 0kl, k+l=4n, и т.д. Винтовые оси:

2₁ // *x*: h00, h=2n, 2₁ // *y*: 0k0, k=2n, 2₁ // *z*: 00l, l=2n; 3₁(3₂) // *z*: 00l, l=3n, 4₁(4₃) // *z*: 00l, l=4n; 4₂ // *z*: 00l, l=2n; 6₁(6₅) // *z*: 00l, l=6n; 6₂(6₄): 00l, l=3n, 6₃ // *z*: 00l. l=2n. (Порай-Кошиц, гл. 3, 2)

Пример 1: симметрия дифракционной картины (класс Лауэ) 2/m, рефлексы *hkl* не погашены, *h0l: l=2n*, *0k0: k=2n* \rightarrow простр. группа $P2_1/c$

Пример 2: то же, но *hkl* и *h0l* не погашены, *0k0: k=2n* \rightarrow пространственные группы **P2**₁ *или* **P2**₁/m

122 набора систематических погасаний: «дифракционные группы». Из них однозначно определяются 59 пространственных групп

Дифракционная картина и симметрия кристалла

 $I(h k l) \approx I(\bar{h} \bar{k} \bar{l})$ закон Фриделя

Если пространственная группа содержит центры симметрии, закон Фриделя выполняется точно: $\mathbf{I}_{hkl} = \mathbf{I}_{\bar{h}\bar{k}} \bar{\mathbf{I}}$

Точечная симметрия дифракционной картины: 11 центросимметричных кристаллографических групп (*классы Лауэ*) 1, 2/m, mmm, 3, 3m, 4/m, 4/mmm, 6/m, 6/mmm, m 3, m 3 m

Нарушение закона Фриделя из-за аномального рассеяния на достаточно тяжелых атомах (~ от 3р-элементов) позволяют экспериментально определить абсолютную конфигурацию хиральных молекул и (или) кристаллических структур (Порай-Кошиц, гл. 4, 2; гл. 5, 3)

Рассеяние монохроматического излучения на атоме и на кристалле

Рассеяние плоских монохроматических волн сферически симметричным неподвижным атомом

интенсивность рассеяния падает

F(S) – действительная скалярная функция

с увеличением угла 20 (рентген)

сферическая симметрия:

Атомные факторы рассеяния f(S/4 π) или f(sin θ/λ)

Рассеяние плоских монохроматических волн монокристаллом с одним атомом в ячейке

 $2d_{hkl}\sin\theta = \lambda$

Рассеяние плоских монохроматических волн монокристаллом с **двумя** разными атомами в ячейке: интерференция от **двух** систем атомных плоскостей

Рассеивающие способности атомов могут сильно различаться

Разность фаз $\Delta \phi$ влияет на интенсивность рефлекса I_{hkl}, но сама она экспериментально не регистрируется

Кристаллическая структура медного купороса $CuSO_4 \cdot 5H_2O$

Представим эту структуру так:

Рассеивающая единица – элементарная ячейка. Все ячейки рассеивают когерентно (в фазе)

«Сила» рассеяния элементарной ячейкой: *структурный фактор* |F_{hkl}| или |F_{hkl}|² I_{hkl}=к|F_{hkl}|²

Комплексная амплитуда рассеяния: *структурная амплитуда* F_{hkl}

У каждого рефлекса своя структурная амплитуда F_{hkl}, которая определяется природой атомов, составляющих кристалл, и их расположением в элементарной ячейке

Рассеяние на кристалле

Дискретные рефлексы. Их положение задает <mark>вектор обратной решетки s_{hkl}=2sinθ/λ=1/d_{hkl} (h,k,l – индексы рефлексов)</mark>

$$s_{hkl} = ha^* + kb^* + lc^*$$

 $|\mathbf{I}_{hkl} \sim |\mathbf{F}_{hkl}|^2$

а*, b*, c* - параметры обратной решетки:

$$F_{hkl} = A \iint_{\text{по эл.}} \rho_{\text{эл}}(xyz) exp[2\pi i(hx/a+ky/b+lz/c)]dxdydz$$

Если
$$\rho_{\mathfrak{I}}(xyz) = \sum_{\text{по ячейке}} \rho_{at}(x_jy_jz_j)$$
, то

Прямая задача теории рассеяния

 $F_{hkl} = \sum_{j} f_{j} \exp[2\pi i(hx_{j}+ky_{j}+lz_{j})]$ структурная амплитуда ($x_{j}, y_{j}, z_{j} - \phi$ ракционные координаты атомов, f_{i} – атомные факторы рассеяния)

Обратная задача теории рассеяния (решается в РСА)

 $\rho_{\mathfrak{I}\mathfrak{I}\mathfrak{I}}(\mathbf{x}\mathbf{y}\mathbf{z}) \sim \Sigma \mathbf{F}_{\mathsf{hkl}} \exp[-2\pi i(\mathbf{h}\mathbf{x}+\mathbf{k}\mathbf{y}+\mathbf{l}\mathbf{z})]$ обратное преобразование Фурье $\mathbf{I}_{\mathsf{hkl}} \sim |\mathbf{F}_{\mathsf{hkl}}|^2 \rightarrow \mathbf{F}_{\mathsf{hkl}} = |\mathbf{F}_{\mathsf{hkl}}| \exp i\varphi_{\mathsf{hkl}}$: проблема фаз

Получение дифрактометрических данных в рентгеноструктурном анализе

Монокристальный дифрактометр SMART (ИНЭОС РАН)

Держатель, игла и монокристалл

Кристалл под микроскопом

Центрирование в рентгеновском пучке

Общий вид гониометра

коллиматор пучка, 2 - держатель образца,
 ССD-детектор, 4 - система охлаждения (120 К)

Последовательные "кадры" 2D-детектора

EVISYART: Bruker Molecular Analysis Research Tool VS.054 Copyr, 1997-98 Bru.

🚝 SMART: Bruker Molecular Analysis Research Tool ¥5.054 Copyr. 1997-98 Bru... 📒 🔲 🗙

Ele Edit Grystal Acquire Analyze Goniom Detector Level User Help

ReSHARE Brunker Mekender Analyzie Besenet Ind VSASE (2009) 1974-99 (bru)

🖀 SMART: Bruker Molecular Analysis Research Tool ¥5.054 Copyr. 1997-98 Bru... 📰 🗙

Ele Edit Grystal Acquire Analyze Goniom Detector Level User Help

Этапы обработки массива дифракционных данных

массив интенсивностей $\{I(2\theta_m, \phi_m, \kappa_m)\}$ индицирование массив рефлексов {**I**_{hkl}}, параметры ячейки определение пространственной группы $\{|F_{hkl}|^2\}$, a, b, c, α , β , γ , V, пр. группа, пред. состав оценка фаз рефлексов $\{\phi_{hkl}\}$ то же + пробные амплитуды $\{F_{hkl}\}$ расшифровка стр-ры серия фурье-преобразований то же + пробные координаты атомов $\{x_i/a, y_i/b, z_i/c\}$ уточнение МНК наборы {x_i/a, y_i/b, z_i/c, B_{ij}}, { $F_{hkl}^{_{3KC\Pi}}$ } и { $F_{hkl}^{_{pac4.}}$ }, R-фактор

Выявление атомов в фурье-синтезе

L-пролин

Положения Н из разностного фурье-синтеза

Рис. 240

Набор сечений разностных синтезов, по которому локализованы атомы водорода (изолинии проведены в произвольной шкале) в структуре парабромбензилового эфира 2*H*-тиопирина (Smith e. a., 1972)

Современное представление на экране компьютера

ρ**(xyz)**

δρ(xyz)

Температурный фактор

 F_{hkl} ~ $\Sigma_j f_j exp[2\pi i(hx_j+ky_j+lz_j)]$ структурная амплитуда

При увеличении температуры электронная плотность атомов размывается в пространстве из-за теплового движения; их рассеивающая способность снижается

$$f_{j} = f_{j}^{(0)} \tau_{j} = f_{j}^{(0)} e^{-u_{j}^{2}S^{2}}$$

где $f_j^{(0)}$ – рассеивающая способность неподвижного атома, $\tau_j = \exp[-B_j(\sin\theta/\lambda)^2]$ (<1) – температурный фактор, B_j – параметр смещения в изотропном приближении $B_i = 8\pi^2 u_i^2 \approx 78.9 u_i^2$

тепловой параметр в анизотропном гармоническом приближении: ||B_{ij}|| – симметричный тензор 2-го ранга (6 варьируемых параметров). Ангармоническое приближение – симметричный тензор n-го ранга, (15 пар-ров, ...)

Бис-циклопентадиенил-µ-ацетилен-диникель

R-фактор (фактор расходимости):

$$R = \frac{\sum_{hkl} |(|F_{hkl}^{Bbiy}| - |F_{hkl}^{\Im KC\Pi.}|)|}{\sum_{hkl} |F_{hkl}^{\Im KC\Pi.}|}$$

R-фактор показывает, как уточняемая модель структуры кристалла согласуется с массивом дифракционных данных. Обычно в PCA R<0.10; структура с R≤0.05 считается надежно установленной. В современном PCA погрешности расстояний между легкими атомами (C-C, C-N и др.) ≤ 0.01 Å, валентных углов (C-C-C и др.) ≤ 1⁰. Главный результат РСА – атомная структура кристалла: расположение атомов в симметрически независимой части его элементарной ячейки и их тепловые параметры

Pmm2

Длины связей, валентные углы и т.д рассчитывают из координат атомов и параметров ячейки. Отсюда же рассчитывают набор {F_{hkl}^{выч.}} Модельный пример: вещество X, a =..., b=..., c=..., α=.90°, β=90°, γ=90°, Z=..., группа Рmm2, 5 атомов в независимой части ячейки

Текстовый файл name.hkl

h	k		интенс.	фон	
0	-1	0	0.10	0.10	
0	-3	0	-0.80	1.10	
0	-4	0 2	2326.90	25.70	
0	-5	0	2.40	2.30	
0	-6	0	2.20	2.90	0
0	-7	0	0.70	2.90	4
0	-8	0	932.00	21.00	^
0	-9	0	3.60	3.80	70
0	-10	0	1275.30	<u>25.60</u>	
0	-11	0	8.30	3.80	
0	-12	0	1392.50	<u> 26.70</u>	
0	-13	0	7.50	3.50	
0	-14	0	256.80	14.10	
0	-15	0	17.80	6.00	
0	-16	0	1457.90	35.90	
0	-17	0	29.80	7.80	
0	-18	0	665.50	26.80	
0	-19	0	33.20	8.30	
0	-20	0	768.40	29.90	
0	-21	0	22.00	7.20	
0	-22	0	424.50	21.10	
0	-23	0	5.50	4.80	

Текстовый файл name.ins

```
TITL vas3 in Iba2
              CELL 0.71073 11.6820 34.4430 7.0970
              90.000 90.000 90.000
              ZERR 8.00 0.0112 0.0297 0.0107
              0.000 0.000 0.000
SYMM 0.5+X, 0.5-Y, Z
              SYMM 0.5-X, 0.5+Y, Z
              UNIT 112 80 24 32
             Место для координат атомов и другой
                   структурной информации
                    x/a y/b z/c U_{ii} \dots
```

END

Программа Olex: расшифровка и уточнение структур в РСА

Представление данных РСА в химической статье

- 1. параметры ячейки, пр. группа, кол-во I(hkl), Z, R-фактор
- 2. краткое описание исследования структуры
- 3. краткое обсуждение структуры
- 4. основные длины связей и валентные углы
- 5. координаты атомов в ячейке (депонируются в банке данных)
- 6. рисунок молекулы или (и) проекции элементарной ячейки

Координаты атомов x/a, y/b, z/c в ячейке и их температурные параметры

ATOM	ло ре x	2Зультатам высон	коуглового уточн	ения (для ато	омов Н приведе	ны изотропные	температурные	GENTOPES	
	<u> </u>							1/ 540	
Fe	50042(3)	28011(1)	1/2	0,512(3)	0,572(4)	0,493(4)	-0,033(4)	0	
Na(1)	1/2	0	24574(2)	1,03(1)	1,17(1)	0,85(1)	-0,21(1)	0	
Ňa (2)	0	0	37804(2)	1,13(1)	1,37(1)	1,13(1)	0,09 (2)	0	
Ñ.	72576(9)	35815(5)	1/2	0,77(1)	0,84(1)	1,08(1)	-0,15(1)	0 7	
N(1)	10045(13)	12346(7)	$1/_{2}$	1,19(2)	1,47 (2)	1,63(2)	-0,60(1)	0	
N(2)	66729(9)	11962(5)	64190(3)	1,38(1) ^	1,59(1)	1,27(1)	0,22(1)	-0,05(1)	
N.(3)	24993 (10)	40525(6)	35586(3)	1,54(1)	2,14(2)	1,13(1)	0,47(1)	-0,22(1)	1
2	88542(13)	40547 (8)	1/2	1,08(2)	1,70(2)	2,92(3)	-0,70(1)	0	
Ďw Č	17203(9)	12260(5)	26867(4)	1,51(1)	1,63(1)	1,62(1)	0,13(1)	-0,20(1)	
C(1)	25072(11)	18255(6)	1/2	0,88(1)	1,03(1)	0,97(1)	-0,24(1)	0	
G (2)	60735(8)	17963(4)	58784(3)	0,91(1)	1,03(1)	0,87(1)	0,07(1)	-0,02(1)	
D(3)	34572(8)	36160(4)	41098(3)	0,98(1)	1,17(1)	0,79(1)	0,13(1)	-0,05(1)	
H(1)	1823	1993	2895	4,5					
I(2)	682	1283	2221	5,0					

Современная форма: crystallography information file (*.cif)

ражениям.

Кристалл I ромбический, при 153 К a = 6,1460(6), b = 11,855(1), c = 15,544(1) Å, Z = 4, пр. гр. *Рппт*, анион в частном положении на плоскости m.

Всего измерено с переменной скоростью сканирования от 1,5 до

Полная информация о кристаллической структуре: crystallography information file (*.cif)

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/n' _symmetry_space_group_name_Hall '-P 2yn'

```
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'
```

_cell_length_a _cell_length_b _cell_length_c _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_volume _cell_formula_units_Z 3.86640(10) 16.5115(2) 11.1393(2) 90.00 94.0035(8) 90.00 709.40(2) 2

Положения атомов в элементарной ячейке кристалла: фракционные координаты в симметрически независимой части ячейки

V.G.Nenajdenko, et al., Angew. Chem. Int. Ed., 2006, 45, 7367:

loop_			С
_atom_site_labe	I		
_atom_site_type	_symbol		
atom site fract	t X		
atom site fract	_ t v		
atom site fract	 t Z		
		,	53
x/a	y/ b	<i>z/c</i>	S2 54
S1 S 0.94498(5)	0.271159(11)	-0.058458(17)	
S2 S 0.82094(5)	0.302381(11)	0.220396(17)	
S3 S 0.50706(6)	0.448621(12)	0.372048(17)	"S1
S4 S 0.18694(5)	0.626066(12)	0.305399(17)	
C1 C 0.68218(19)	0.41603(4)	-0.08675(6)	••••
C2 C 0.68130(19)	0.39919(4)	0.03801(6)	•
C3 C 0.57806(19)	0.44130(4)	0.14081(6)	
C4 C 0.42654(19)	0.51790(4)	0.16133(6)	программы визуализации
C5 C 0.8172(2)	0.35326(4)	-0.15073(7)	структур
C6 C 0.8147(2)	0.32353(4)	0.06676(7)	1. Diamond (неорганика)
C7 C 0.6376(2)	0.39732(4)	0.24550(7)	2. Mercury (молекулярные
C8 C 0.3728(2)	0.53106(4)	0.28098(6)	кристаллы)