Радиационно-химический синтез теломеров тетрафторэтилена и их использование для создания тонких защитных фторполимерных покрытий

Д. П. Кирюхин, И. П. Ким, В. М. Бузник, Л. Н. Игнатьева, В. Г. Курявый, С. Г. Сахаров

ДМИТРИЙ ПАВЛОВИЧ КИРЮХИН — доктор химических наук, заведующий лабораторией радиационной химии и криохимии Института проблем химической физики РАН. Область научных интересов: радиационная химия, криохимия, синтез и использование фторполимеров. E-mail kir@icp.ac.ru

ИДА ПАВЛОВНА КИМ — кандидат химических наук, старший научный сотрудник лаборатории радиационной химии и криохимии Института проблем химической физики РАН. Область научных интересов: радиационная химия, криохимия, синтез и использование фторполимеров. E-mail ipkim@icp.ac.ru

ВЯЧЕСЛАВ МИХАЙЛОВИЧ БУЗНИК — доктор химических наук, академик, главный научный сотрудник Института металлургии и материаловедения им. А.А. Байкова РАН. Область научных интересов: неорганические материалы, фторполимерное материаловедение, радиоспектроскопия твердого тела, инновационная реализация научно-технических разработок.

ЛИДИЯ НИКОЛАЕВНА ИГНАТЬЕВА – доктор химических наук, заведующая лабораторией фторидных материалов Института химии ДВО РАН. Область научных интересов: фторидные кристаллические и некристаллические материалы, полимеры, строение, колебательная спектроскопия, квантовая химия.

ВАЛЕРИЙ ГЕОРГИЕВИЧ КУРЯВЫЙ – кандидат химических наук, старший научный сотрудник лаборатории фторидных материалов Института химии ДВО РАН. Область научных интересов: кристаллические и некристаллические материалы, полимеры, морфология, ЭПР спектроскопия, микроскопия.

СЕРГЕЙ ГЕОРГИЕВИЧ САХАРОВ — доктор химических наук, ведущий научный сотрудник Института общей и неорганической химии им. Н.С.Курнакова РАН. Область научных интересов: строение, изомеризация и динамическое поведение комплексов переходных металлов, ЯМР спектроскопия высокого разрешения.

142432, Черноголовка, Московская область, просп. Акад. Семёнова, 1, Институт проблем химической физики РАН.

119361 Москва, Ленинский просп., 49, Институт металлургии и материаловедения им. А.А. Байкова РАН.

690022 Владивосток, просп. Столетия, 159, Институт химии ДВО РАН.

119991 Москва, Ленинский просп., 31, Институт общей и неорганической химии им. Н.С. Курнакова РАН.

Политетрафторэтилен, обладая комплексом ценных свойств, имеет некоторые недостатки, ограничивающие его применение, в частности, это нерастворимость практически во всех известных растворителях, трудность переработки, слабая адгезия, сложность нанесения тонких регулируемых покрытий. Эти недостатки отчасти связаны с высокой молекулярной массой политетрафторэтилена. Фторполимерные покрытия обычно наносят из суспензий, содержащих, как правило, эмульгаторы, стабилизаторы, остатки которых загрязняют покрытия и ухудшают их свойства. Получить бездефектное покрытие бывает трудно, необходимо нанесение многих последовательных слоев. Данная проблема, в частности, создание тонких фторполимерных покрытий, может быть решена с использованием низкомолекулярных фторсодержащих полимеров. Синтез таких полимеров может быть осуществлен методом теломеризации (напомним: это особый вид полимеризации, происходящей в присутствии переносчиков цепи; в результате образуется смесь гомологических низкомолекулярных соединений (теломеров) со степенью полимеризации ≤10—20). Использование инициирующего γ-излучения позволяет осуществить процесс теломеризации без введения в систему специальных веществ-инициаторов реакции. В этом случае инициатором реакции являются образующиеся под действием излучения радикалы растворителя, а в роли передатчика цепи (телогена) могут выступать молекулы растворителя. Кроме того, радиационно-химический синтез теломеров имеет то преимущество, что скорость инициирования реакции не зависит от температуры, а отсутствие в реакционной системе (помимо веществинициаторов) эмульгаторов и катализаторов обеспечивает получение высокочистых продуктов по экологичной технологии. Методы достаточно технологичны в отношении получения продуктов и нанесения тонких покрытий. Жидкофазное состояние синтезированных теломерных продуктов позволяет использовать традиционные способы нанесения покрытий с помощью пульверизаторов, кистей и др.

Теломеризация тетрафторэтилена

В Институте проблем химической физики РАН были проведены системные исследования радиационно-химических процессов, показавшие возможность получения растворов теломеров тетрафторэтилена с использованием ионизирующего излучения (γ -излучение ⁶⁰Co) [1—3]. На основе растворов теломеров тетрафторэтилена можно создавать тонкие защитные покрытия, обладающие свойствами, аналогичными свойствам политетрафторэтиленовых покрытий. В технологическую схему синтеза теломеров и создания защитных покрытий включены следующие стадии: получение раствора мономера (удаление кислорода воздуха и насыщение раствора мономером), проведение радиационной полимеризации тетрафторэтилена в растворе, нанесение покрытия и заключительная обработка поверхности.

Радиационная теломеризация раствора тетрафторэтилена протекает весьма интенсивно и приводит к образованию прозрачного, слегка вязкого раствора. Измерения скорости процесса во времени показали, что под воздействием инициирующего у-излучения скорость теломеризации постепенно возрастает и достигает постоянного значения. При «выключении» излучения скорость процесса быстро снижается до нуля. При повторном «включении» у-излучения автоускорения уже не наблюдается, и скорость процесса быстро достигает прежнего значения. Это свидетельствует о том, что автоускорение процесса, наблюдающееся при первом «включении» инициирующего излучения, не связано с накоплением активных центров в начальный период реакции, а обусловлено, видимо, наличием в системе следов слабых ингибиторов.

На рис. 1 приведена зависимость выхода продукта от времени при различных мощностях дозы γ -излучения *I*. Видно, что практически 100%-ный выход продукта достигается в течение нескольких часов проведения процесса (2—6 ч, в зависимости от мощности дозы излучения). С увеличением мощности дозы скорость процесса *w* возрастает. Измерения стационарной скорости процесса, проведенные по калориметрической методике [1], показали, что *w*-*I*^{0,5}. Это свидетельствует о

Рис. 1. Кинетические кривые выхода теломеров тетрафторэтилена при разной мощности дозы у-излучения:

I — 0,08 Гр/с; *2* — 0,14; *3* — 0,28; *4* — 0,39; *5* — 0,82 Гр/с. Исходная концентрация мономера 0,4 моль/л

наличии квадратичного обрыва кинетических цепей в исследуемой системе.

Процесс теломеризации протекает по радикальному механизму, на что указывает тот факт, что типичные радикальные ингибиторы (кислород и гидрохинон) активно подавляют теломеризацию. Среднечисленная молекулярная масса теломера составляет 550 (данные метода измерения тепловых эффектов конденсации и молекулярно-массового распределения, определенного с помощью гель-проникающей хроматографии).

Предложен следующий механизм радиационной теломеризации тетрафторэтилена в ацетоне:

1) инициирование цепей радикалами, образующимися при радиолизе мономера или растворителя (•H, •CH₃, •CH₂COCH₃);

2) рост цепи

•R + C₂F₄ \rightarrow •R—CF₂—CF₂;

3) передача цепи через растворитель

 $R(C_2F_4)_n + CH_3COCH_3 \rightarrow R(C_2F_4)_nH_{\bullet} + \bullet CH_2COCH_3$

(возникающий радикал •CH₂COCH₃ вновь инициирует рост цепи теломеризации);

4) обрыв цепи за счет рекомбинации радикалов • R—CF₂—CF₂, •CH₃, •CH₂COCH₃.

На большую эффективность реакции передачи цепи в данной системе указывает следующее простое сопоставление. Радиационный выход (расход мономера) составляет 10^3 молекул на 100 эВ поглощенной энергии, следовательно, длина кинетической цепи $v_{\rm K} \approx 10^3$ молекул мономера. В то же время измерения молекулярной массы теломера показывают, что он содержит $v_{\rm M} = 5-6$ звеньев мономера ($v_{\rm M}$ — «материальная» длина цепи). Таким образом, на один первичный радикал, возникающий при радиолизе, приходится $v_{\rm K}/v_{\rm M} \approx 200$ молекул образующегося теломера. В рамках рассмотренной схемы можно полагать, что теломеру отвечает брутто-

Характеристики растворов теломеров тетрафторэтилена в ацетоне			
Концентрация мономера в исходном растворе, %(масс.)	Среднемассовая молекулярная масса теломера, М _w	Повторная растворимость в ацетоне, %(масс.)	Примечание
0,35	300	78	Прозрачный раствор
0,63	310	64	То же
1,5	600	40	Раствор опалесцирует
2,0	610	30	То же
3,3	540	18	Желеобразный раствор
4,38	650	9,5	То же
7,2	840	_	Густой желеобразный раствор
24		0	То же

формула R¹(C₂F₄)_{*n*}R², где R¹ и R² — H, CH₃, CH₂COCH₃, n = 5 - 6.

Скорость процесса и свойства полученных растворов теломеров зависят от концентрации тетрафторэтилена в исходном растворе. Стационарная скорость теломеризации возрастает с увеличением концентрации мономера в исходном растворе, так что порядок реакции по мономеру превышает первый. Это связано, видимо, с участием мономера в процессе инициирования цепей [1]. Некоторые характеристики теломерных растворов для различных исходных концентраций тетрафторэтилена, по завершению процесса (выход продукта 100%), представлены в таблице. Детальное исследование состава и строения продуктов, образующихся в теломерном растворе тетрафторэтилена в ацетоне, было проведено методами ИК и ЯМР спектроскопии [4].

В ИК спектре поглощения раствора теломера тетрафторэтилена в ацетоне (рис. 2, для сравнения дан спектр чистого ацетона) присутствуют полосы при 1154, 642, 625 и 555 см⁻¹, которые характерны для твердого

Рис. 2. ИК спектры поглощения раствора теломера тетрафторэтилена в ацетоне

политетрафторэтилена [5]. Наиболее интенсивная полоса (1154 см⁻¹) относится к валентным колебаниям С-F в CF₂-группе цепи политетрафторэтилена. (Другая интенсивная полоса, наблюдаемая в ИК спектре политетрафторэтилена (1212 см⁻¹), маскируется полосой, относящейся к ацетону.) Фторуглеродные цепи в политетрафторэтилене сворачиваются в спираль, и при комнатной температуре имеются участки цепи, где происходят переходы между право- и левовращающимися спиралями и их количество зависит от температуры [6]. Эта особенность строения макромолекул политетрафторэтилена отображается присутствием в ИК спектрах полос при 640 и 625 см⁻¹. Обе эти полосы наблюдаются и в ИК спектре раствора теломера. Полоса при 555 см⁻¹, имеющаяся и в спектрах политетрафторэтилена, характеризует деформационные колебания CF2-групп. Помимо этих полос наблюдается уширенный и замаскированный линией ацетона перегиб при 519 см⁻¹, который можно связать с проявлением полосы 514 см⁻¹, характерной для внеплоскостных колебаний CF2-группы. Эту полосу используют как показатель кристаллического упорядочения макромолекул полимера.

Таким образом, по данным ИК спектроскопии в растворах теломера тетрафторэтилена присутствуют цепи из фрагментов CF₂, сворачивающиеся в спирали. Квантовохимическими расчетами олигомерных фторуглеродных цепей [7] показано, что скручивание макромолекулы происходит при наличии в олигомере более пяти CF₂-звеньев. Кроме того, имеет место дефектность структуры цепей (полоса 625 см⁻¹), связанная с переходами между право- и левовращающимися участками молекулярных цепей, что также свидетельствует о присутствии в растворе теломера цепей, содержащих более пяти CF₂-звеньев. Наличие достаточно длинных молекулярных цепей подтверждают данные [1], где установлено достаточно широкое молекулярно-массовое распределение, включая и высокомолекулярную область.

Дополнительная и более детальная информация о строении фтормолекулярных образований в растворах

Таблица

Рис. 3. Спектр ЯМР ¹⁹F раствора теломера тетрафторэтилена в ацетоне

теломера получена методом ЯМР [4]. В спектре (рис. 3) имеется значительное число резонансных линий разной мультиплетности в области от -110 до -140 м.д. Помимо линий этого участка спектра наблюдаются синглетные сигналы при других значениях химических сдвигов. Так, в спектре ЯМР ¹⁹ F образца, который длительно хранился при комнатной температуре, отсутствует синглет при -82,9 м.д. и дополнительно проявляются сигналы, соответствующие химическим сдвигам -77,6 и -141 м.д. Это говорит о том, что раствор теломера не является статичной системой, в нем происходят процессы, вызывающие образование новых фторуглеродных соединений. В спектре наряду с узкими спектральными линиями шириной около 1 Гц имеются компоненты шириной порядка 50 Гц и более. Наблюдаемое уширение может быть обусловлено наличием фторуглеродных олигомеров с разным количеством CF₂-групп.

Из соотношения интегральных интенсивностей спектральных линий ЯМР ¹⁹F следует, что основными продуктами (не менее 90%) теломеризации тетрафторэтилена в ацетоне являются теломеры указанного выше строения $R^1(C_2F_4)_nR^2$, где R^1 и R^2 — H, CH₃, CH₂COCH₃, n = 5—6. Кроме того, могут образоваться следующие продукты: 4,4,5,5-тетрафторопентанон-2; перфторацетон или трифторацетон; CF₃—CH₂—X, где X —(O=C)—CH₃; перфторциклобутан C₄F₈ или перфторциклогексан C₆F₁₂; HCF₂ — (CF_{2-n}H_n)_xR, где n = 0—1, x = 3—5, R = -(C=O)—CH₃. Установлено, что строение теломеров не зависит от дозы облучения в интервале 2,5—20 кГр. Получаемые теломерные растворы — нестабильные системы, с течением времени в зависимости от условий возможны изменения в их составе.

Тонкие покрытия на основе теломеров тетрафторэтилена

Проведено изучение молекулярного и морфологического строения фторполимерного продукта, получаемого осаждением на различные подложки (стекло, металл, дерево) из раствора теломеров тетрафторэтилена в ацетоне [8]. После испарения ацетона на поверхности остается белый осадок фторполимерного продукта. Исследования (ИК, ЯМР спектроскопия, рентгенофазовый анализ, атомно-силовая микроскопия) показали, что этот продукт по молекулярному строению близок к высокомолекулярному промышленному политетрафторэтилену Ф-4. Вещество на подложке состоит из спиральных цепей СF₂-групп, но цепи более короткие и имеют концевые группы CH₃—C(=O)—CH₂—. Спираль содержит более пяти CF₂-звеньев, поскольку лишь в этом случае возможно спиральное закручивание цепи.

Рентгеновские дифрактограммы порошка исследуемого продукта дают следующую информацию о характере упорядочения макромолекул. Вид рентгенограмм фторполимеров сильно зависит от технологии и предыстории образцов, однако во всех случаях наблюдаются интенсивный пик, соответствующий брэгговскому углу 18°, и диффузное гало в области 30—50° [9, 10]. На дифрактограммах образцов с высокой степенью кристалличности имеются и другие узкие пики, характерные для кристаллических фаз. Наличие гало связано с особыми формами разупорядочения макромолекул, отличными по топологии от аморфных и кристаллических фаз [10]. На рентгенограмме исследуемого порошка (рис. 4) наблюдаются отмеченный пик и гало; другие пики, характерные для кристаллического политетрафторэтилена (отмечены точками на рис. 4), практически теряются в шумах. Это указывает на малую долю кристаллической фазы в образце. Следует отметить, что соотношение интенсивностей основного пика и гало для порошка существенно меньше, чем для образцов промышленного политетрафторэтилена и продукта марки «Форум» (ультрадисперсный политетрафторэтилен), что говорит в пользу большего топологического разупорядочения в исследуемом образце. В области углов 20, равных 9°, 12—26°, наблюдаются диффузные пики, связанные, по-видимому, с наличием аморфной фазы с иным нарушением топологического порядка, чем в фазах, соответствующих гало в области 30-50°.

Исследования морфологического строения фторполимерного продукта, образуемого на подложке при

Рис. 4. Дифрактограмма порошкообразного продукта, полученного после высыхания теломерного раствора тетрафторэтилена в ацетоне.

Точками обозначены положения кристаллических рефлексов для политетрафторэтилена [9, 10]

Рис. 5. АСМ-изображения покрытия из фторопласта Ф-4 (*a*, *б*) и на основе раствора теломера тетрафторэтилена (*в*, *г*): *a*, *в* — амплитудное представление; *б*, *г* — фазовое представление

высыхании теломерного раствора, были проведены методом атомно-силовой микроскопии (ACM); изучалось покрытие, формируемое на кремниевой пластине. Полученные ACM-изображения сопоставляли с микрофотографиями покрытий из промышленного политетрафторэтилена марки Φ -4 (рис. 5). Покрытие из Φ -4 состоит из стопок пластинок (см. рис. 5*a*, δ). Ребра пластинок выходят на поверхность в виде упаковок протяженных ламелярных структур, что видно на снимке с фазовым представлением. Ламели упакованы параллельно друг другу. Такая картина характерна для кристаллических фторполимеров.

Общая морфологическая картина исследуемого образца существенно иная (рис. 5*в*, *г*). Поверхность покрытия представлена блочными частицами нерегулярной формы, значительно различающимися по размерам (от 100 до 1500 нм). Такое строение в большей степени характерно для разупорядоченных (аморфных) фторполимеров. Покрытие не является сплошным, на что указывают темные, непокрытые области на фотографии в амплитудном представлении (см. рис. 5*в*). В то же время на фазовом изображении (см. рис. 5*г*) можно увидеть элементы ламелярного строения. В некоторых местах покрытия на основе раствора фторсодержащего теломера просматривается примерно параллельная упаковка ламелей в стопки. Это могут быть выходы на поверхность ребер стопок пластинок, но возможно и единичных взаимно ориентированных вдоль некоторого направления волокнистых структур. Однако в покрытии ребра стопок не вытянуты строго вдоль некоторого направления в явном виде, как это имеет место во Ф-4. Следовательно, можно предположить, что в исследуемом образце имеются элементы кристаллического упорядочения, характерные для политетрафторэтилена.

Результаты термического анализа фторполимерного продукта, полученные при измерениях в атмосфере аргона и на воздухе, полностью идентичны, что свидетельствует об отсутствии окислительных процессов при термическом разложении этого продукта. Процесс термодеструкции образца в атмосфере аргона происходит в три стадии: в областях температуры 100—305 °C, 305— 450 °C, 450—560 °C (рис. 6). Температура начала процесса существенно ниже, чем в случае промышленного фторопласта Ф-4, заметная потеря массы которого на-

Рис. 6. Результаты исследования методами термогравиметрии и дифференциальной сканирующей калориметрии фторполимерного продукта, полученные при измерении в атмосфере аргона

I — термогравиметрия (ТГ), потеря массы; *2* — дифференциальная термогравиметрия (ДТГ); *3* — дифференциальная сканирующая калориметрия (ДСК)

блюдается в интервале 500—550 °С. Существенное увеличение температурного интервала разложения продукта может быть связано с наличием в нем фаз, обладающих различной термической стойкостью. Не исключено, что эти фазы имеют различную молекулярную массу. Скорость потери массы образца на первой стадии 1,9—2,2%/мин, а потеря массы составляет 64,4%. На второй стадии скорость потери массы заметно снижается, до 0,5%/мин, а потеря массы составляет 20,4%. Оставшаяся масса образца (13,8%) теряется на третьей стадии со скоростью 0,65%/мин.

Известно, что температура проявления тепловых свойств полимеров (плавление, начало потери молекулярной массы) зависит от молекулярной массы [11]. В низкомолекулярных фазах полимера процессы начинаются при меньших температурах, так что первая стадия термодеструкции фторполимерного продукта скорее всего относится к низкомолекулярной фракции, а при дальнейшем нагревании начинается разложение высокомолекулярных фракций.

В отмеченных температурных интервалах наблюдаются особенности и в температурной зависимости, полученной методом дифференциальной сканирующей калориметрии: для первого температурного интервала характерен слабый и растянутый эндотермический эффект, а для двух других регистрируются широкие экзотермические пики. Размытость проявлений этих особенностей, скорее всего, связана с большим разбросом молекулярных масс разных фаз исследуемого полимера.

Прогревание образцов теломеров тетрафторэтилена до 180—200 °С приводит к потере концевых ацетоновых фрагментов макромолекулы, размягчению фторполимера и растеканию его по поверхности подложки. В результате образуется сплошная фторполимерная пленка толщиной 1—5 мкм, имеющая строение и свойства, близкие к таковым для политетрафторэтилена.

Таким образом, растворы теломеров тетрафторэтилена могут быть использованы для создания тонких защитных, гидрофобных покрытий на различных материалах и изделиях [2, 3, 12, 13]. Нанесение покрытия не вызывает технологических трудностей и не отличается от традиционных способов нанесения (кистью, окунанием, пульверизатором). Раствор теломеров тетрафторэтилена можно применять для пропитки тканей, дерева, асбеста, цемента, строительного кирпича, облицовочных материалов, металлических и керамических изделий и других объектов для придания им химической стойкости, водоотталкивающих и антифрикционных, противоизносных свойств. Малая толщина пленки позволяет получать прозрачные покрытия с хорошей теплопроводностью. Разрабатываемый способ предполагает организацию несложного, непрерывного процесса.

* * *

Работа выполнена при финансовой поддержке РАН в рамках программ Президиума РАН № 8 «Разработка методов получения химических веществ и создание новых материалов» и «Поддержка инноваций и разработок 2007».

ЛИТЕРАТУРА

1. Кирюхин Д.П., Невельская Т.И., Ким И.П., Баркалов И.М. Высокомолек. соед., А, 1982, т. 24, с. 307—314.

- Кирюхин Д.П., Ким И.П., Бузник В.М. Радиационнохимические методы получения защитных, гидрофобных и антифрикционных покрытий с использованием тетрафторэтилена. 7-я всерос. конф. «Химия фтора». Москва, 2006.
- Кирюхин Д.П., Ким И.П., Бузник В.М. Химическая технология: Сб. тез. докл. междунар. конф. по химической технологии XT 07. М.: ЛЕНАНД, 2007, т. 3, с. 181—182.
- 4. Бузник В.М., Игнатьева Л.Н., Ким И.П., Кирюхин Д.П., Сахаров С.Г. Ж. физ. химии, 2008 (в печати).
- 5. Дехант И., Данц Р., Киммер В. Инфракрасная спектроскопия полимеров. М.: Химия, 1976, 472 с.
- Игнатьева Л.Н., Цветников А.К., Бузник В.М., Михалин И.Н., Паукштис Е.А. Матер. II Евразийского форума по проблемам прочности материалов. Якутск, 2004, ч. IV, с. 55—64.
- 7. Игнатьева Л.Н., Белолипцев А.Ю., Козлова С.Б., Бузник В.М. Ж. структ. химии, 2004, № 4, с. 631—642.

- 8. Бузник В.М., Игнатьева Л.Н., Кайдалова Т.А, Ким И.П., Кирюхин Д.П. и др. Высокомолек. соед., 2008 (в печати).
- 9. Bouznik V.M., Kirik S.D., Solovyov L.A., Tsvetnikov A.K. Powder diffraction, 2004, T. 19, № 2, p. 1.
- Антипов Е.М., Лебедев Ю. А., Королев Ю.М., Поликарпов В. М., Игнатьева Л. Н., Бузник В.М. Высокомолек. соед., 2007, т. 49, №6, с. 663—668.
- 11. Pompe G., Lappan U., Hausler L. Thermochem. Acta, 2002, v. 391, p. 257–269.
- Бузник В.М., Губин С.П., Ким И.П., Кирюхин Д.П., Никитин Л.Н., Хохлов А.Р., Цветников А.К. Химическая технология: Сб. тез. докл. междунар. конф. по химической технологии XT 07. М.: ЛЕНАНД, 2007, т. 1, с. 29—33.
- Антипов Е.М., Бузник В.М., Губин С.П., Игнатьева Л.Н., Кирюхин Д.П., Харитонов А.П., Хохлов А.Р. XVIII Менделеевский съезд по общей и прикладной химии. Тез. докл., 2008, т. 2, с. 17.