УДК 541.18:547.995.15

# Низкомолекулярные алкилированные хитозаны как невирусные векторы трансфекции для генной терапии

## К. Занг, С. Эрселен, В. Е. Тихонов, С. З. Караева, А. В. Слита, В. В. Зарубаев, И. Мели, Г. Дюпортай, В. Г. Бабак

КСИН ЗАНГ (XIN ZHANG) — аспирантка Докторской школы г. Страсбурга, группа фотофизики биомолекулярных взаимодействий отдела фармакологии и физикохимии Института Жильбера Лостриа (Фармацевтический факультет, Университет Луи Пастера, Франция). Область научных интересов: модифицированные хитозаны.

СЕБНЕМ ЭРСЕЛЕН (SEBNEM ERCELEN) — доктор философии (PhD) Медицинского факультета Стамбульского университета, старший научный сотрудник Научного центра TUBITAK marmara (Турция). Область научных интересов: флуоресцентная техника.

ВЛАДИМИР ЕВГЕНЬЕВИЧ ТИХОНОВ — кандидат химических наук, доцент, старший научный сотрудник лаборатории физиологически активных биополимеров Института элементоорганических соединения им. *А.Н. Несмеянова РАН (ИНЭОС РАН). Область научных интересов: биополимеры.* 

СВЕТЛАНА ЗУБАИРОВНА КАРАЕВА — старший научный сотрудник лаборатории экспериментальной физики Комплексного научно-исследовательского института РАН (г. Грозный, Российская Федерация) Область научных интересов: термодинамика межфазных слоев, неравновесная термодинамика.

АЛЕКСАНДР ВАЛЕНТИНОВИЧ СЛИТА — кандидат биологических наук, старший научный сотрудник лаборатории молекулярной вирусологии и генной инженерии Научно-исследовательского института гриппа РАМН. Область научных интересов: генотерапия и иммунология вирусных инфекций. E-mail slita@influenza.spb.ru

ВЛАДИМИР ВИКТОРОВИЧ ЗАРУБАЕВ — кандидат биологических наук, заведующий лабораторией молекулярных основ химиотерапии вирусных заболеваний Научно-исследовательского института гриппа РАМН. Область научных интересов: химиотерапия вирусных и опухолевых заболеваний. E-mail zarubaev@influenza.spb.ru.

ИВ МЕЛИ (YVES MÉLY) — профессор биофизики, руководитель группы фотофизики биомолекулярных взаимодействий отдела фармакологии и физикохимии Института Жильбера Лостриа (Фармацевтический факультет, Университет Луи Пастера, Франция). Область научных интересов: флуоресцентные методы в изучении молекулярных взаимодействий в белковых системах.

ГИЙ ДЮПОРТАЙ (GUY DUPORTAIL) — доктор философии (PhD), старший научный сотрудник группы фотофизики биомолекулярных взаимодействий отдела фармакологии и физикохимии Института Жильбера Лостриа (Фармацевтический факультет, Университет Луи Пастера, Франция). Область научных интересов: биологические мембраны; физикохимия невирусных трансфекционных процессов с помощью катионных векторов. E-mail guy.duportail@pharma.u-strasbg.fr

ВАЛЕРИЙ ГЕОРГИЕВИЧ БАБАК — доктор химических наук, профессор, ведущий научный сотрудник лаборатории физической химии полимеров ИНЭОС РАН. Область научных интересов: нано- и микрокапсулирование биологически-активных веществ; физикохимия ПАВ-полиэлектролитных и интерполиэлектролитных комплексов; дилатантная реология межфазных адсорбционных и ленгмюровских слоев ПАВ и полиэлектролитов; высококонцентрированные эмульсии; термодинамика микроскопических жидких пленок и линейного натяжения.

119991 Москва, ул. Вавилова, 28 ИНЭОС РАН, тел. (499)135-65-02, факс (499)135-50-85, babak@ineos.ac.ru 197376 Санкт-Петербург, ул. проф. Попова 15/17, ГУ НИИ гриппа РАМН, т.(812)234-67-25, ф.(812)234-59-73

## Введение

Успехи генной терапии связаны с существованием доступных векторов, способных эффективно и с минимальной токсичностью доставлять генетический материал в клетки-мишени. Синтетические катионные липиды и полимеры образуют электростатические комплексы с полианионами, какими являются молекулы ДНК, приводя к конденсации последних, т.е. к сворачиванию макромолекулярной цепи в компактные агрегаты. Интерполиэлектролитное комплексообразование между противоположно заряженными полимерами практически необратимо и приводит к возникновению полидисперсных микрочастиц из нескольких сотен молекул ДНК. Такие комплексы неоднородны по составу, размерам (50—500 нм) и форме (тороиды, палочки, агрегаты) [1]. Большие размеры этих агрегатов способствуют их эффективному контакту с поверхностью клеток при седиментации и эффективной трансфекции ДНК в клеточные культуры. В то же время, использование таких агрегатов в опытах *in vivo* является более чем проблематичным из-за их низкой диффузионной подвижности.

Напротив, небольшие компактные комплексы с одной молекулой ДНК могут быть получены на основе катионных ПАВ [2—5]. Показано, что в таких комплексах макроион ДНК сворачивается вокруг мицеллоподобных агрегатов ПАВ, в результате чего они оказываются отрицательно заряженными, что предотвращает их агрегацию из-за взаимного электростатического отталкивания. Комплексы с одной молекулой ДНК легко преодолевают физиологический барьер из-за малых размеров. С другой стороны, эти комплексы неустойчивы и диссоциируют при контакте с плазмидной мембраной [3], что объясняет их слабую трансфекционную эффективность. Более того, такие комплексы цитотоксичны и приводят к лизису клетки [6].

В этом контексте целью работы стала разработка и характеристика новых типов векторов на базе молекул олигохитозана, способных к мицеллообразованию в результате ковалентного присоединения к ним длинных алкильных цепей. Такой подход оправдан из-за нетоксичности хитозанов даже при повышенной концентрации, в отличие от других типов невирусных векторов, таких как полиэтиленимин (ПЭИ) или катионные липиды.

являются сополимерами 2-амино-2-Хитозаны дезокси-β-D-глюкозамина и 2-ацетамидо-2-дезокси-β-Dглюкозамина, связанных β(1→4) связями, полученными в результате щелочного деацетилирования хитинов, экстрагированных в основном из панцырей членистоногих, насекомых и грибов. Функциональные свойства этих катионных полиэлектролитов зависят от молекулярной массы, полидисперсности, степени деацетилирования и микроструктуры (распределения сомономеров по длине цепи). Многочисленные производные хитозанов проявляют нетоксичность, биоразлагаемость, биосовместимость и слабую иммуногенность [7, 8]. Эти катионные полиэлектролиты являются потенциальными кандидатами для использования в качестве векторов переноса генов [9-12]. Действительно, они образуют комплексы с отрицательно заряженными макромолекулами ДНК, защищая их от деструкции нуклеазами [13-17]. Комплексы ДНК-хитозан используют в экспериментах по трансфекции ДНК in vitro [18-20].

Хитозан является слабым основанием с  $pK_a = 6,5$ , что близко значению  $pK_a$  остатков D-глюкозамина [21]. Высокомолекулярный хитозан практически не растворим в воде при нейтральных pH, что ограничивает его применение в биомедицине. Эта проблема может быть решена при использовании низкомолекулярных хитозанов, которые растворимы в воде в широком диапазоне pH и сохраняют способность к конденсации ДНК, но мало эффективны при трансфекции [22—26]. Аналогичные явления наблюдались и для кватернизованных олигохитозанов, в которые вводили четвертичные аммониевые группы для увеличения их растворимости в воде и усиления электростатического взаимодействия с отрицательно заряженными ДНК [25]. Было высказано предположение, что относительно слабая эффективность трансфекции обусловлена низкой гидрофобностью достаточно объемных макромолекулярных клубков, образующихся при конденсации ДНК с такими олигохитозанами.

В связи с этим, придание олигохитозанам свойств ПАВ могло бы явиться интересной возможностью улучшения их эффективности в качестве невирусных векторов трансфекции. Это возможно реализовать путем алкилирования низкомолекулярных хитозанов при условии, что существенного снижения их растворимости в воде не произойдет. С этой целью мы синтезировали серию олигохитозанов с различным содержанием тетрадеценоильных (ТДЦ) цепей [27]. В данной работе представлены данные по поверхностной активности таких олигохитозанов и результаты исследования их взаимодействия с фосфолипидными липосомами, которые рассматривались как модели биологических мембран.

## Объекты и методы исследования

Химические вещества. В работе использованы L-афосфатидилхолин, димиристил (DMPC) и L-афосфатидил-DL-глицерин (DMPG) фирмы Sigma; 2-(3-дифенилгексатриенил)пропаноил-1-гексадеканоил-синглицеро-3-фосфохолин (DPHpPC) фирмы Molecular Probes и высокомолекулярный хитозан (M = 300 кДа, степень ацетилирования 18%) компании BioChit, Москва, Россия.

Получение и характеристика производных хитозана. N-[2(3)-(додец-2-енил)сукциноил/хитозаны] — гидрофобно модифицированные хитозаны (ГМ-хитозаны) были получены реакцией высокомолекулярного хитозана с 2-(додеценил)янтарным ангидридом (SIGMA) как описано в [28]. Низкомолекулярный (НМ) хитозан и его N-2(3)-(додец-2-енил) сукциноильные производные гидрофобно модифицированные низкомолекулярные хитозаны (ГМ-НМХ) были приготовлены кислотным гидролизом соответствующих высокомолекулярных хитозанов в соответствии с ранее описанной методикой [29]. ГМ-НМХ содержали ненасыщенные ТДЦ группы (m), N-ацетильные (n) и амино группы (p), как показано на рис. 1. Каждая гидрофобная ТДЦ группа, содержащая цепь С<sub>14</sub>, связана с одной гидрофильной карбоксильной группой, что частично компенсирует снижение растворимости при введении гидрофобной группировки в молекулу хитозана.

Содержание ТДЦ групп и степень ацетилирования были рассчитаны из ПМР спектров. Спектры были сняты на приборе AC400 Bruker spectrometer [30]. Молекулярные массы хитозанов были определены методом эксклюзионной хроматографии [31].



Рис. 1. Гидрофобно модифицированные низкомолекулярные хитозаны

Методы исследования. Поверхностное натяжение (γ) водных растворов ГМ-НМ-хитозанов на границе водавоздух измерялось методом пластинки Вильгельми с помощью тензиометра K100 (Kruss).

Критическую концентрацию мицеллообразования (ККМ) определяли по точке перегиба на изотермах  $\gamma(C)$  и методом флуоресценции с использованием гидрофобного зонда Нильского красного (Nile Red):  $\lambda_{возб} = 550$  нм; концентрация 0,2 мкМ [32]. Значения ККМ определялись по резкому увеличению интенсивности флуоресценции, а также по гипсохромному смещению спектра эмиссии при увеличении концентрации хитозана в растворе.

Моноламелярные липосомы большого размера получали экструзией суспензии мультиламеллярных липосом (MLV) через поликарбонатный фильтр (Nucleopore) на термостатируемом экструдере (Lipex Biomembranes) [3—5, 33]. Размер пор фильтра в начале был 0,2 мкм (семь фильтраций), затем 0,1 мкм (десять фильтраций). В результате получали гомогенную популяцию липосом размером от 0,11 до 0,12 мкм, который определяли методом квазиупругого рассеяния света (Nanosizer N4SD Coultronics).

Измерения анизотропии флуоресценции в стационарном состоянии (*r*) проводили на спектрофлуориметре SLM 8000 [3]. Результаты измерений обрабатывались с помощью программы Biokine, разработанной Biologic (Claix, Франция). Размер мицелл и комплексов ГМ-НМХ измеряли методом динамического светорассеяния на приборе Zetamaster 3000 (Malvern Instruments, Франция) при следующих параметрах: время измерения 30 с, вязкость среды 1,054 Па, индекс рефракции 1,45 (равный индексу рефракции для липосом), угол рассеяния 90°, температура 25°С.

Цитотоксичность ГМ-НМХ оценивали с использованием 3-(4,5-диметил-2-тиазолил)-2,5-дифенилтетразолий бромида (МТТ) [3]. Клетки НеLа были посеяны в 96-луночные планшеты с плотностью 5•10<sup>4</sup> клеток в ячейке и инкубированы в течение 24 ч. ГМ-НМХ добавляли к клеткам в присутствии 10% СПК (сыворотки плода коровы) или без нее. Через 3,5 ч трансфекции клетки промывали фосфатным солевым буфером (ФСБ), и 250 мкл раствора с 0,5 мг/мл МТТ в среде ДМЕМ (Dulbecco Modificated Eagle's Medium) добавляли в каждую ячейку и оставляли на дополнительную инкубацию в течение 1 ч при 37 °С. Среду, содержащую МТТ, затем удаляли и вносили по 100 мкл диметилсульфоксида (ДМСО) для растворения кристаллов формазана, образующегося в митохондриях в процессе клеточного дыхания. Абсорбционные измерения проводили при 535 нм на приборе Labsystems IEMS Microplate Reader.

## Результаты и обсуждение

## Характеристика гидрофобно модифицированных низкомолекулярных хитозанов

Три образца ГМ-НМХ были приготовлены согласно ранее описанному методу [27] и охарактеризованы методами ЯМР и эксклюзионной хроматографии (табл.1). Их молекулярная масса составляла 5 кДа и степень деацетилирования ~ 3% (мол.). Следовательно, все эти образцы содержали до 25-30 глюкозаминных групп и одну ацетамидную группу на молекулу. Таким образом, среднее число (n<sub>14</sub>) ТДЦ групп в образцах при их содержании 3, 10 или 18% было равно соответственно 0,75, 2,5 и 4,5 на одну молекулу хитозана. Все хитозаны имели узкое молекулярно-массовое распределение,  $M_w/M_n \sim 1.1$  и были растворимы в воде при нейтральных рН. Это связано, по-видимому, с присутствием в их структуре карбоксильных групп и с их низкой молекулярной массой [24, 34], что компенсирует относительно невысокую степень протонирования (рК<sub>а</sub> ~ 6,5) [21]. Состав, молекулярный вес и полидисперсность хитозанов определены методами ЯМР и хксклюзионной хроматографии.

#### Таблица 1

Характеристики ГМ-НМ-хитозанов

| Образец     | CA*, % | <b>ТДЦ, %</b> | <i>n</i> <sub>14</sub> | $M_w$ | $M_n$ | $M_w/M_n$ |
|-------------|--------|---------------|------------------------|-------|-------|-----------|
| ГМ(3%)-НМХ  | 3      | 3             | 0,75                   | 4720  | 4220  | 1,12      |
| ГМ(10%)-НМХ | 3      | 10            | 2,5                    | 4780  | 3840  | 1,26      |
| ГМ(18%)-НМХ | 4      | 18            | 4,5                    | 3580  | 3300  | 1,09      |

\* СА — степень ацетилирования



#### Рис. 2. Поверхностная активность ГМ-НМ-хитозанов:

*а* — кинетика изменения поверхностного натяжения водных растворов ГМ-НМХ: pH = 6,5; 0,1 мг/мл ГМ-НМХ; содержание ТДЦ групп: *I* — 0%; *2* — 3%; *3* — 10%; *4* — 18 %.

 $\delta$  — изотерма поверхностного натяжения  $\gamma(C)$  для ГМ(18%)-НМ-хитозана.

## Поверхностное натяжение и критическая концентрация мицеллообразования хитозанов

ККМ молекул ГМ-НМХ определяли методом тензиометрии (рис. 2) и по интенсивности флуоресценции Nile Red (рис. 3) [32]. В то время как исходный НМХ не проявлял практически никакой поверхностной активности, при его гидрофобной модификации заметно снижалось поверхностное натяжение  $\gamma$  с ростом времени адсорбции (рис. 2*a*). Снижение  $\gamma$  возрастало с ростом числа ТДЦ групп и было максимальным для ГМ(18%)-НМхитозана.

Можно предположить, что адсорбция ГМ(3%)-НМхитозана на границе вода—воздух является обратимой, поскольку выигрыш в свободной энергии при адсорбции одной цепи ТДЦ составляет  $\Delta G_{ad} \sim 10 \ kT$  [35]. Следовательно, для этого образца, имеющего в среднем только одну ТДЦ цепь, можно ожидать достижения равновесных значений адсорбции и поверхностного натяжения. Например, равновесное значение  $\gamma_{eq} = 68$ мН/м (кривая 2, рис. 2*a*) было найдено интерполяцией экспериментальной кривой мультиэкспоненциальной функцией [36]. При увеличении числа ( $n_{C14}$ ) ТДЦ цепей на одну молекулу хитозана выигрыш свободной энергии адсорбции увеличивается как  $\Delta G_{ad} \sim -10.n_{C14}.kT$ , следовательно, процесс адсорбции таких образцов на границе вода—воздух перестает быть обратимым. С целью унификации результатов тензиометрических измерений, все значения поверхностного натяжения при построении изотерм адсорбции были отнесены к одному времени формирования адсорбционных слоев, равному 1000 с. К этому времени поверхностное натяжение для всех образцов переставало заметно уменьшаться. В качестве примера на рис. 26 представлена изотерма поверхностного натяжения для СМ(18%)-НМ-хитозана. Эта изотерма позволяет определить значение ККМ как концентрации, по достижении которой поверхностное натяжение натяжение натяжение кКМ с собразца было найдено значение ККМ = 0,4 мг/мл.

Поскольку известно, что значения ККМ зависят от метода их определения [37—39], мы также определяли ККМ для всех трех образцов по интенсивности флуоресценции Nile Red [32]. Этот гидрофобный зонд плохо растворим в воде и весьма слабо флуоресцирует в ней. С другой стороны, его растворимость и флуоресценция сильно возрастают в гидрофобной среде, например, внутри мицелл. Следовательно, ККМ определялась как пороговое значение возрастающей концентрации хито-



Рис. 3. Определение ККМ для ГМ-НМ-хитозанов по флуоресценции Nile Red:

a — спектры флуоресцентного излучения от Nile Red (0,2 мкМ) при различных концентрациях ГМ(18%)-НМ-хитозана: l — 5 мг/мл; 2 — 3 мг/мл; 3 — 0,8 мг/мл; 4 — 0,4 мг/мл; 5 — 0,2 мг/мл; 6 — 0,01 мг/мл. Буфер 20 мМ MES; pH = 6,5;  $\lambda_{воз6} = 550$  нм.

*б* — интенсивность флуоресценции (●) и положение максимума излучения от Nile Red (■) как функция концентрации ГМ(18%)-HM-хитозана.

занов, отвечающее резкому возрастанию интенсивности флуоресценции Nile Red. В качестве примера, на рис. За представлен спектр флуоресценции зонда с ростом концентрации ГМ(18%)-НМ-хитозана при pH = 6,5 (рис.  $3\delta$ ). Значению ККМ отвечают как сильное увеличение интенсивности флуоресценции, так и сильное гипсохромное смещение, связанное с фиксацией Nile Red в гидрофобной области мицелл.

Значения ККМ образцов ГМ-НМ-хитозанов, определенные тензиометрией и по интенсивности флуоресцении, представлены в табл. 2. Эти значения, найденные двумя методами, хорошо согласуются и дают одинаковую зависимость от ТДЦ. Отнесенные к молекулярной массе хитозанов, значения ККМ равны соответственно 0,6 мМ и 0,1 мМ. Сильная зависимость значений ККМ от ТДЦ указывает на то, что гидрофобные взаимодействия между ТДЦ группами являются основной движущей силой агрегирования между этими молекулами. Это согласуется с общепринятыми представлениями о мицеллообразовании, при котором выигрыш в свободной энергии, связанный с переносом гидрофобных цепей из водной среды внутрь мицелл становится равным потере переносной энтропии растворенных молекул ПАВ и их противоионов [40].

Строение мицелл, образованных различными ГМ-НМ-хитозанами, зависит от степени гидрофобного модифицирования этих образцов (рис. 4). Образец ГМ(3%)-НМ-хитозана, который имеет в среднем всего одну алкильную группу на макроион, вероятно образует «интерполиэлектролитные комплексы», которые похожи на мицеллы «классических» ионных ПАВ (рис. 4*a*). Такие мицеллы имеют внешнюю корону, образованную частично ионизованными гидрофильными глюкозаминными группами. Притяжение между неионизованными глюкозаминными группами, которые гидрофобны и способны в непротонированной форме образовывать водородные связи, вероятно также способствует мицеллообразованию.

В отличие от ГМ(3%)-НМ-хитозана, образцы, модифицированные на 10 и 18%, в среднем содержат соответственно 2 и 4,5 алкильных цепей на одну молекулу и

Значения ККМ водных растворов ГМ-НМ-хитозанов, определенные методами флуоресценции и тензиометрии

Таблииа 2

| Образец     | Тензиом | етрия | Флуоресценция |     |  |
|-------------|---------|-------|---------------|-----|--|
|             | мг/мл   | мМ    | мг/мл         | мМ  |  |
| ГМ(3%)-НМХ  | 2,5     | 0,6   | 5,0           | 1,1 |  |
| ГМ(10%)-НМХ | 0,7     | 0,2   | 2,0           | 0,4 |  |
| ГМ(18%)-HMX | 0,4     | 0,1   | 0,4           | 0,1 |  |

могут образовывать мицеллярные агрегаты при взаимодействии алкильных цепей, которые не включены в ядро мицелл (рис. 4 *б*, *в*).

Короны мицелл в таких агрегатах образованы как гидрофильными хвостами и петлями, так и алкильными цепями, не включенными в гидрофобные ядра. Взаимодействие между такими алкильными цепями приводит к образованию интермицеллярных кластеров, которые образуют нано- и микрочастицы геля [41]. Меньшее количество алкильных цепей у ГМ(10%)-НМ-хитозана приводит к меньшей их плотности на поверхности мицелл по сравнению с ГМ(18%)-НМ-хитозаном, следовательно, интермицеллярные кластеры в случае ГМ(10%)-НМ-хитозана будут менее устойчивыми.

Сравнение значения ККМ = 0,6 мМ для катионного ГМ(3%)-НМ-хитозана со значениями ККМ классических катионных ПАВ серии алкилтриметиламмоний бромидов, таких как ДТАБ, ТТАБ и ЦТАБ с алкильными цепями длиной 12, 14 и 16 атомов углерода, равными соответственно 15 мМ, 3,5 мМ и 0,92 мМ, [42, 43], показывает практическое равенство между ККМ ГМ(3%)-НМ-хитозана и ЦТАБ имеющего гидрофобную цепь C<sub>16</sub>. Это равенство означает, что свободная энергия, затрачиваемая на концентрирование положительно заряженных глюкозаминных групп на поверхности мицелл (рис. 4а), близка к соответствующей энергии концентрирования триметиламмониевых групп. Это достаточно неожиданно, если учесть значительную разницу в объеме полярных групп, и может быть рационально объяснено, если принять во внимание незначительный вклад электростатического отталкивания в свободную энергию мицеллообразования [40, 44, 45].



Рис. 4. Схематическое представление вероятных мицеллярных структур ГМ-НМ-хитозанов с разным числом ТДЦ групп:

*а* — мицеллы в случае ГМ (3%)-НМ-хитозана с одной ТДЦ группой; *б* — ГМ(10%)-НМ-хитозана; *в* — ГМ(18%)-НМ-хитозана.

Действительно, было показано, что среднее расстояние между ТМА группами (l<sub>N(CH3)3</sub>) катионных ПАВ на поверхности мицелл равно характерной длине Бьеррума в воде ( $l_B = e^2/4\pi\epsilon_0 \epsilon kT = 0,7$  нм) [42, 43], что означает, что энергия электростатического отталкивания между этими группами порядка 1 kT. Эта энергия на порядок меньше энергии гидрофобного взаимодействия между алкильными цепями в ядре мицеллы [35]. Учитывая большой размер глюкозаминных групп, среднее расстояние между аминогруппами на поверхности мицелл ГМ(3%)-НМхитозана очевидно значительно больше по сравнению с длиной Бьеррума и, следовательно, электростатическое отталкивание между этими группами значительно меньше. Снижение энергии электростатического отталкивания компенсируется большим числом заряженных групп у образца хитозана, что приводит к одинаковым значениям ККМ для ГМ(3%)-НМ-хитозана и ЦТАБ. Следует также принять во внимание, что приблизительно половина аминогрупп у этого хитозана не ионизирована при pH = 6,5 [21] и соответствующие глюкозаминные группы могут вносить вклад в энергию мицеллобразования, учитывая их слабую гидрофобность [29].

Если формально выразить ККМ через концентрацию алкильных цепей в растворе,  $C_{\text{TDC}} = n_{\text{C14}}$ ККМ, мы получим значения 0,45 мМ, 0,42 мМ и 0,45 мМ для образцов хитозана, имеющих в среднем  $n_{\text{C14}} = 0,75$ , 2,5 и 4,5 алкильных цепей на молекулу хитозана. Это удивительное равенство значений  $C_{\text{TDC}}$  указывает на то, что молекулы ГМ-НМ-хитозанов ведут себя в растворе как ансамбль свободных молекул мицеллообразующих ПАВ.

Методом флуоресценции Nile Red была также исследована зависимость ККМ ГМ(18%)-НМ-хитозана от рН и концентрации соли. При pH = 6,5 значение ККМ снижается от 0,4 мг/мл (в отсутствие соли) до 0,25 мг/мл (0,5 M NaCl). Также как и для катионных ПАВ [40], это снижение ККМ может быть объяснено более сильной конденсацией противоионов при увеличении концентрации соли. Действительно, усиление конденсации отвечает менее значительной потере трансляционной энтропии и снижает свободную энергию мицеллообразования. Было также показано, что в отсутствие соли увеличение pH от 5,8 до 7,0, т.е. депротонирование аминогрупп приводит к снижению ККМ от 0,6 мг/мл до 0,25 мг/мл. Это снижение ККМ можно объяснить снижением заряда при депротонировании аминогрупп, что в свою очередь приводит с снижению потери трансляционной энтропии, свободной энергии мицеллообразования и ККМ.

## Взаимодействие с модельными мембранами

Одним из ответственных этапов трансфекции является взаимодействие между комплексами ДНК/невирусный вектор и клеточными мембранами. Этот тип взаимодействия играет важную роль на всех этапах трансфекции, включая начальное взаимодействие между этими комплексами с мембранами плазмы, их высвобождение из эндосом и взаимодействия с мембраной ядра клетки. Поскольку ГМ-НМХ проявляют поверхностно-

активные свойства, то нашей первоначальной целью было выяснение, взаимодействуют ли свободные молекулы этих хитозанов с мембранами и изменяют ли они свойства этих мембран. С этой целью мы изучили взаимодействие между ГМ(18%)-НМ-хитозаном и большими униламеллярными липосомами (LUV), которые моделировали клеточные мембраны. Ранее было показано, что нейтральные и анионные липосомы могут адекватно моделировать соответственно внешний и цитоплазмический слои мембраны плазмы [3-5, 33]. Таким образом, взаимодействие между молекулами ГМ(18%)-НМхитозана с липидными бислоями изучалось нами с использованием LUV, полученными из димистроилфосфатидилхолина (DMPC), фосфолипида цвиттер-ионного типа, в целом нейтрального, или из димистроилфосфатидилглицерина (DMPG), анионного фосфолипида. Это взаимодействие определялось по анизотропии флуоресценции меченого фосфолипида (DPHpPC) при термотропных фазовых переходах в этих LUV (рис. 5). Этот зонд, будучи сам фосфолипидом, встроен в мембрану и не имеет возможности ее покинуть (что обычно приводит к артефактам) даже в том случае, когда на внешней стороне мембраны образуются гидрофобные домены при взаимодействии хитозанов с липосомами.

Опыты проводились при постоянной концентрации липосом (200 мкМ фосфолипидов) и при различной концентрации ГМ-НМ-хитозанов. Липосомы, которые формировались из индивидуальных фосфолипидов, DMPC или DMPG, демонстрировали четкие фазовые переходы между гелевой  $L_{\beta}$  и жидкокристаллической  $L_{\alpha}$ фазами при критических температурах  $(T_m)$ , соответственно равных 25 и 27 °С. Отношение хитозан/фосфолипид r изменялось в пределах от 0,5 до 2, что отвечало концентрациям хитозанов ниже их ККМ. В присутствии ГМ(18%)-НМ-хитозана анионные липосомы на основе DMPG показывают слабый, но тем не менее заметный сдвиг температуры фазового перехода  $(\Delta T_m = +3 \ ^{\circ}\text{C})$ , в то время как в случае нейтральных липосом на основе DMPC этот эффект был незначительным. Положительное значение  $\Delta T_m$  в случае анионных липосом указывает на стабилизацию бислоя. Более того, мембрана становится более жесткой, по крайней мере в жидкокристаллической фазе, что следует из увеличения анизотропии флуоресценции в области температур выше  $T_m$ . Преимущественное взаимодействие ГМ-HMX с анионными липосомами и эффект стабилизации их мембран указывает на то, что это взаимодействие обусловлено как электростатическим притяжением между положительно заряженными глюкозаминными группами и отрицательно заряженными полярными головками фосфолипидов, так и взаимодействием между встроенными в мембрану ТДЦ цепями хитозанов и гидрофобными группами фосфолипидов (рис. 6). Поскольку выигрыш энергии при переносе одной группы С<sub>14</sub> из водной фазы внутрь гидрофобной области мембраны составляет порядка 10 kT, то можно предположить, что адсорбция ГМ(18%)-НМ-хитозана с его 4-5 ТДЦ группами на молекулу необратима.



Рис. 5. Зависимость анизотропии флуоресценции 2-(3-дифенилгексатриенил)пропаноил-1-гексадеканоил-син-глицеро-3фосфолипидов (DPHpPC) от температуры:

*а* — взаимодействие ГМ(18%)-НМ-хитозана с LUV, образованными DMPC и DMPG; *б* — концентрация липосом, выраженная в концентрации фосфолипидов 200 мкМ; фосфолипиды/DPHpPC = 100; молярное отношение фосфолипиды/хитозан (в мономерных единицах): 1 - 0, 2 - 0.25, 3 - 0.5; 4 - 1.

Из этих опытов следует, что ГМ-НМХ преимущественно должны взаимодействовать с внутренним слоем плазмидных мембран, а не с их внешним слоем. Ограниченное взаимодействие ГМ-НМХ с внешней стороной мембран благоприятно для их использования в генной терапии, поскольку сильное взаимодействие привело бы к диссоциации комплекса ДНК/ГМ-НМХ и помешало бы проникновению ДНК внутрь клетки, как это наблюдается в случае комплексов ДНК/ЦТАБ [3]. С другой стороны, взаимодействие вектора ДНК с анионными фосфолипидами, образующими внутренний слой мембраны цитоплазмической эндосомы, предположительно способно дестабилизировать эту мембрану, что приведет к отделению ДНК от вектора и попаданию в цитоплазму.

Перечисленные признаки считаются необходимыми условиями для эффективной трансфекции. Следовательно, ГМ-НМХ можно использовать в качестве векторов генов. Более того, необратимая адсорбция ГМ-НМХ на липидном бислое предположительно ограничивает как их латеральную подвижность, так и переходы типа «флип-флоп» по отношению к бислою. Это разительно отличается от большой подвижности и способности к «флип-флопам» адсорбированных на мембранах катионных ПАВ [3]. Поскольку эти свойства катионных ПАВ предположительно являются причиной их цитотоксичности, ГМ-НМХ проявляют слабую цитотоксичность. Слабая цитотоксичность ГМ-НМХ получила подтверждение в наших недавних опытах [46], в кото-



Рис. 6. Схема адсорбции молекулы ГМ(18%)-НМ-хитозана на поверхности бислойной липидной мембраны

рых было показано, что их добавление к клеткам при обычно используемых концентрациях приводит к гибели менее 10% таких клеток.

#### Выводы

Получены гидрофобно-модифицированные низкомолекулярные хитозаны с молекулярной массой 5 кДа и степенью ацетилирования 3%(мол.), содержащие тетрадеценоильные (ТДЦ) группы в количестве 3— 18%(мол.). Эти соединения относительно монодисперсны и в среднем содержат 25—30 глюкозаминных фрагментов и 1—5 ТДЦ групп на молекулу хитозана. Вследствие относительно низкого молекулярного веса и наличия карбоксильных групп, связанных с тетрадеценоильными группами, эти соединения хорошо растворимы в воде при нейтральных значениях рН. Поверхностная активность, т.е. способность снижать поверхностное натяжение у ГМ-НМ-хитозанов возрастает с ростом числа ТДЦ, в то время как критическая концентрация мицеллобразования снижается.

Было показано, что значения ККМ этих производных хитозанов, выраженные в объемной концентрации ТДЦ цепей, одинаковы для всех ГМ-НМХ и близки к значению ККМ для ЦТАБ, что указывает на то, что молекулы ГМ-НМХ ведут себя в растворе как ансамбль свободных молекул мицеллообразующих ПАВ. Более того, это подтверждает общепринятое представление о незначительном вкладе электростатического отталкивания в свободную энергию мицеллообразования [44]. Действительно, образование мицелл определяется балансом между выигрышем в свободной энергии в результате гидрофобного взаимодействия между алкильными цепями в ядре мицеллы и потерей трансляционной энтропии свободных ПАВ и противоионов. В данном случае снижение ККМ с ростом рН и концентрации соли связано преимущественно с потерей трансляционной энтропии макроионов ГМ-НМ-хитозанов, обусловленной снижением эффективного заряда глюкозаминных групп.

ГМ-НМХ взаимодействуют с отрицательно заряженными липидными липосомами, моделирующими внутренний слой плазмидных мембран. Снижение флюидности (увеличение жесткости) липосомных мембран в жидкокристаллическом фазовом состоянии в результате взаимодействия с ГМ-НМ-хитозанами можно объяснить включением ТДЦ цепей, ковалентно связанных с глюкозаминными группами в липидный бислой, образованный алкильными группами фосфолипидов. В отличие от катионных ПАВ, в случае ГМ-НМХ возникают затруднения для их латеральной и трансверсальной диффузии по отношению к мембранам, что объясняет их низкую токсичность. Кроме того, преимущественное взаимодействие ГМ-НМХ с внутренним слоем биомембран приводит к дестабилизации эндосомальных мембран, что способствует высвобождению ДНК в цитоплазму. В целом, полученные результаты показывают, что ГМ-НМХ обладают интересными свойствами, позволяющими рассматривать их как потенциальные невирусные векторы трансфекции ДНК. Результаты исследования физико-химических свойств комплексов этих хитозанов с ДНК, а также эффективности их трансфекции как in vitro, так и in vivo будут опубликованы [46].

Работа была выполнена при поддержке французского Агентства против миопатии (AFM) и программы Эко-Нет (Eco-Net) Министерства иностранных дел Франции в рамках сотрудничества между Францией, Российской Федерацией и Украиной. В. Бабак работал приглашенным профессором в Университете Луи Пастера. Авторы благодарят доктора С. Grandfils из Института химии Льежского университета (Бельгия) и проф. J. Desbrières из лаборатории физикохимии полимеров Университета в г. По (Франция) за помощь в характеристике образцов НМ-хитозанов методами ПМР и эксклюзионной хроматографии.

## ЛИТЕРАТУРА

- 1. Xu Y., Szoka C F. Biochemistry, 1996, v. 35, p. 5616–5623.
- 2. Mel'nikov S.M., Sergeyev V.G., Yoshikawa K. J. Am. Chem. Soc., 1995, v. 117, p. 2401–2408.
- Clamme J.-P., Bernacchi S., Vuilleumier C., Duportail G., Mély Y. Biochim. Biophys. Acta, 2000, v. 1467, p. 347–361.
- 4. Llères D., Dauty E., Behr J.P., Mély Y., Duportail G. Chem. Phys. Lipids, 2001, v. 111, p. 59–71.
- Llères D., Clamme J.-P., Dauty E., Blessing T., Krishnamoorthy G., Duportail G., Mély Y. Langmuir, 2002, v. 18, p. 10340–10347.
- Sasaki T., Kawai K., Saijo-Kurita K., Ohno T. Toxicol. in vitro, 1992, v. 6, p. 451–457.
- 7. *Muzzarelli R.A.A.* In: Chitosan in Natural Chelating Polymers; Alginic acid, Chitin, and Chitosan. Ed. R. Belcher. Oxford: Pergamon Press, 1973, p. 144—176.
- 8. Muzzarelli R.A.A. Carbohydr. Polym., 1996, v. 29, p. 309.
- Romoren K., Thu B.J., Evensen O. J. Controlled Release, 2002, v. 85, p. 215–225.
- 10. Borchard G. Adv. Drug Delivery Rev., 2001, v. 52, p. 143-150.
- 11. *Rolland A.P.* Crit. Rev. Ther. Drug Carrier Syst., 1998, v. 15, p. 143–198.
- 12. Sato T., Ishii T., Okahata Y. Biomaterials, 2001, v. 22, p. 2075–2080.
- Venkatesh S., Smith T.J. Biotechnol. Appl. Biochem., 1998, v. 27, p. 265–267.
- 14. Cui Z., Mumper R.J. J. Controlled Release, 2001, v. 75, p. 409.

- Illum L., Jabbal-Gill I., Hinchcliffe M., Fisher A.N., Davis S.S. Adv. Drug Delivery Rev., 2001, v. 51, p. 81—96.
- 16. Hejazi R., Amiji M. J. Controlled Release, 2003, v. 89, p. 151-165.
- 17. Fang N., Chan V., Mao H.-Q., Leong K.W. Biomacromolecules, 2001, v. 2, p. 1161—1168.
- Mansouri S., Lavigne P., Corsi K., Benderdour M., Beaumont E., Fernandes J.C. Eur. J. Pharm. Biopharm., 2004, v. 57, p. 1–8.
- 19. Corsi K., Chellat F., Yahia L., Fernandes J.C. Biomaterials, 2003, v. 24, p. 1255–1264.
- 20. Erbacher P., Zou S., Bettinger T., Steffan A.-M., Rémy J.-S. Pharm. Res., 1998, v. 15, p. 1332–1339.
- 21. Rinaudo M., Pavlov G., Desbrières J. Polymer, 1999, v. 40, p. 7029-7032.
- 22. MacLaughlin F.C., Mumper R.J., Wang J., Tagliaferri J.M., Gill I., Hinchcliffe M., Rolland A.P. J. Controlled Release, 1998, v. 56, p. 259—272.
- 23. Koping-Hoggard M., Mel'nikova Y.S., Varum K.M., Lindman B., Artursson P. J. Gene. Med., 2003, v. 5, p. 130–141.
- 24. Lee M., Nah J.-W., Kwon Y., Koh J.J., Ko K.S., Kim S.W. Pharm. Res., 2001, v. 18, p. 427–431.
- 25. Thanou M., Florea B.I., Geldof M., Junginger H.E., Borchard G. Biomaterials, 2002, v. 23, p. 153—159.
- 26. Tommeraas K., Varum K.M., Christensen B.E., Smidsrod O. Carbohydr. Res., 2001, v. 333, p. 137–144.
- 27. *Tikhonov V.E., Stepnova E.A., Babak V.G. e. a.* Carbohydr. Polym., 2006, v. 64, p. 66–72.
- 28. Hirano S., Ohe Y., Ono H. Carbohydr Res., 1976, v. 47, p. 315-320.
- Domard A., Carter N. In: Chitin and Chitosan. Eds. G. Skjak-Braek, T. Anthonsen, P. Sandford. London—New York: Elsevier Applied Science, 1989, pp. 383—387.
- 30. Rinaudo M., Dung P.L., Gey C., Milas M. Int. J. Biol. Macr., 1992, v. 14, p. 121-128.
- Brugnerotto J., Desbrières J., Roberts G., Rinaudo M. Polymer, 2001, v. 42, p. 9921–9927.
- Countinho P.J.G., Castanheira E.M.S., Rei M.C., Oliveira M.E.C.D.R. J. Phys. Chem. B, 2002, v. 106, p. 12841—12846.
- 33. Cullis P.R., Hope M.J. In: Biochemistry of Lipids and Membranes. Eds. D.E. Vance, J.E. Vance. New York: Benjamin/Cummings, 1985, pp. 27–72.
- 34. Richardson S.C.W., Kolbe H.V.J., Duncan R. Int. J. Pharm., 1999, v. 178, p. 231-243.
- 35. *Tanford C*. The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York: Wiley, 1973, p. 10.
- 36. Babak V.G., Desbrières J., Tikhonov V.E. Colloid. Surf. A, 2005, v. 255, p. 119–130.
- 37. Rosen M.J. Surfactants and Interfacial Phenomena. 2-nd ed. New York: J.Wiley & Sons,, 1989.
- 38. Babak V.G., Pavlov A.N., Svitova T.F., Danilenko A.N., Egorov V.V., Varlamova E.A. Kolloid. Zhurn., 1996, v. 58, p. 1—8.
- 39. Chakraborty T., Ghosh S., Moulik S.P. J. Phys. Chem. B, 2005, v. 109, p. 14813—14823.
- 40. Konop A.J., Colby R.H. Langmuir, 1999, v. 15, p. 58-65.
- 41. Lee K.Y., Jo W.H., Kwon I.C., Kim Y.-H., Jeong S.Y. Langmuir, 1998, v. 14, p. 2329–2332.
- 42. Zana R. J. Colloid Interf. Sci., 1980, v. 78, p. 330-337.
- 43. Nagamine N., Nakamura H. Anal. Sci., 1998, v. 14, p. 405-406.
- 44. Murray R.C., Hartley G.S. Trans. Faraday Soc., 1935, v. 31, p. 183–189.
- 45. Attwood D., Florence A.T. Surfactant Systems: Their Chemistry, Pharmacy and Biology. New York: Chapman and Hall, 1983, p. 203.
- 46. Zhang X., Ercelen S., Duportail G., Schaub E., Tikhonov V., Slita A., Zarubaev V., Babak V., Mély Y. J. Gene Med., 2007 (sent)