цессе химического разоружения, создана и внедрена в практику функционирования аналитических лабораторий объектов по уничтожению ХО. Однако, как показывает опыт работ по метрологическому обеспечению объектов химического разоружения, в перечнях контролируемых веществ, приведенных в регламентах аналитического контроля, могут встречаться вещества (чаще всего это продукты детоксикации и деструкции токсичных химикатов), подлежащие контролю, но не имеющие соответствующих эталонов. Поэтому актуальным остается вопрос определения и актуализации перечня контролируемых веществ на вводимых в эксплуатацию объектах по уничтожению ХО и своевременная разработка и внедрение в практику химикоаналитического контроля необходимых государственных стандартных образцов этих веществ.

#### ЛИТЕРАТУРА

- 1. ГОСТ 8.315-97 ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основные положения. М.: Изд-во стандартов, 1997.
- 2. МИ 2574-2000. Стандартные образцы состава чистых органических веществ. Методы аттестации. Основные положения. Екатеринбург, УНИИМ, 2000.
- 3. ГОСТ Р 8.563-96 ГСИ. Методики выполнения измерений. М.: Изд-во стандартов, 1996.
- 4. ГОСТ Р ИСО 5725-2002 «Точность (правильность и прецизионность) методов и результатов измерений». М.: Издво стандартов, 2002.
- 5. ГОСТ 8.532-2002 ГСИ. Стандартные образцы состава веществ и материалов. Межлабораторная метрологическая аттестация. М.: Изд-во стандартов, 2002.

#### УДК 543.544:504.5

# Анализ продуктов деструкции фосфорорганических отравляющих веществ гибридными методами

# А. В. Шантроха, С. С. Алексенко, И. В. Егоров, В. Г. Мандыч

Саратовский военный институт радиационной, химической и биологической защиты

К группе показателей производственной и экологической безопасности на объектах по уничтожению химического оружия и прилегающих территориях [1] относятся концентрации отравляющих веществ и продуктов их детоксикации в воздухе рабочей, промышленной, санитарно-защитной зон и зоне защитных мероприятий; в потоках абгазов; в сточных, дождевых, паводковых водах и воде водоемов селитебных мест; в почве промышленной, санитарно-защитной зон и зоны защитных мероприятий. Таким образом, аналитический контроль продуктов деструкции отравляющих веществ составляет одну из функций производственного экологического мониторинга на объектах по уничтожению химического оружия и прилегающих территориях.

Наиболее сложную проблему составляет анализ продуктов деструкции фосфорорганических отравляющих веществ (ФОВ). И если нормативно-методическая база, строго регламентирующая проведение отдельных стадий химического анализа (пробоотбор, консервирование и транспортировка проб, пробоподготовка, получение и обработка результатов) самих объектов детоксикации — ФОВ разработана достаточно полно, то для анализа продуктов их деструкции большинство методик находится на стадии разработки и аттестации.

Из продуктов деструкции ФОВ в перечень веществ, подлежащих аналитическому контролю на уровне предельно допустимых концентраций в рабочей зоне, атмосферном воздухе, в воде и почве, входят алкилметилфосфоновые кислоты, так называемые кислые эфиры:

О-изопропилметилфосфонат (продукт гидролиза зарина),

О-пинаколилметилфосфонат (продукт гидролиза зомана),

О-изобутилметилфосфонат (продукт гидролиза вещества типа Vx),

диэфиры (полные эфиры метилфосфоновой кислоты):

О,О'-диизопропилметилфосфонат,

О,О'-дипинаколилметилфосфонат,

О,О'-диизобутилметилфосфонат)

и метилфосфоновая кислота.

Все эти продукты деструкции малотоксичны [2].

Структура указанных соединений несет в себе отличительные особенности, достаточно информативные для их идентификации и заключения об источнике происхождения (в данном случае типе исходного ФОВ). Поэтому результаты их детектирования и идентификации в различных средах могут рассматриваться как подтверждающий факт экспозиции ФОВ в анализируемые объекты. Согласно [3], алкилметилфосфоновые кислоты принимаются за маркеры исходных ФОВ. Несмотря на достаточную стабильность, алкилметилфосфоновые кислоты могут претерпевать в окружающей среде дальнейшие превращения, в частности гидролиз с выделением метилфосфоновой кислоты — конечного продукта гидролиза ФОВ (рис. 1).

Определение указанного ряда продуктов деструкции ФОВ и продуктов их гидролиза в окружающей среде требует проведения стадии предварительного разделения всех компонентов [4]. Таким образом, процедура анализа проб на содержание продуктов деструкции ФОВ включает три стадии: разделение компонентов, их идентификацию и количественное определение. Такой подход к анализу наиболее полно может быть реализован при использовании гибридных методов.

В связи с задачей уничтожения ФОВ и необходимостью метрологического обеспечения экологического контроля на объектах по уничтожению химического оружия представляется актуальным обобщение

Рис. 1. Основные химические превращения зарина в природных объектах

результатов исследований в области применения гибридных методов для разделения, идентификации и определения продуктов деструкции ФОВ.

В табл. 1 представлены имеющиеся на сегодняшний день аттестованные методики анализа продуктов деструкции ФОВ, использующие методы разделения. Как видно из таблицы, подобных методик немного и требуется проведение значительного объема исследований с последующей аттестацией новых методик и адаптацией их к условиям работы лабораторий объектов по уничтожению химического оружия.

Исходя из принципиального различия в физикохимических свойствах полярных продуктов деструкции ФОВ (кислые эфиры) и неполярных продуктов (диэфиры) и вытекающих из этого особенностей условий пробоподготовки и определения, можно предложить следующую схему выбора гибридных методов (рис. 2). Как правило, из гибридных методов в химико-аналитических лабораториях используются газовая и жидкостная хроматография с различными видами селективного детектирования и капиллярный электрофорез.

### Газохроматографический анализ

Газовая хроматография является доминирующим методом анализа ФОВ. Вместе с тем разработанных на ее основе аттестованных методик для анализа продуктов деструкции ФОВ немного. Основное различие в методиках, имеющее решающее значение для определения алкилфосфонатов методом газовой хроматографии, связано с разной летучестью и полярностью этих продуктов, что обусловливает специфику стадии пробоподготовки. Если диэфиры алкилфосфоновых кислот, растворимые в неполярных органических растворителях, анализируют напрямую, без преобразования газохроматографическими методами, то для по-

Таблица 1

| Аттестованные методики  | определения | продуктов | деструкции | ФОВ |
|-------------------------|-------------|-----------|------------|-----|
| ин тестованные методики | определения | продуктов | деструкции |     |

| Определяемое вещество                 | Метод анализа            | Анализируемый<br>объект                                                  | Диапазон определяемых содержаний                       | Относительная погрешность, % |
|---------------------------------------|--------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|------------------------------|
| О,О'-Диизобутилметилфосфонат          | Газовая<br>хроматография | Почва                                                                    | $(1,5-15) \cdot 10^{-3}$ мг/г                          | 17                           |
|                                       |                          | Вода                                                                     | $0,2-2,0$ мг/дм $^3$                                   |                              |
| O,O'-Диизобутилметилпиро-<br>фосфонат | То же                    | Реакционные массы после детоксикации вещества типа Vx                    | $(10-100,0)\cdot 10^{-3} \text{ MF/F}$                 | 9                            |
| О-Изобутилметилфосфонат               | Капиллярный электрофорез | Реакционные массы после детоксикации вещества типа Vx                    | 10—990 мг/г                                            | 24                           |
| О,О'-Диизопропилметилфосфонат         | Газовая<br>хроматография | Воздух рабочей зоны                                                      | $1,0 \cdot 10^{-4} - 1,0 \cdot 10^{-1} \text{ мг/м}^3$ | 18                           |
| О,О'-Диизобутилметилфосфонат          |                          |                                                                          |                                                        | 21                           |
| ),O'-Дипинаколилметилфосфонат         |                          |                                                                          | 18                                                     |                              |
| О,О'-Диизопропилметилфосфонат         | Газовая                  | Реакционные массы $5,0 \cdot 10^{-4} - 5,0 \cdot 10^{-1} \text{ мг/м}^3$ | 15                                                     |                              |
| О,О'-Дипинаколилметилфосфонат         | хроматография            |                                                                          |                                                        | 14                           |

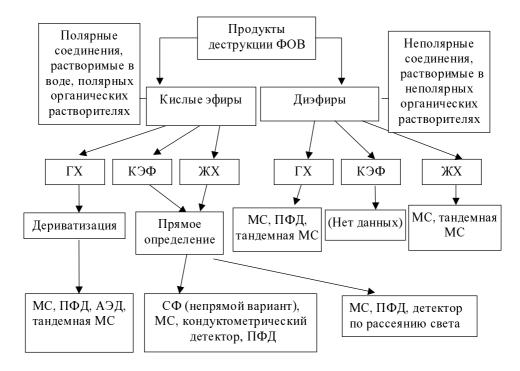



Рис. 2. Схема анализа кислых эфиров и диэфиров (продуктов гидролиза ФОВ):

 $\Gamma X$  — газовая хроматография,  $K \Theta \Phi$  — капиллярный электрофорез, K X — жидкостная хроматография,  $K O \Phi$  — масс-спектрометрический детектор,  $\Pi \Phi \Pi$  — пламенно-фотометрический детектор,  $A O \Phi$  — атомно-эмиссионный детектор,  $C \Phi$  — спектрофотометрический детектор

лярных кислых эфиров, имеющих наибольшую растворимость в водных матрицах, обязательным условием является их дериватизация. Для перевода в хроматографируемые соединения вещества, как правило, метилируют или силилируют, иногда получают пентафторбензильные производные. Для дериватизации кислых эфиров наиболее часто используют диазометан [5] и N,О-бис(триметилсилил)трифторацетамид [3, 6], причем последний считается наилучшим реагентом.

Так, в работе [5] показано, что для определения вещества типа Vx и сопутствующих примесей (диэфир, алкилфосфоновые кислоты, азот- и серосодержащие соединения) может быть использован газовый хроматограф с пламенно-ионизационным детектором, при этом нехроматографируемые продукты следует обработать диазометаном для перевода их в метиловые эфиры. В связи с тем, что на этапе детоксикации ФОВ возникает необходимость количественного определения свободного моноэтаноламина (дегазирующее средство) и его солей, а также фтор-, хлор- и алкилфосфоновых кислот в реакционных массах, предложена методика на основе газовой хроматографии с пламенноионизационным детектированием с предварительным переводом веществ в ацильные производные путем обработки уксусным ангидридом [7].

К одной из сложных аналитических задач относятся обнаружение, идентификация и количественное определение продуктов деструкции токсичных веществ в биологических пробах. Это связано с тем, что, вопервых, необходимо определять вещества на уровне чрезвычайно низких концентраций и, во-вторых, требуется проведение достаточно сложной пробоподго-

товки с отделением матрицы крови, содержащей высокомолекулярные соединения, или же с обессоливанием образца в случае анализа мочи. Применение газовой хроматографии в сочетании с масс-спектрометрическим детектированием (ГХ-МС-анализ) является практически единственно возможным вариантом решения данной задачи [8].

Повышение чувствительности может быть достигнуто при регистрации производных метаболитов  $\Phi OB$  с использованием тандемного варианта массспектрометрии.

Ионизацию пробы в методах ГХ-МС и ГХ-МС-МС анализа объектов окружающей среды и реакционных масс обычно осуществляют в режиме химической ионизации (положительной и отрицательной) и электронного удара. Масс-спектрометрия с «мягкой» химической ионизацией позволяет оценить молекулярные массы ионов-фрагментов анализируемого соединения, тогда как электронный удар, приводя к фрагментации молекул, дает важную структурную информацию [9]. Анализ закономерностей распада фосфорсодержащих токсичных веществ в условиях газовой хроматографии с ионизацией электронным ударом рассмотрен в работе [10].

Хорошей альтернативой варианта ГХ-МС является высокоэффективная жидкостная хроматография (ВЭЖХ) в сочетании с масс-спектрометрией. В этом случае не требуется выделение определяемых компонентов из проб воды и получение летучих производных, и тем самым открывается перспектива значительного повышения чувствительности анализа.

Анализ методом жидкостной хроматографии

Жидкостная хроматография в ее различных вариантах является универсальным методом для анализа продуктов деструкции токсичных веществ, позволяющим определять полярные, неполярные, термолабильные и летучие соединения. К основному недостатку этого метода в сравнении с газовой хроматографией следует отнести отсутствие разнообразия сравнимых селективных и чувствительных детекторов [4]. Для увеличения селективности к ФОВ был создан интерфейс и апробировано сочетание ВЭЖХ-пламеннофотометрический детектор [11, 12].

Первая публикация по применению сочетания ВЭЖХ-масс-спектрометрия в анализе продуктов деструкции датируется 1988 годом [13].

С развитием масс-спектрометрии для идентификации фрагментов алкилфосфоновых кислот стало использоваться сочетание ВЭЖХ-масс-спектрометрия с электроспреем (ESI — electrospray ionization) вводимой пробы в варианте положительной и отрицательной

ионизации [14], причем масс-спектры отрицательной ионизации дают более четкую информацию, благодаря преобладанию депротонированного молекулярного иона и отсутствию перегруженности спектра пиками. Помимо масс-спектрометрического детектора испытан также детектор по рассеянию света [15]. Применение ВЭЖХ-масс-спектрометрии для анализа реальных объектов (почвы, воды) описано в работах [16, 17]. В целом работы в области этого гибридного метода по численности пока уступают аналитическим разработкам на основе газовой хроматографии, но, по нашему мнению, они будут активно развиваться.

## Анализ методом капиллярного электрофореза

В отличие от газовой хроматографии, на основе которой разработаны методы анализа кислых эфиров и диэфиров, образующихся при деструкции ФОВ, метод капиллярного электрофореза пока используется для определения только кислых эфиров, причем уступает газовой хроматографии и ВЭЖХ по чувствитель-

#### Определение продуктов деструкции ФОВ

| Определяемое соединение                                                                                                                    | Детектирование                                                      | Условия                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--|
|                                                                                                                                            | _                                                                   | разность потенциалов,<br>температура |  |
| МФК*, О-изопропилМФК, этилМФК, О-пинаколилМФК, этилтиофосфоновая к-та                                                                      | Масс-спектрометрия<br>(М-H) <sup>-</sup> -ионы                      | 30 кВ                                |  |
| МФК (1), О-изопропилМФК (2), этилМФК (3), О-пинаколилМФК (4)                                                                               | Непрямая спектрофотометрия (λ=254 нм)                               | —18 кВ                               |  |
| О-Изобутилметилтиофосфоновая к-та, этилметилтиофосфоновая к-та                                                                             | Прямая спектрофотометрия (λ=200 нм)                                 | 25 κB<br>25 °C                       |  |
| МФК, О-изопропилМФК, этилМФК, О-пинаколилМФК, 1,2-диметилпропилМФК, ЭФК**, циклогексилЭФК, этилЭФК                                         | Непрямая спектрофотометрия (λ=254 нм)                               | 30 κB<br>35 °C                       |  |
| МетилМФК, этилМФК, О-изопропилМФК, 1,2-диметилпропилМФК, О-пинаколилМФК, этилЭФК, 1,2-диметилпропилЭФК, циклогексилЭФК                     | Непрямая спектрофотометрия (λ=254 нм)                               | -20 κB<br>20 °C                      |  |
| МФК, О-изопропилМФК, этилМФК, О-пинаколилМФК                                                                                               | Кондуктометрия                                                      | −25 кВ<br>35 °C                      |  |
| МФК, О-изопропилМФК, этилМФК, О-пинаколилМФК, циклогексилМФК, метилМФК, циклопентилМФК, ЭФК, этилЭФК, 1,2-диметилпропилЭФК, циклогексилЭФК | Непрямая спектрофотометрия ( $\lambda$ =254 нм); масс-спектрометрия | 30 κB<br>25 °C                       |  |
| О-изопропилМФК (1), аддукты с моноэтаноламином, О-пинаколилМФК (2), аддукты с моноэтаноламином                                             | Непрямая спектрофотометрия ( $\lambda$ =210 нм), кондуктометрия     | −(20−30) кВ<br>40 °C                 |  |
| $M\Phi K,  O$ -изопропил $M\Phi K,  $ этил $M\Phi K,  O$ -пинаколил $M\Phi K$                                                              | Непрямая спектрофотометрия (λ=210 нм)                               | −30 кВ<br>40 °C                      |  |
| МФК (1), О-изопропилМФК, этилМФК,<br>О-пинаколилМФК                                                                                        | Непрямая спектрофотометрия (λ=214 нм)                               | −(15−20) кВ<br>25 °C                 |  |

<sup>\*</sup> Метилфосфоновая кислота. \*\* Этилфосфоновая кислота.

ности. В то же время следует признать актуальность адаптации метода капиллярного электрофореза для анализа рассматриваемых соединений, принимая во внимание следующие обстоятельства. Кислые эфиры являются основными и доминирующими продуктами деструкции ФОВ и их концентрация достаточно высока в реакционных массах, так что не требуется высокая чувствительность определения. Кроме того, это полярные соединения, растворимые в водных растворах и легко сочетающиеся с фоновыми электролитами в капиллярном электрофорезе, что упрощает пробоподготовку при анализе реальных объектов и не требует дериватизации веществ, как это имеет место в газовой хроматографии. Анализ же диэфиров при использовании капиллярного электрофореза в отличие от газовой хроматографии вызывает некоторые затруднения вследствие растворимости этих веществ в неполярных органических растворителях. Можно предположить, что для анализа диэфиров будет целесообразным применение неводных сред в качестве фоновых электролитов, а для определения в одном эксперименте как полярных кислых, так и неполярных диэфиров можно реализовать варианты мицеллярной или микроэмульсионной электрокинетической хроматографии. В таких супрамолекулярных организованных наносистемах, какими являются мицеллярные и микроэмульсионные системы, растворяются несовместимые по физическим свойствам вещества [18].

Первые работы по капиллярному электрофорезу продуктов деструкции ФОВ опубликованы в 1993 г. [19, 20], они посвящены разделению четырех кислых эфиров с применением непрямого спектрофотометрического [19] и масс-спектрометрического детектирования [20]. Имеется публикация по использованию данного метода в сочетании с пламенно-фотометрическим детектором для анализа образцов почвы и воды [12]. Условия определения алкилметилфосфоновых кислот методом капиллярного электрофореза с различными видами детекторов обобщены в табл. 3. Следует отметить, что прием непрямого

Таблица 3

#### методом капиллярного электрофореза

| электрофореза                                                                                                                                                                          | Определяемая<br>концентрация                                          | Пробоподготовка                                           | Анализируемый<br>объект      | Ссылка |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|------------------------------|--------|
| фоновый электролит                                                                                                                                                                     | <del>-</del>                                                          |                                                           |                              |        |
| ${ m CH_3COONH_4,\ 20\ MM}-{ m водный\ аммиак}\ ({ m pH}=9)$                                                                                                                           | 5-112 мг/л<br>Предел обнаружения 10—<br>30 пг                         | _                                                         | _                            | [20]   |
| Хромат, 4,5—0,5 мМ, модификатор электроосмотического потока                                                                                                                            | 1 - 7,0  мг/л, 2 - 3,1  мг/л<br>3 - 3,3  мг/л, 4 - 3,3  мг/л          |                                                           | Подземная и<br>питьевая воды | [21]   |
| Боратный буфер, $10 \text{ мM}$ — додецилсульфат натрия, $50 \text{ мM}$ (pH = 9), условия микроэмульсионной электрокинетической хроматографии                                         | Предел обнаружения<br>1—10 мг/л                                       | -                                                         | _                            | [22]   |
| Сорбиновая к-та, 5 мМ — декаметонийбромид, 0,1 мМ (pH = 6)                                                                                                                             | 5—50 мг/л                                                             | Экстракция водой;<br>центрифугирование<br>(9000g, 30 мин) | Почва                        | [23]   |
| Сорбиновая к-та, 5 мМ — полибренгидроксиламин, 1,6 мМ (рН = 6)                                                                                                                         | 10 мг/л                                                               | _                                                         | _                            | [24]   |
| L-гистидин, $30 \text{ мM} - 2$ -(N-морфолино)- этансульфоновая к-та, $30 \text{ мM} - \text{тетраде-}$ цилтриметиламмонийгидроксид (pH = 6,5); тритон X-100, $0,03\%$                 | 6—60 мг/л, предел обнаружения 6 мг/л                                  | Экстракция водой;<br>центрифугирование<br>(1640g, 20 мин) | Почва, вода                  | [25]   |
| Сорбиновая к-та, 5 мМ — водный аммиак (pH = $6,5$ )                                                                                                                                    | Предел обнаружения<br>5 мг/л                                          | _                                                         | Питьевая вода                | [26]   |
| Уксусная кислота, 400 мМ (pH $\approx$ 2,5) — для кондуктометра; борная к-та — фенилфосфоновая к-та, 10 мМ — тритон X-100, 0,03% — додецилтриметиламмонийгидроксид, 0,35 мМ (pH = 4,0) | <b>1</b> и <b>2</b> — 0,5—100 мг/л<br>Предел обнаружения<br>100 мкг/л | Экстракция водой                                          | Реакционные<br>массы         | [27]   |
| Борная к-та — фенилфосфоновая к-та, $10 \text{мM}$ — тритон X-100, $0.03\%$ — додецилметиламмонийгидроксид, $0.35 \text{ мM}$ (pH = $4.0$ )                                            | На уровне мкг/л (электро-<br>кинетический ввод)                       | Ультразвуковая экстракция водой; центрифугирование        | Почва, вода                  | [28]   |
| Глутаминовая к-та, $10 \text{ мM}$ —фенилфосфоновая к-та, $1 \text{ мM}$ (pH=3,22) — производное сульфобетаина, $1 \text{ мM}$                                                         | (1) —5—100 мкМ, предел обнаружения 2 мкМ                              | _                                                         | _                            | [29]   |

спектрофотометрического детектирования является общим при определении веществ, не содержащих хромофорные группы, к которым относятся и продукты деструкции ФОВ. Как видно из табл. 3 в качестве хромофорного реагента в варианте непрямого детектирования применяют сорбиновую кислоту [23, 24, 26] или фенилфосфоновую кислоту [27—29]. Чувствительность определения методом капиллярного электрофореза напрямую зависит от концентрации компонентов фонового электролита, от отношения фонового поглощения к шуму и отсутствия конкурирующего замещения молекул хромофора ионами фонового электролита [29].

Поскольку численное значение параметра кислотности метилфосфоновой кислоты и ее производных не превышает 3 [2], то в растворах эти соединения будут существовать в виде анионов. Это открывает возможность применения вариантов метода, осуществляемых при следующих условиях капиллярного электрофореза:

- применение фоновых электролитов с pH > 4 без модификации поверхности капилляра, когда скорость электроосмотического потока превышает величину электрофоретической миграции частиц (анионов), при этом анализируемые соединения выносятся к катоду, где и происходит детектирование; данный вариант пока практически не нашел применения;
- динамическая модификация поверхности капилляра, приводящая к нивелированию электроосмотического потока с последующим обращением полярности электродов, при этом анионы алкилфосфоновых кислот мигрируют к аноду в отсутствие электроосмотического противотока; этот вариант используется практически во всех электрофоретических определениях [21, 23, 24, 26—29].

Реализация этих вариантов сопряжена с проблемой модификации поверхности капилляра. Для получения воспроизводимых результатов используемые реагенты должны удовлетворять определенным требованиям, а именно, должны закрепляться на поверхности капилляра достаточно прочно (для проведения хотя бы однократного определения), но в то же время не необратимо; не взаимодействовать с определяемыми веществами.

Как правило, для модификации поверхности используют ПАВ и применяют полибрен (синтетический полимер) [24], тетрадецилтриметиламмония гидроксид [25], имеющий одну углеводородную цепочку, и дидодецилтриметиламмония гидроксид [27, 28], имеющий в своей структуре две углеводородные цепочки и образующий более устойчивый модифицирующий слой.

Поскольку кислые эфиры (алкилметилфосфоновые кислоты) хорошо растворимы в воде, то подготовка проб почвы может ограничиваться экстракцией водой с применением ультразвука [23, 25, 27, 28].

В заключение отметим, что доминирующим для анализа алкилфосфонатов остается пока газовая хроматография, несколько меньше применяют жидкостную хроматографию. Оба метода в комбинации с масс-спектрометрией (в том числе и с тандемным вариантом) незаменимы в идентификации и определении продуктов деструкции токсичных веществ, осо-

бенно при анализе образцов неизвестного состава в объектах окружающей среды, где их концентрация невелика [30]. Все рассмотренные три метода — газовая, жидкостная хроматография и капиллярный электрофорез в сочетании с селективными детекторами — могут быть с успехом применены для оперативного анализа на объектах по уничтожению ФОВ.

#### ЛИТЕРАТУРА

- 1. Капашин В.П., Толстых А.В., Мандыч В.Г. и др. Производственный экологический мониторинг объектов по уничтожению химического оружия. Учебное пособие. Саратов: СВИРХБЗ, 2006, 57 с.
- 2. *Munro N.B., Talmage S.S., Griffin G.D. e. a.* Envir. Health Persp., 1999, v. 107, № 12, p. 933—974.
- Регѕр., 1999, v. 107, № 12, p. 933—974. 3. *Савельева Е.И., Радилов А.С., Кузнецова Т.А., Волынец Н.Ф.* Ж. прикл. химии, 2001, т. 74, № 10, с. 1671—1676.
- Hooijschuur E.W.J., Kientz Ch.E., Brinkman U.A.Th. J. Chromatogr. A, 2002, v. 982, p. 177—200.
- Станьков И.Н., Поляков В.С., Сергеева А.А., Ланин С.Н. Ж. аналит. химии, 1999, т. 54, № 2, с. 214—218.
- Rohrbaugh D.K., Sarver E.W. J. Chromatogr. A, 1998, v. 809, p. 141–150.
- 7. Станьков И.Н., Ярова В.А., Сергеева А.А., Поташова И.В., Тарасов С.Н., Самофалова Н.Н. Ж. аналит. химии, 2000, т. 55, № 2, с. 175—179.
- 8. *Рыбальченко И.В., Хлебникова Н.С., Савельева Е.И., Радилов А.С., Рембовский В.Р.* Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2005, т. 49, № 2, с. 26—30.
- 9. Rohrbaugh D.K. J. Chromatogr. A, 1998, v. 809, p. 131.
- 10. *Бродский Е.С., Киреев А.Ф*. Ж. аналит. химии, 1997, т. 52, № 8, с. 884—888.
- 11. Kientz Ch.E., Verweij A., De Jong G.J., Brinkman U.A.Th J. Microcol. Sep., 1992, v. 4, p. 465.
- Hooijschuur E.W.J., Kientz Ch.E., Brinkman U.A.Th. J. Chromatogr. A, 2001, v. 928, p. 187–199.
- 13. Wils E.R.J., Hulst A.G. J. Chromatogr., 1988, v. 454, p. 261.
- 14. Borrett V.T., Mathews R.J., Colton R., Traeger J.C. Rapid Commun. Mass Spectrom., 1996, v. 10, p. 114.
- Mercier J.-P., Morin Ph., Dreux M., Tambute A. J. Chromatogr. A, 1999, v. 849, p. 197.
- 16. Black R.M., Read R.W. Ibid., 1998, v. 794, p. 233-244.
- 17. D'Agostino P.A., Hancock J.R., Provost L.R. Ibid., 2001, v. 912, p. 291–299.
- 18. *Штыков С.Н.* Ж. аналит. химии, 2002, т. 57, № 10, с. 1018—1028.
- Pianetti G.A., Taverna M., Baillet A., Mahuzier G., Baylocq-Ferrier D. J. Chromatogr., 1993, v. 630, p. 371.
- Kostiainen R., Bruins A.P., Hakkinen V.M.A. Ibid., 1993, v. 634, p. 113–118.
- 21. Oehrle S.A., Bossle P.C. Ibid., 1995, v. 692, p. 247-252.
- Cheicante R.L., Stuff J.R., Durst H.D. J. Chromatogr. A, 1995, v. 711, p. 347–352.
- Mercier J.-P., Morin Ph., Dreux M., Tambute A. Ibid, 1996, v. 741, p. 279—285.
- 24. Mercier J.-P., Morin Ph., Dreux M., Tambute A. Ibid., 1997, v. 779, p. 245—252.
- 25. Rosso T.E., Bossle P.C. Ibid., 1998, v. 824, p. 125-134.
- 26. Mercier J.P., Chaimbault P., Morin P., Dreux M., Tambute A. Ibid., 1998, v. 825, p. 71–80.
- 27. Nassar A.-E.F., Lucas S.V. Anal. Chem., 1998, v. 70, p. 3598—3604.
- 28. Nassar A.-E.F., Lucas S.V. Ibid., 1999, v. 71, p. 1285—1292.
- Melanson J.E., Wong B.L.-Y., Boulet C.A., Lusy C.A. J. Chromatogr. A, 2001, v. 920, p. 359

  –365.
- 30. Kientz Ch.E. Ibid., 1998, v. 814, p. 1-23.