УДК 531.1

Кинетические, спектральные и квантово-химические исследования термических превращений перфторолефинов

Ю. А. Колбановский, Ю. А. Борисов, Б. Ц. Гарретт, Н. Н. Буравцев, И. В. Билера

КОЛБАНОВСКИЙ ЮЛИЙ АБРАМОВИЧ — доктор химических наук, профессор, главный научный сотрудник Института нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН). Область научных интересов: кинетика и механизм газофазных реакций, химическая технология, процессы технологического и экологического горения.

БОРИСОВ ЮРИЙ АНДРЕЕВИЧ — доктор химических наук, профессор, заведующий лаборатории компьютерной химии Института элементоорганических соединений им. А.Н.Несмеянова РАН (ИНЭОС РАН). Область научных интересов: квантовая химия органических соединений.

БУРАВЦЕВ НИКОЛАЙ НИКОЛАЕВИЧ — кандидат химических наук, старший научный сотрудник ИНХС РАН. Область научных интересов: кинетика и механизм газофазных реакций, математическое моделирование сложных процессов.

БИЛЕРА ИГОРЬ ВАСИЛЬЕВИЧ — кандидат химических наук, старший научный сотрудник ИНХС РАН. Область научных интересов: кинетика и механизм газофазных реакций, процессы технологического и экологического горения.

119071 Москва, Ленинский проспект, д. 29, ИНХС РАН, тел. (095)955-48-97, E-mail kolbanovsky@ips.ac.ru

Проведено рассмотрение результатов экспериментальных и теоретических исследований термических превращений низших перфторолефинов. Установлено, что при достижении определенного уровня (порога) колебательно-вращательного возбуждения в пределах основного электронного состояния плоская структура молекул C_nF_{2n} меняется на *анти*-конфигурацию. Молекулы перфторолефинов в *анти*-конфигурации приобретают свойства бирадикалоидов, что сопровождается качественными изменениями их спектров поглощения и реакционной способности.

Впервые обнаружено, что отношение заселенностей по Малликену σ - и π -составляющих С=С связи фторолефинов предопределяет спиновое состояние карбенов, образующихся при ее разрыве.

Рассмотрены механизмы термического синтеза высших фторолефинов из низших, получены энергетические диаграммы для этих процессов. Проведен анализ бирадикальных стадий ряда реакций с участием анти- конфигураций перфторолефинов.

Предложены три возможных направления совершенствования технологии пиролитического синтеза C_3F_6 из C_2F_4 .

Термические превращения низших перфторолефинов $C_n F_{2n}$, в первую очередь тетрафторэтилена, составляют предмет постоянного внимания исследователей. Это обусловлено ролью этих процессов в промышленности фторполимеров и фторкаучуков, мономеры которых получают именно таким способом.

В настоящей статье мы впервые представляем результаты экспериментальных исследований термических превращений в системах 2С4F, 3С6F и 4С8F с анализом и теоретическим обоснованием выдвигаемых представлений с помощью самых современных расчетных неэмпирических квантово-химических методов.

Мы стремились дать по возможности подробные сведения, каким образом и почему получаются при термических превращениях перфторолефинов те или иные продукты и какие условия можно считать благоприятными для практических целей.

анти-Конфигурации перфторолефинов предшественники их термических превращений

Кинетика термических превращений низших перфторолефинов хорошо изучена в статических и трубчатых реакторах [1—9], а также в реакторах, обеспечивающих протекание процесса в строго гомогенных условиях (влияние стенок практически отсутствует, ударные трубы [10—13], адиабатическое сжатие [14— 16]). Результаты, полученные в различных реакторая, во многом совпадают. Для всех низших перфторолефинов $C_n F_{2n}$ в условиях пиролиза характерно отщепление синглетного дифторкарбена CF_2 . Он рекомбинирует в тетрафторэтилен или участвует в реакциях присоединения по двойной связи.

Следует отметить, что до наших исследований не было ясности относительно того, какие соединения являются интермедиатами в термических превращениях перфторолефинов. Соответственно не было и надежно обоснованных представлений о детальном механизме этих процессов. Так, до недавнего времени оставался дискуссионным механизм синтеза такого важного мономера, как гексафторпропилен [16]. Мы использовали метод импульсного адиабатического сжатия (он позволяет изучать кинетику газофазных реакций при объемном нагревании реагентов в строго гомогенных условиях протекания реакции [17]) в сочетании со спектроскопией в УФ- и видимой областях спектра [18, 19].

Квантово-химическое исследование различных структур, возникающих при движении вдоль координаты реакции на поверхности потенциальной энергии (ППЭ) основного электронного терма перфторолефинов, были выполнены в рамках теории возмущения Меллера-Плессе (MP2, MP3, MP4) [20] и теории сцепленных кластеров (CCSD, CCSD(T)) [21, 22] с использованием базиса 6-31G* и коррелированного базиса Даннинга aug-cc-pVDZ [23]. Оптимизацию геометрии структур проводили в рамках теории MP2/6-31G*. Метод адекватно описывает геометрическое и электронное строение органических галогенсодержащих соединений [24] и перфторолефинов [25]. Расчеты проводили при использовании программы GAUSSIAN-98 [26] на суперкомпьютерах CRAY J-90 в США.

На синглетной ППЭ системы 2С4F помимо глобального минимума тетрафторэтилена $F_2C=CF_2$, имеется еще два локальных минимума [27—33]. Они принадлежат карбенам 2CF₂ [29] и CFCF₃ [30, 33], у которых энтальпия образования выше [33] C_2F_4 на 68,7 и 38,5 ккал/моль соответственно. «Скрученная» структура синглетного C_2F_4 и мостиковые синглетные структуры не дают локального минимума на ППЭ и располагаются выше уровня плоской молекулы C_2F_4 на 54 ккал/моль [27, 28] и 118,9 ккал/моль [29] соответственно. Участие карбена CF₂ в термических превращениях перфторолефинов прямо доказано спектральными методами [16, 34].

Применение кинетической спектроскопии при адиабатическом нагреве C_2F_4 до предпиролизных температур (600—750 К) привело к неожиданному результату [16, 18, 34]. В условиях, при которых CF_2 и стабильные конечные продукты процесса не образуются, спектр поглощения C_2F_4 качественно изменяется: в нем появляются две новых полосы — в УФ ($\lambda_{max} = 236,5$ нм) и видимой ($\lambda_{max} = 500$ нм) областях спектра (рис. 1). В дальнейшем

Рис. 1 УФ-Спектры C_2F_4 [35] и СFСF₃ [36] (комнатная температура) и спектр $C_2F_4^*$ после нагревания 10 % (об.) C_2F_4 в Ar до 828К.

Коэффициенты экстинкции: ε_{188} (C₂F₄)=5,21·10⁶ [35]; ε_{465} (CFCF₃)=10⁵ [36]; $\varepsilon_{236,5}$ (C₂F₄*) = 3,6·10⁶ см²/моль (наши оценки) было показано, что аналогичная картина наблюдается также при импульсном нагревании других низших перфторолефинов [37] и этилена [38]. Спектры поглощения карбенов CF₂ (характерный максимум полосы поглощения $\lambda_{\text{max}} = 271$ нм) [39] и CF₃CF ($\lambda_{\text{max}} = 250$ нм и $\lambda_{\text{max}} = 465$ нм) [40] существенно отличаются от спектра нагретого тетрафторэтилена.

Кинетические эксперименты по нагреванию C_2F_4 при различных начальных концентрациях показали, что прямая и обратная реакции образования химического соединения, поглощающего свет при 236,5 и 500 нм, имеют первый порядок. Это означает, что химический состав этой молекулы (обозначим ее $C_2F_4^*$) не отличается от состава исходного вещества [16, 34]. По данным кинетической спектроскопии исходный тетрафторэтилен и $C_2F_4^*$ находятся в равновесии:

$$C_2F_4 \rightleftarrows C_2F_4^* - 18,4$$
 ккал/моль (1,-1)

Энтальпия образования $C_2F_4^*$ существенно меньше энтальпии образования $2CF_2$ и CFCF₃. Совокупность спектральных и энергетических данных показывает, что $C_2F_4^*$ не может быть отнесен ни к одному из этих карбенов. Однако при тщательном поиске с использованием современных квантово-химических расчетных методов в системе 2C4F новых локальных минимумов не обнаружено [41].

Оказалось также, что образование $C_2F_4^*$ происходит при рекомбинации карбенов CF_2 . Это впервые было обнаружено нами при изучении пиролиза перфторметилциклопропана, который описывается реакциями (2), (3):

$$CF_3$$

 $rac{C}{F_3}$
 $rac{C}{F_2}
ac{C_3}{F_6} + CF_2 - 28,0$ ккал/моль (2, -2)
 $CF_2 + CF_2 \rightarrow C_2F_4^* + 50,6$ ккал/моль (3)

Когда перфторметилциклопропан интенсивно разлагается с образованием CF_2 по реакции (2), происходит быстрая рекомбинация CF_2 и появляется поглощение при тех же длинах волн, при которых поглощает C_2F_4 , нагретый до более высоких температур, т.е. $C_2F_4^*$. При этом интенсивность поглощения молекулой $C_2F_4^*$ ($\lambda = 500$ и 236,5 нм) при рекомбинации CF_2 в интервале температур 600—800 К по реакции (3), в два раза выше, чем при нагревании C_2F_4 (реакция (1)) до 800÷900 К [42]. Наши экспериментальные результаты свидетельствует о том, что $C_2F_4^*$ является промежуточной частицей в двухстадийной реакции рекомбинации CF_2 .

Было высказано предположение, что $C_2F_4^*$ представляет собой 1,2-бирадикалоид¹, однако структура этой частицы оставалась неизвестной. В результате неэмпирических квантово-химических расчетов [41] мы установили, что при увеличении длины двойной связи $R_{C=C}$ сравнительно недалеко от дна потенциальной ямы (~10,4 ккал/моль) плоская структура C_2F_4 более не соответствует минимуму потенциальной энергии (рис. 2). Атомы фтора выходят из плоскости,

¹ Согласно IUPAC, бирадикалоид — бирадикал с существенным взаимодействием двух радикальных центров [43].

Схема 1. Результаты расчетов геометрических параметров $C_2F_4^*$ и $C_3F_6^*$. Длины связей в Å, углы в градусах

Рис. 2. Зависимости относительной энергии тетрафторэтилена (1, 2) и двугранного угла F(1)-C(2)-C(3)-F(6)(нумерация атомов соответствует структуре I) от длины C=C-связи:

1 — расчет для, неплоской структуры при R > 1,42 Å; 2 — расчет для зафиксированной плоской структуры молекулы

располагаются по обе стороны от нее и образуют структуру I с *анти*-конфигурацией (*анти*- C_2F_4 — это $C_2F_4^*$) (схема 1). По мере удаления от дна ямы расхождение в энергиях между этой и «насильственно построенной» плоской структурой возрастает.

Итак, когда в основном электронном состоянии C_2F_4 расстояние становится $R_{C=C} \ge 1,42$ Å, плоская геометрия молекулы изменяется (из плоскости выходят атомы F) и переходит в *анти*-конфигурацию. Она сохраняется вплоть до первого предела диссоциации. При этом симметрия молекулы C_2F_4 скачком изменяется с D_{2h} на C_{2h} и двугранный угол F(1)-C(2)-C(3)-F(6) становится ненулевым.

Возникновение *анти*- C_2F_4 при рекомбинации карбенов CF₂ подтверждено экспериментально при изучении пиролиза перфторметилциклопропана [42].

Как показали квантово-химические расчеты, для анти-конфигурации C₂F₄ на синглетной поверхности потенциальной энергии локальный минимум отсутствует. Другими словами, С₂F₄* не является интермедиатом². Однако в отнесении поглощения света в нагретом тетрафторэтилене к его анти-конфигурации нет противоречия. В абсорбционной УФ-спектроскопии известны «горячие» полосы в молекулярных спектрах [45], когда наблюдается расширение полосы поглощения в длинноволновую область. Появление горячих полос в спектре при нагревании исследуемого объекта обусловлено увеличением равновесной концентрации колебательно-возбужденных молекул с той же точечной группой симметрии, что и невозбужденная молекула. В нашем случае при нагревании также возрастает равновесная концентрация колебательновозбужденных молекул, но с другой (более низкой) точечной группой симметрии. Перестройка структуры молекулы в пределах основного электронного состояния при колебательном возбуждении может привести к геометрии, совпадающей с геометрией молекулы на одном из колебательных уровней возбужденного электронного состояния. В этом случае вероятность перехода возрастает.

Расчеты показывают, что когда плоская конфигурация C_2F_4 при $R_{C=C} \ge 1,42$ Å меняется на *анти*- C_2F_4 , разность между энергиями уровней уменьшается. Например, при 1,6 Å разность энергий между соответствующими парами уровней уменьшается на 1,9 и 3,5 эВ, и можно говорить об отчетливой тенденции к вырождению электронного состояния.

Согласно теореме Яна—Теллера, такая система атомов неустойчива относительно деформаций, понижающих ее симметрию. Именно это и наблюдается,

² Согласно IUPAC, интермедиат — химическая частица со временем жизни большим, чем время колебания связи (что соответствует большему, чем *RT*, локальному минимуму потенциальной энергии), которая образуется из реагентов и приводит к продуктам химической реакции [44]

когда происходит превращение (1) и точечная группа симметрии D_{2h} плоского C_2F_4 скачком изменяется на симметрию C_{2h} , характерную для *анти*- C_2F_4 , что можно трактовать как проявление эффекта Яна—Теллера второго порядка (см., например, [46, 47]). Естественно поэтому, что в электронных спектрах появляются новые оптические переходы, не свойственные плоской (при комнатной температуре) молекуле C_2F_4 .

Автор работы [48] предположил возможность электронного возбуждения тетрафторэтилена в термическом процессе на основании квантово-химических расчетов с помощью неограниченного метода Хартри—Фока (UHF) и базиса 6-31G*. Однако метод UHF приводит к занижению полной энергии триплетного состояния молекулы, так как в этом случае волновая функция не является собственной функцией оператора S^2 [49]. В результате для C_2F_4 энергия синглет-триплетного перехода ($S_0 \rightarrow T_1$), полученная этим методом, составила 24,6 ккал/моль, тогда как более точные методы теории возмущения Меллера—Плессе (MP2, MP3, MP4), а также кластерное разложение (CCSD, CCSD(T)) приводят к значению около 50 ккал/моль [49, 50].

Очевидно, что реакционная способность бирадикалоида $C_2F_4^*$ значительно выше, чем плоского C_2F_4 . Поэтому именно с его участием происходят обратимые реакции распада тетрафторэтилена на два карбена, [2+2]-циклоприсоединения с образованием *цикло*- C_4F_8 и синтеза C_3F_6 в присутствии CF_2 [34].

В зависимости от метода расчета (MP2—MP4) и базиса, энтальпия равновесия (1) лежит в интервале 15,5—19,1 ккал/моль, что согласуется с экспериментальным значением 18,4 ± 2 ккал/моль [18]. По оценке мольная доля $C_2F_4^*$ в C_2F_4 составляет ~10⁻³ при нагреве C_2F_4 до температуры уверенной спектральной регистрации $C_2F_4^*$ (в наших условиях это 720 K).

Анализ изменения уровней одноэлектронной энергии $C_2F_4^*$ при увеличении $R_{C=C}$ показал, что полоса поглощения с максимумом при $\lambda = 236,5$ нм соответствует переходу $S_0^* \rightarrow S_1^*$, а полоса с максимумом при $\lambda = 500$ нм — синглет-триплетному $S_0^* \rightarrow T_1^*$ -переходу, энергия которого согласно расчетам составляет 2,5 эВ (57,5 ккал/моль). Такую энергию имеет квант света с $\lambda = 495$ нм. Ранее методом специальной нормировки было показано [16, 34], что обе полосы поглощения света в этом спектре принадлежат одной и той же частице $C_2F_4^*$. Из рис. 1 видно, что значения молярного коэффициента экстинкции для этих полос находятся в пределах одного порядка.

Высокое значение коэффициента экстинкции синглет-триплетного перехода C2F4* можно объяснить двумя обстоятельствами. Во-первых, близостью геометрии колебательно-возбужденных структур $C_2F_4^*(S_0^*)$ и $C_2F_4^*(T_1^*)$ в синглетном и триплетном состояниях. В противном случае нарушался бы принцип Франка-Кондона. Во-вторых, смешением энергетических уровней (эффект Яна-Теллера второго порядка). Роль спин-орбитального взаимодействия в синглет-триплетных переходах рассмотрена в [51]. Качественные соображения и некоторые расчеты относительно возможности образования *анти*-конфигурации С₂Х₄, в частности при рекомбинации карбенов СХ2, можно найти в обзорах [35, 52]. Однако квантово-химических расчетов на современном уровне и представлений о физических (спектральных) и химических следствиях

образования анти-конфигурации до наших работ не было.

Кинетические, спектральные и квантово-химические исследования перфторолефинов, подробно рассмотренные для системы 2С4F [41], были выполнены и для системы 3С6F [36].

При нагревании С₃F₆ до предпиролизных температур в спектре также появляются две дополнительные полосы поглощения в УФ ($\lambda_{max} = 240$ нм) и видимой $(\lambda_{\max} = 477,5 \text{ нм})$ областях. Геометрия колебательновозбужденной молекулы $C_3F_6^*$ соответствует структуре II (схема 1). При колебательном возбуждении C₃F₆*, когда достигается критическое расстояние С=С, равное 1,50 Å, планарное строение нарушается и двугранный угол C(1)-C(2)-C(3)-F(3) скачком становится ненулевым. На эту перестройку затрачивается не менее 13,2 ккал/моль. Концентрация С₃F₆* становится доступной для спектральных наблюдений, когда энергия достигает 18,4 ± 1,1 ккал/моль. Согласно расчетам энергетическая щель между ВЗМО и НВМО С₃F₆ составляет 7,76 эВ. Такую энергию имеет квант света с длиной волны 185 нм (наблюдается полное совпадение с экспериментом). Для С₃F₆* расчетное значение энергии этого перехода составляет 7,2 эВ, что соответствует энергии кванта света с длиной волны 235 нм (экспериментальное значение 240 нм). Изменение геометрии и появление новых полос поглощения света при колебательно-вращательном возбуждении $C_3F_6^*[36]$, как и для $C_2F_4^*$ [41], является проявлением эффекта Яна-Теллера второго порядка.

Другие перфторолефины тоже изменяют геометрию при нагревании. Так, две новые полосы поглощения света зарегистрированы в спектрах 1-перфторбутена (242,5 и 460 нм [16, 34, 37]) и 2-перфторбутена (240 [37] и ~480 нм).

Таким образом, на примере низших перфторолефинов впервые экспериментально и теоретически установлен квантовый эффект порогового характера. Он состоит в качественном изменении плоской структуры молекул $C_n F_{2n}$ на неплоскую *анти*-конфигурацию при достижении определенного уровня (порога) колебательно-вращательного возбуждения в пределах основного электронного состояния.

Взаимосвязь энтальпии реакции образования карбенов с электронной плотностью на двойной связи

Мы исследовали [53] распределение электронной плотности по Малликену на связи С=С в различных олефинах [53] с целью установить корреляцию между энтальпией ΔH реакции разрыва С=С-связи во фторзамещенных олефинах в основном электронном состоянии и характером распределения электронной плотности (заселенности) N на этой связи. Другими словами, речь илет о корреляции между ΔH и N, точнее, между ΔH_{σ} и N_{σ} и между ΔH_{π} и N_{π} . Кроме того, нас интересовало, существует ли какая-либо корреляция между N_{σ} и N_{π} -составляющими электронной плотности и спиновым состоянием карбенов, образующихся при диссоциации олефинов по двойной С=С-связи. Мы получили данные об электронной плотности двойной связи олефинов [53].

Ранее в работах [54, 55] на основе расчетов *ab initio* MP2 было показано, что изменение одноэлектронных энергий ε_1 и ε_2 (по данным фотоэлектронной спектро-

ł

скопии [56]) во фторзамещенных олефинах соответствует распределению π - и σ -электронов С=С-связи.

Полная электронная плотность *N* определяется соотношением

$$N = N_{\sigma} + N_{\pi} \tag{4}$$

Было принято, что

$$\Delta H = \Delta H_{\sigma} + \Delta H_{\pi} \tag{5}$$

Расчетные результаты, полученные при квантовохимических расчетах, представлены в табл. 1.

Отметим, что образующиеся при распаде по связи C=C карбены могут находиться в различных спиновых состояниях: триплетном, как это имеет место при распаде C_2H_4 , синглетном — при распаде C_2F_4 , и смешанном — при распаде $CH_2=CF_2$. Последний случай относится к классу спин-запрещенных реакций.

Из данных, приведенных в табл. 1, видно, что при $N_{o}/N_{\pi} \ge 1$ при разрыве двойной связи образуются триплетные карбены. Если это соотношение меньше единицы, образуются синглетные карбены (последние четыре строки таблицы относятся к запрещенным по спину реакциям). Нетрудно убедиться, что если в винильном положении олефина имеется хотя бы один атом фтора, всегда соблюдается неравенство $N_o/N_{\pi} < 1$. Отметим, что эффективные заряды на винильных атомах углерода фторолефинов совпадают со знаком

заряда на атоме углерода карбена, образующегося при распаде C=C-связи олефина.

Значения энтальпии разрыва π -связи ΔH_{π} , приведенные в табл. 1, получены при обработке данных [57—59], где к энергии разрыва π -связи были приравнены экспериментальные значения энергии активации реакции *цис-транс*-изомеризации. В работе [50] приведена оценка энергии разрыва π -связи в тетрафторэтилене. При использовании этих данных и уравнения (5) были получены значения ΔH_{α} .

При полном замещении в молекуле этилена атомов водорода на атомы фтора происходит небольшое (на 0,165е) увеличение π -составляющей связи С=С и сильное (на 2,189е) уменьшение σ -составляющей. Поэтому, в отличие от пары этилен—этан, для тетрафторэтилена разрыв молекулы пополам протекает легче, чем для гексафторэтана, что может служить экспериментальным подтверждением деградации σ -связи в тетрафторэтилене.

Таким образом, проведенные квантово-химические расчеты в сочетании с анализом литературных данных впервые позволили связать электронные плотности по Малликену на двойной связи во фторзамещенных олефинах с энтальпиями их распада на два карбена, а заселенности π - и σ -орбиталей — с π - и σ -слагаемыми энтальпий распада. Значение отношения N_{σ}/N_{π} предопределяет спиновое состояние карбенов, образующихся при разрыве двойной связи.

Таблица

Энтальпии образования ^ΔH (ккал/моль) двух карбенов при разрыве двойной связи различных олефинов и соответствующие электронные плотности [53]

Олефин	N	Νσ	Νπ	N_{σ}/N_{π}	ΔH	ΔH_{σ}	ΔH_{π}	4 C ₁	q C ₂	Состояние карбена
C_2H_4	3,920	1,976	1,944	1,017	164,2	104,5	59,7	-0,354	-0,354	${}^{3}B_{1} + {}^{3}B_{1}$
$C_{2}H_{3}(CF_{3})$	3,899	1,969	1,93	1,020	168,2	107,3	60,9	-0,303	-0,354	
$CH_2C(CF_3)_2$	3,876	1,957	1,919	1,020	173,3	110,5	62,8	-0,316	-0,346	
$\mu uc-C_2H_2(CF_3)_2$	3,908	1,973	1,935	1,020	172,0	109,6	62,4	-0,306	-0,306	
$m pahc-C_2H_2(CF_3)_2$	3,880	1,959	1,921	1,020	168,3	107,3	61,0	-0,315	-0,315	
$C_2H(CF_3)_3$	3,939	2,000	1,935	1,034	171,9	110,6	61,3	-0,316	-0,311	
$C_2(CF_3)_4$	3,947	1,991	1,956	1,018	156,1	99,4	56,7	-0,294	-0,294	
$\mu uc - C_2 H_2 F_2$	3,776	1,739	2,037	0,854	146,8	83,6	63,2	0,155	0,155	
транс- $C_2H_2F_2$	3,789	1,759	2,03	0,867	146,0	83,9	62,1	0,153	0,153	$^{1}A_{1} + ^{1}A_{1}$
C_2HF_3	3,683	1,608	2,075	0,775	109,8	58,5	51,3	0,712	0,085	
C_2F_4	2,856	0,747	2,109	0,354	70,6	18,6	52,1	0,658	0,658	
$C_2F_3(CF_3)$	3,650	1,582	2,068	0,765	109,9	58,0	51,9	0,134	0,763	
цис-C ₂ F ₂ (CF ₃) ₂	3,769	1,750	2,019	0,867	143,8	82,7	61,1	0,239	0,239	
транс- $C_2F_2(CF_3)_2$	3,632	1,603	2,029	0,790	144,3	77,9	66,4	0,240	0,240	
C_2H_3F	3,854	1,861	1,993	0,934	158,7	95,8	62,9	0,251	-0,465	${}^{1}A_{1} + {}^{3}B_{1}$
CH_2CF_2	3,741	1,698	2,043	0,831	126,6	70,8	55,8	0,790	-0,542	
$CF_2C(CF_3)_2$	3,822	1,761	2,061	0,854	128,7	73,3	55,4	-0,584	0,907	
$C_2F(CF_3)_3$	3,855	1,850	2,005	0,923	157,9	94,6	63,3	-0,463	0,392	

П р и м е ч а н и е : Значения ΔH определяли как разность энергий двух карбенов в основном электронном состоянии и молекулы фторолефина с учетом энергии нулевых колебаний; расчет — MP2/aug-cc-pVDZ; ΔH_{σ} и ΔH_{π} — σ- и π -составляющие энтальпии разрыва двойной связи; q_{C_1} , q_{C_2} — эффективные заряды на винильных атомах утлерода

7

Бирадикальные стадии в реакциях с участием анти-конфигураций перфторолефинов

Гипотеза о том, что первичным актом термических превращений напряженных углеродных циклов является образование синглетных бирадикалов, была высказана 70 лет тому назад [60]. В соответствии с принципом детального равновесия это было равносильно гипотезе о бирадикальном механизме синтеза таких циклов.

Однако в то время методов регистрации бирадикалов еще не было, и на протяжении десятилетий в предлагаемые механизмы этих реакций бирадикальные стадии не включались. Например, считалось, что образование перфторциклопропана по реакции присоединения дифторкарбена к тетрафторэтилену протекает по согласованному (одностадийному) механизму.

Впоследствии стало ясно, что такая трактовка далеко не всегда корректна. Так, для тетрафторэтилена одностадийное термическое 2+2-циклоприсоединение запрещено правилами орбитальной симметрии [61]. Однако образование октафторциклобутана протекает без осложнений и с высоким выходом. Таким образом, механизм этой реакции не является перициклическим, а включает в себя образование бирадикальной структуры.

В 90-х годах методом фемтосекундной спектроскопии при импульсном фотолизе циклопентанона и циклобутанона были зарегистрированы тетра- и триметилены и определены их времена жизни — 700 и 120 фс соответственно, [62]. Основными продуктами превращения этих бирадикалов были циклобутан и циклопропан. Однако прямого экспериментального подтверждения образования 1,4-перфтортетраметилена и 1,3-перфтортриметилена в ходе термических газофазных реакций долгое время получить не удавалось, хотя было известно, что эти бирадикалы существенно стабильнее, чем их углеводородные аналоги [63—66].

При использовании метода импульсного адиабатического сжатия в сочетании с кинетической спектроскопией нам впервые удалось зарегистрировать 1,4- и 1,3-перфторбирадикалы непосредственно в зоне термических реакций. Они были обнаружены при пиролизе октафторциклобутана и тетрафторэтилена (1,4-перфтортетраметилен), а также при пиролизе перфторметилциклопропана (перфторметилтриметилен) [16, 34].

При нагревании перфторметилциклопропана до предпиролизных температур максимум полосы поглощения, отнесенный к бирадикалу, наблюдается при 250 нм. Согласно кинетическим данным перфторметилтриметилен в этих условиях находится в равновесии с исходным веществом. Других каналов убыли этого интермедиата обнаружено не было.

Перфтортетраметилен был обнаружен тем же методом при пиролизе C_2F_4 и цикло- C_4F_8 . Максимум полосы поглощения бирадикала — 230 нм. Это означает, что предсказываемые теорией бирадикальные механизмы 2+2-циклодимеризации и 1+2-циклоприсоединения $CF_2 \ K \ C_2F_4$, равно как и механизмы обратных реакций 2+2- и 1+2-циклореверсии, также являются бирадикальными в соответствии с принципом микроскопической обратимости.

Оставался открытым вопрос об участниках образования 1,4-перфтортетраметилена в процессе 2+2-циклодимеризации C_2F_4 . Ранее предполагали, что

1,4-перфтортетраметилен образуется в реакции присоединения 1,2-бирадикала $\cdot CF_2 - CF_2 \cdot \kappa$ молекуле C_2F_4 [67].

Как уже ранее отмечалось, при нагревании тетрафторэтилена образуется бирадикалоид, структура которого соответствует анти-конфигурации. Именно этот бирадикалоид при взаимодействии с C_2F_4 и является активным участником реакции образования 1,4-бирадикала. Кинетический анализ, выполненный в [67], показал, что эта реакция имеет первый порядок по активному компоненту.

Эта реакция многократно исследовалась, но на основании анализа только стабильных продуктов процессов 2+2-циклодимеризации [4, 7—9, 13, 68] C_2F_4 и 2+2-циклореверсии цикло- C_4F_8 [1, 12, 69—71]. Из этих данных следует, что константа скорости бимолекулярной прямой реакции имеет типичные значения предэкспоненциального множителя (10¹¹— 10^{12} см³/мольс) и энергии активации (28 ± 3 ккал/моль). То же верно и для константы скорости обратной реакции: соответственно 10^{16} — 10^{17} с⁻¹ и 74—79 ккал/моль.

Прежде чем перейти к теоретическим (квантовохимическим) обоснованиям детального механизма рассматриваемых процессов, заметим, что диионный (двухстадийный, как и бирадикальный) механизм вообще не характерен для термических газофазных процессов. Кроме того, очевидно, что для диионных реакций циклодимеризация несимметричных молекул, например $F_2C=CFC1$, с образованием продуктов по типу «голова к голове» происходить не может. Между тем, экспериментально было показано, что получаются именно такие продукты [8, 9].

В ходе квантово-химических исследований мы установили, что 1,4-перфтортетраметилен является истинным интермедиатом, *транс*-конфигурация которого имеет минимум на поверхности потенциальной энергии системы 4C8F (рис.3).

Полученные при квантово-химических расчетах значения энергетических барьеров образования и гибели *транс*-1,4-перфтортетраметилена хорошо согласуются со значениями энергии активации, полученными при обработке временных зависимостей поглощения света на 230 нм. Это является подтверждением правильности отнесения этой полосы к 1,4-перфтортетраметилену.

Роль С-F-связи в процессах пиролиза

Координата реакции

Рис.3. Энергетическая диаграмма бирадикального механизма 2+2-циклореверсии октафторциклобутана и 2+2-циклоприсоединения тетрафторэтилена с участием анти-копфигурации C_2F_4 по данным ab initio расчетов.

ZPC — энергия с учетом нулевых колебаний; TS — переходное состояние

В течение длительного времени считалось, что пиролиз перфторолефинов можно объяснить образованием или разрывом только С—С-связи, а связь С—F в реакциях пиролиза не участвует. Это коренным образом отличало пиролиз перфторолефинов и перфторалканов от аналогичных процессов с участием углеводородов. В последних образование и распад С—Hсвязей является важнейшей стадией цепных процессов крекинга.

Для перфторолефинов, конкретно — для тетрафторэтилена, простейшим процессом, в котором разрывается одна С—F-связь и возникает другая, могла быть 1,2-миграция атома фтора:

Очень заманчиво было подтвердить протекание этой реакции, тогда легко объяснялось бы образование гексафторпропилена в реакции рекомбинации двух карбенов:

Однако, как показали наши исследования [15], энергия активации мономолекулярной реакции пиролиза гексафторпропилена не превышает 83 ккал/моль, что существенно ниже энтальпии реакции (-7), т.е. пиролиз гексафторпропилена не протекает по реакции (-7).

Когда авторы [18] обнаружили при пиролизе тетрафторэтилена новую (не принадлежащую дифторкарбену) полосу поглощения в УФ-спектре, они решили, что наблюдали образование карбена CFCF₃ за счет 1,2-миграции атома фтора. Однако когда спустя 3 года спектр CFCF₃ был опубликован [38], стало очевидным, что трактовка [18] была ошибочной.

Более того, когда карбен CFCF₃ был получен [19] по реакции пиролиза

$$F_3SiCF_2CF_3 \rightarrow SiF_4 + CFCF_3$$
 (8)

единственным конечным продуктом оказался перфторбутен-2 — продукт рекомбинации³ трифторметилфторкарбена:

$$CFCF_3 + CFCF_3 \longrightarrow F_3C \xrightarrow{CF_3} (9)$$

тогда как реакция (-6) не протекала.

Недавно вопрос об 1,2-сдвиге атома фтора был рассмотрен квантово-химически [39]. Оказалось, что реакции (6) и гомолиза С=С-связи в тетрафторэтилене имеют одинаковую энергию активации. Но реакции сдвига лимитируются энтропийным фактором, значение которого столь сильно отличается в этих реакциях, что скорость реакции распада на несколько порядков величины превосходит скорость реакции 1,2-сдвига.

Таким образом, был отвергнут один из вариантов участия реакций образования и разрыва С—F-связи в процессах пиролиза перфторолефинов и, в частности, в процессе пиролиза тетрафторэтилена. Нужно было предлагать новые подходы к механизму термического синтеза гексафторпропилена в условиях пиролиза тетрафторэтилена — единственного процесса промышленного производства C₃F₆.

Тетрафторэтилен мономерной чистоты, который используется в качестве исходного сырья при получении C_3F_6 , достаточно дорог. Этим объясняется большое внимание к расходным коэффициентам при его пиролизе, а также важность увеличения селективности процесса. Основными проблемами при этом являются снижение образования так называемого «фторкокса» и перфторбутенов (C_4F_8), один из которых — перфторизобутилен (*изо*- C_4F_8) — является высокотоксичным соединением [72].

В наших работах [16, 34, 73] методом кинетической спектроскопии в зоне импульсного пиролиза доказана реальность экструзии⁴ CF₂ из групп CF₃ бирадикальных структур в экспериментах по изучению процессов термического распада напряженных трехчленных циклов $2-C_4F_8O$ и $2-C_4F_8$, в структуре которых групп CF₂ нет. Общим в процессах экструзии CF₂ является то, что она происходит из групп CF₃ у радикальных центров первичных интермедиатов. Только после появления 1,3-бирадикала или 1,2-бирадикалоида $2-C_4F_8^*$ происходит экструзия CF₂ из группы CF₃, связанной с радикальным центром:

При этом наличие или отсутствие в исходном соединении π -связи роли не играет. Вне зависимости от того, какая из связей эпоксидного цикла разрывается, CF₃-группа, из которой происходит экструзия CF₂, оказывается в α -положении по отношению к радикальному центру образующегося 1,3-бирадикала.

Как было показано в работах [16, 34], пиролиз гексафторпропилена также протекает по схеме экструзии CF_2 из группы CF_3 , связанной с бирадикалоидным центром анти-конфигурации $C_3F_6^*$ (схема 2).

В соответствии с принципом микроскопической обратимости, в обратных реакциях происходит вне-

³ Весьма интересным представляется вопрос о стереоспецифичности реакций с участием карбенов Во всяком случае, в реакции (9) *цис*-конфигурация перфторбутена-2 образуется в сверхравновесной концентрации

⁴ Согласно IUPAC, экструзия — превращение, в котором атом или группа атомов Y, связанная с двумя другими атомами X и Z, отщепляется от молекулы, приводя к продукту, в котором X связан с Z Реакция, обратная экструзии, называется внедрением [74]

Схема 2

дрение CF₂ в связь C—F, находящуюся у радикального центра 1,3-бирадикалов или 1,2-бирадикалоидов. Квантово-химически [36] рассчитанный барьер реакции экструзии CF₂ из CF₃-группы *анти*-конфигурации C₃F₆^{*} совпадает с энергией активации пиролиза C₃F₆ (83 ккал/моль [15]), что является теоретическим подтверждением этого механизма.

Таким образом, очевидно, что синтезы перфторбутена-2 и перфторизобутена происходят в реакциях внедрения в соответствующие С—F-связи, находящиеся у бирадикалоидных центров *анти*-конфигурации $C_3F_6^*$ (схема 3). Именно так из C_2F_4 образуется гексафторпропилен, а из C_3F_6 образуются перфторизобутилен и перфторбутен-2. Обратная реакция экструзии дифторкарбена происходит из CF₃-группы, находящейся в α -положении к атому углерода бирадикального центра. Квантово-химические расчеты подтвердили соответствие рассчитанных барьеров внедрения CF₂ в соответствующие C—F-связи и энергий активации реакций синтеза перфторбутенов, определенных

٩

Схема 3

по экспериментальным данным [16, 34], что подтверждает механизм синтеза

Что касается механизма синтеза перфторбутена-1, также присутствующего в продуктах пиролиза тетрафторэтилена, то можно обсуждать три возможных пути этого процесса

Первый вариант — внедрение дифторкарбена в С—F-связь CF₃-группы гексафторпропилена, второй — внедрение дифторкарбена в С—CF₃-связь атома углерода бирадикального центра; третий вариант — присоединение CF₂ ко вторичному атому углерода бирадикалоида с последующей внутримолекулярной 1,2-миграцией CF₃-группы бирадикала

Первый вариант аналогичен реакциям (4) и (5), но нет уверенности в том, что возможна реакция экструзии CF_2 из CF_3 -группы перфторбутена-1, находящейся в β -положении к атому углерода бирадикалоидного центра. Второй вариант пока не удалось обосновать, поскольку не подтверждена реакция внедрения синглетного в основном электронном состоянии карбена CF_2 в σ -связь С—С.

В третьем варианте карбен присоединяется ко вторичному атому углерода гексафторпропилена. В результате миграции CF_3 -группы двойная связь образуется между этим атомом углерода и атомом углерода карбена. В ходе обратной реакции CF_3 -группа из β -положения мигрирует к радикальному центру и лишь после этого происходит экструзия CF_2

Внутримолекулярные реакции 1,2-миграции алкильных (в частности метильных) групп в бирадикалах известны давно [75], однако экспериментальных данных такого рода для перфторсоединений нет. Квантово-химические расчеты показали [76], что в перфторэтилфторкарбене 1,2-сдвиг СF₃-группы к карбеновому центру на 7,4 ккал/моль энергетически более выгоден, чем 1,2-сдвиг атома F. Именно образование двойной связи в бирадикале является «движущей силой» процесса миграции алкильных групп.

Из наших квантово-химических расчетов третьего варианта значение барьера равно 44 ккал/моль Для обратной реакции экструзии CF_2 из $1-C_4F_8$ барьер составляет 103 ккал/моль. Это значение существенно выше расчетных значений барьеров реакции экструзии CF_2 из других перфторбутенов, что противоречит существующим экспериментальным данным по пиролизу перфторбутенов [14], которые свидетельствуют о том, что $1-C_4F_8$ является самым термически нестабильным перфторбутеном

Возможность образования перфторбутена-1 в реакции изомеризации перфторбутена-2 по двойной связи, как это предполагалось в [14, 77], представляется сомнительной, поскольку в перфторолефинах миграции атомов фтора не наблюдается

Таким образом, С—F-связь в молекулах тетрафторэтилена и гексафторпропилена после перехода их при нагревании из плоской в *анти*-конфигурацию становится активной и принимает участие в реакциях термического синтеза и пиролиза перфторолефинов Это связано с бирадикалоидными свойствами *анти*конфигураций указанных фторолефинов

На основании результатов наших исследований можно рассматривать три направления совершенствования технологии пиролитического синтеза C_3F_6 из C_2F_4 Во-первых, при объемном нагреве, малых вре-

менах пребывания в зоне высоких температур и относительно холодных стенках реактора пиролиз перфторолефинов практически не сопровождается образованием фторкокса Поэтому создание объемного нагрева (т е. нагрева не через стенки реактора) позволит устранить гетерогенные стадии образования фторкокса и снизить расходный коэффициент пиролиза C_2F_4 в целевой продукт Реактор на базе серийного дизельного или газового двигателя дает возможность не только осуществить такой нагрев, но и использовать химическую энергию синтеза, для получения механической работы или электроэнергии [78]

Другое направление основано на понимании механизма синтеза перфторбутенов, которые образуются только после появления в реакционной зоне С₃F₆. Математическое моделирование кинетики реакций, происходящих при пиролизе тетрафторэтилена, показало, что одним из путей снижения выходов цикло- C_4F_8 , олефинов C_4F_8 , в том числе высокотоксичного изо-C₄F₈, является высокоскоростная закалка продуктов Закалку можно осуществить, например, путем впрыска цикло-C₄F₈ или холодных кубовых остатков, образующихся после выделения C₃F₆ из продуктов пиролиза В-третьих, показано [13, 15], что если конверсия C_2F_4 не превышает 20%, то при его пиролизе в температурном интервале 1100-1280 К образуются только два продукта: цикло-C₄F₈ и C₃F₆. В этом случае циркуляция непрореагировавшего C₂F₄ после выделения C₃F₆ из продуктов пиролиза позволит практически исключить образование изо-C₄F₈. Накапливающийся цикло-C₄F₈ можно добавлять в исходное сырье или достаточно селективно подвергать его пиролизу отдельно в интервале температур 1050-1250 К до конверсии, не превышающей 35%, чтобы получить С₂F₄. Это же относится к образованию гексафторэтана (он выбрасывается в качестве технологических сдувок), который можно рассматривать в качестве одного из продуктов пиролиза перфторизобутилена. Целесообразность практического применения этих приемов в технологии термического синтеза C₃F₆ следует определять на основании экономических оценок.

Работа выполнена при финансовой поддержке Программ фундаментальных исследований Президиума РАН, Фонда содействия отечественной науке (И В.Билера, грант для молодых ученых) и гранта Е00-12.0-120 Министерства образования Российской Федерации. Мы признательны Тихоокеанским северозападным национальным лабораториям США за предоставление времени на суперкомпьютерах СRAY J90 (Национальный энергетический исследовательский суперкомпьютерный центр, Окленд, Калифорния, США, контракт DE-AC06-76RLO 1830 с Департаментом энергетики США).

* * *

ЛИТЕРАТУРА

- 1 Bauer S H, Javanovic, S Int J Chem Kinet, 1998, v 30, p 171-177
- 2 Кушина ИД, Политанский СФ, Шевчук ВУ и др Изв АН СССР Сер хим, 1974, № 4, с 946—949
- 3 Edwards J W, Small, P A Ind Eng Chem Fundam, 1965, v 4, p 396
- 4 Atkinson B, Atkinson VA J Chem Soc, 1957, p 2086-2091

- 5. Ainagos A F Kinet Catal, 1991, v 32, p 720-725
- 6 Butler J N J Amer Chem Soc, 1962, v 84, № 8, p 1393--1368
- 7 Atkinson B, Trenwith A B J Chem Soc, 1953, p 2082-2089
- 8 Lacher JR, Tompkin GW, Park JD J Am Chem Soc. 1952, v 74, № 7, p 1693-1696
- Q Atkinson B, Tsiamic C Int J Chem Kinet, 1979, v 11, № 10. p 1029-1043
- Schug KP, Wagner H Gg Bei Bunsenges Phys Chem, 1978, 10 Bd 82, S 719-725
- Modica AP, La Graff JE J Chem Soc, 1965, v 43, p 3383-3392
- 12 Bauer SH, Hou KC, Resler EL The Physics of fluids Suppl
- 1, 1969, v 12, part II, № 5, р 125—132 13 Буравцев Н Н, Григорьев А С, Колбановский ЮА Кинетика и катализ, 1985, т 26, № 1, с 7-13
- 14 Буравцев Н Н, Григорьев АС, Колбановский ЮА Там же, 1989, т 30, № 2, с 449--453
- 15 Буравцев Н Н, Григорьев АС, Колбановский ЮА Там же, 1989, т 30, № 1, с 21—30
- 16 Буравцев Н Н, Колбановский ЮА Ж прикл химии, 2002, т 75, № 4, с 612—619
- 17 Колбановский ЮА, Щипачев ВС, Черняк НЯ и др Импульсное сжатие газов в химии и технологии М Наука, 1982, 240 c
- 18 Колбановский ЮА, Мамиконян ЕР, Матвеева ЛН, Щипачев В С Хим физика, 1988, т 7, № 4, с 539-542
- 19 Buravtsev NN German LS, Grigor'ev AS e a Mendeleev Commun, 1993, № 4, p 133-134
- 20 Moller C, Plesset M S Phys Rev, 1934, v 46, p 618
- 21 Cizek J Adv Chem Phys, 1969, v 14, p 35
- 22 Scuseria GE, Schaefer HF J Chem Phys, 1989, v 90, p 3700
- 23 Woon DE, Dunning TH, Jr Ibid, 1993, v 98, p 358
- 24 Borisov Yu A, Arcia EE, Mielke SL e a J Phys Chem ,2002, v 105, p 7724
- 25 Борисов ЮА Ж структ химии, 2002, т 43, с 795
- 26 Gaussian 98, Revision A 5 Frisch MJ, Trucks GW, Schlegel H B e a Gaussian Inc, Pittsburgh PA, 1998
- Schmidt MW, Truong PN, Gordon MS J Am Chem Soc, 27 1987, v 109, № 17, p 5217-5227
- 28 Jeffers P M J Phys Chem, 1972, v 76, № 20, p 2829-2832
- 29 Trinquier G, Barthelat JC J Am Chem Soc, 1990, v 112, № 25, p 9121-9130
- 30 So S P J Phys Chem, 1993, v 97, № 46, p 11908-11911
- 31 Carter EA, Godard III WA J Am Chem Soc, 1988, v 110, № 12, p 4077-4079
- 32 Tringuler G Ibid, 1990, v 112, № 6, p 2130-2137
- 33 Dixon D A J Phys Chem, 1986, v 90, № 1, p 54-56
- 34 Buravtsev NN, Kolbanovsku YuA J Fluorine Chem, 1999, v 96, № 1, p 35-42
- 35 Комаров И В Успехи химии, 2001, т 70, № 12, с 1123--1151
- 36 Билера ИВ, Борисов ЮА, Буравцев НН, Колбановский ЮА Докл АН, 2003, т 388, № 6, с 764—768
- 37 Буравцев НН, Колбановский ЮА, Овсянников АА Изв АН Сер хим, 1995, № 10, с 2048—2050
- 38 Буравцев Н Н, Гусельников Л Е, Волкова В В и др Шестая межд конф «Химия карбенов и родственных интермедиатов» Программа и тез докл 28-30 мая 1998 СПб изд НПИО ИОХ РАН, 1998, с 64d
- 39 Sharpe S, Hartnett B, Sethi HS, Sethi DS J Photochem, 1987, v 38, p 1–13
- 40 O'Gara JE, Dailey WP J Am Chem Soc, 1992, v 114, № 10, p 3581-3590
- 41 Билера ИВ, Борисов ЮА, Буравцев НН, Колбановский ЮА Докл АН, 2002, т 386, № 4, с 506-510
- 42 Буравцев НН, Колбановскии ЮА// ДАН, 1997, т 357, № 6, c 775--778

- 43 Ж орган химии, 1995, т 31, вып 7, с 1106
- 44 Там же, 1995, т 31, вып 10, с 1582
- Заслонко ИС Успехи химии, 1997, т 66, вып 6, с 537-45 563
- 46 Минкин В И. Симкин БЯ. Миняев Р М Теория строения молекул Ростов-на-Дону Феникс, 1997, 558 с
- 47 Берсукер ИБ Эффект Яна-Тсллера и вибронные взаимодействия в современной химии М Наука, 1987, гл 1, 2
- Калниныш ККЖ прикл хим, 2002, т 75, № 4, с 603-48 611
- 49 Борисов ЮА Изв АН Сер хим, 1998, № 4, с 605-607
- 50 E-Chung Wu, Rodgers AS J Am Chem Soc, 1976, v 98, p 6112-6115
- 51 Салем Л Электроны в химических реакциях М Мир, 1985, 237 c
- 52 Driess M, Grutzmacher H Angew Chem Int Ed Engl, 1996, v 35, p 829-856
- 53 Билера ИВ, Гарретт БЦ, Борисов ЮА, Буравцев НН, Колбановский ЮА Докл АН. 2003. т 391. № 6
- Рожков ИН, Борисов ЮА Изв АН Сер хим, 1989, № 8, 54 c 1801-1805
- Рожков ИН, Борисов ЮА Там же, 1992, № 6, с 1334-55 1339
- 56 Rao CNR, Basu PK, Hegde MS Applied Spectroscopy Reviews, 1979, v 15, № 1, p 1–193
- 57 Douglas JE, Rabinovitch BS, Looney FS J Chem Phys, 1955, v 23, № 2, p 315-323
- 58 Jeffers PM, Shaub Shock W J Am Chem Soc, 1969, v 91, № 27, p 7706-7709
- 59 Schlag EW, Kaiser EW, Jr 1bid, 1965, v 87, № 6, p 1171-1174
- 60 Chambers TS, Kistiakowsky GB 1bid, 1934, v 56, № 2, p 399-405
- 61 Марч Дж Органическая химия М Мир, 1987, т 3, c 253
- 62 Pedersen S, Herek JL, Zewail AH Science, 1994, v 266, p 1359-1364
- Getty SJ and Borden WT J Am Chem Soc, 1991, v 113, 63 № 11, p 4334-4335
- Silversmith EF, Kitahara Y, Caserio MC, Roberts JD Ibid, 64 1958, v 80, № 21, p 5840-5845
- 65 Doering WE, Guyton CA Ibid, 1978, v 100, № 10, p 3229-3230
- 66 Bartlett PD, Montgomery LK, Seidel B Ibid, 1964, v 86, № 4, p 616-622
- Buravtsev NN, Kolbanovsku YuA, Ovsyannikov AA Mende-67 leev Commun , 1994, № 2, p 48-50
- 68 Butler J N J Am Chem Soc, 1962, v 84, № 8, p 1393-1368
- 69 Simmie J M, Quiring W J, Tschnikow-Roux E J Phys Chem, 1969, v 73, № 11, p 3830-3833
- 70 Lifshitz A, Carroll HF, Bauer SH J Chem Phys, 1963, v 39, № 7, p 1661-1665
- 71 Atkinson, B, Trenwith A B Ibid, 1952, v 20, p 754-755
- 72 Максимов Б Н, Барабанов В Г, Серушкин И Л и др Промышленные фторорганические продукты Справ Изд 2-е СПб Химия, 1996, 544 с
- 73 Буравцев НН, Колбановский ЮА Докл АН, 1998, т 358, № 1, c 57-61
- 74 Ж орган химии, 1995, т 31, вып 8, с 1270
- 75 Фрейдлина РХ, Терентьев АБ Успехи химии, 1974, т 43, вып 2, с 294
- 76 Cramer CJ, Hillmver MA J Org Chem, 1999, v 64, № 13, p 4850-4859
- 77 Герман ЛС, Григорьев АС, Колбановский ЮА, Чепик СД Кинетика и катализ, 1989, т 30, № 1, с 221-223
- 78 Буравцев Н Н, Колбановский ЮА, Овсянников АА, Платэ НА Хим пром-сть, 1995, № 1, с 4-7