УДК 546.26:546.171.1

Термобарический синтез кристаллического нитрида углерода

О. В. Кравченко, К. П. Бурдина, Б. М. Булычев, С. А. Трашин, Ю. Я. Кузяков, В. Н. Леднев, Н. Б. Зоров, А. Г. Буяновская, Р. У. Таказова

ОЛЕГ ВЛАДИМИРОВИЧ КРАВЧЕНКО — кандидат химических наук, ведущий научный сотрудник лаборатории химии высоких давлений Химического факультета МГУ им. М.В. Ломоносова. Область научных интересов: неорганическая химия, сверхтвердые материалы.

КЛАВДИЯ ПЕТРОВНА БУРДИНА — доктор химических наук, ведущий научный сотрудник лаборатории химии высоких давлений Химического факультета МГУ им. М.В. Ломоносова. Область научных интересов: сверхтвердые материалы. E-mail Burdina@ highp.chem.msu.ru

БОРИС МИХАЙЛОВИЧ БУЛЫЧЕВ — доктор химических наук, профессор, заведующий лабораторией химии высоких давлений Химического факультета МГУ им. М.В. Ломоносова. Область научных интересов: неорганическая химия, высокие давления, сверхтвердые материалы. E-mail b.bulychev@highp.chem.msu.ru

СТАНИСЛАВ АЛЕКСАНДРОВИЧ ТРАШИН — аспирант Химического факультета МГУ им. М.В. Ломоносова.

 $IOPUЙ\ SKOBЛЕВИЧ\ KV3SKOB\ -$ доктор химических наук, профессор, заведующий кафедрой лазерной химии Химического факультета $M\Gamma V$ им. $M.B.\ Ломоносова.\ Область$ научных интересов: лазерная химия. E-mail kuzyakov@laser.chem.msu.ru

ВАСИЛИЙ НИКОЛАЕВИЧ ЛЕДНЕВ — аспирант Химического факультета МГУ им. М.В. Ломоносова. Область научных интересов: лазерная химия.

НИКИТА БОРИСОВИЧ ЗОРОВ — доктор химических наук, заместитель заведующего по НИЧ кафедры лазерной химии Химического факультета МГУ им. М.В. Ломоносова. Область научных интересов: лазерная химия. E-mail zorov@laser.chem.msu.ru

АНАСТАСИЯ ГЕОРГИЕВНА БУЯНОВСКАЯ— кандидат химических наук, заведующая лабораторией аналитической химии Института элементоорганических соединений им. А.Н. Несмеянова РАН (ИНЭОС РАН). Область научных интересов: аналитическая химия.

РИММА УМАТИЕВНА ТАКАЗОВА — научный сотрудник лаборатории аналитической химии ИНЭОС РАН. Область научных интересов: аналитическая химия.

11992 Москва, Ленинские горы, д. 1, строение 3, МГУ им. М.В. Ломоносова, Химический факультет, тел. (495)939-36-87

119991 Москва, ул. Вавилова, д. 28, ИНЭОС РАН, тел. (495)135-76-03, E-mail analyst@ineos.ac.ru

В 1989 г. была впервые предсказана возможность существования при нормальных условиях кристаллического нитрида углерода β - C_3N_4 по строению подобного известному нитриду кремния β - Si_3N_4 и по твердости сравнимого с алмазом [1]. Расчеты, выполненные в последующие годы [2], подтвердили возможность существования этой и других модификаций кристаллического нитрида углерода, обладающих ценными механическими и электрофизическими свойствами.

Эти теоретические выкладки стимулировали многочисленные экспериментальные исследования по синтезу и изучению строения различных фаз, содержащих в своем составе атомы углерода и азота. К настоящему времени в научной литературе имеется более 400 публикаций на эту тему.

В большинстве работ сообщается только о синтезе пленок, в том числе и алмазоподобных, содержащих нестехиометрические азот-углеродные соединения. Как правило, их макроструктура представляет собой

матрицу из аморфного нитрида углерода с вкраплением зерен кристаллической фазы.

Для твердофазного синтеза объемных образцов кристаллического нитрида углерода различные углеродные вещества с высоким содержанием азота, такие как 1,3,5-триазин, тетрацианэтилен, парациан и др. подвергались воздействию высокого давления и температуры. Все исходные вещества обладали низкой плотностью с атомами углерода в состоянии sp^2 -гибридизации. Очевидно, что высокое давление должно стимулировать образование высокоплотной кристаллической фазы с изменением типа гибридизации атома углерода вплоть до состояния sp^3 . Однако получить макроскопическое количество кристаллического нитрида углерода до настоящего времени таким способом не удавалось [3].

Сложность термобарического синтеза кристаллического нитрида углерода заключается в том, что неизвестна область его термодинамической стабильности. Иными словами неизвестно, насколько велики долж-

ны быть давление и температура синтеза для образования высокоплотной кристаллической фазы. Очевидно только, что температура синтеза должна быть ниже температуры разложения исходного соединения, при которой происходит выделение молекулярного азота. С другой стороны, она должна быть достаточно высокой, чтобы обеспечить высокую скорость образования кристаллической фазы нитрида.

Объемный образец кристаллического нитрида углерода был впервые получен в 2002 г. на Химическом факультете МГУ при термобарическом воздействии на аморфный нитрид углерода в присутствии затравок кристаллизации [4]. В качестве затравок использовались пленки азот-углеродных соединений, содержащие монокристаллические зародыши нитрида углерода, нанесенные на поверхность пластин из монокристаллического кремния лазерным электроразрядным методом. Аморфный нитрид углерода синтезирован в результате реакции пиролиза Hg(CNS)₂ при температуре 180—340 °C. Его химический состав соответствовал формуле $C_3N_{4,2}$. В рентгеновских спектрах продукта термобарического синтеза были выявлены рефлексы, указывающие на присутствие в нем примерно равных количеств кристаллических α - и β -фаз C_3N_4 .

С целью получения дополнительной информации о возможности образования кристаллического нитрида углерода нами исследована возможность приготовления аморфного нитрида углерода из тиоцианата цинка, а также возможность его кристаллизации в условиях термобарического синтеза.

Выбор этого соединения обусловлен тем, что строение тиоцианата цинка существенно отличается от строения тиоцианата ртути. Действительно, в то время как атомы ртути в тиоцианате ртути имеют одинаковое окружение, в тиоцианате цинка существует два вида атомов металла: часть из них окружена только атомами серы, другая часть только атомами азота роданидных групп. Эти отличия могут привести к образованию разных структурных фрагментов СN в аморфном продукте, часть из которых может привести к образованию кристаллической фазы нитрида углерода.

Роданид цинка был приготовлен известными методами по реакции между разбавленным водным раствором роданистой кислоты, полученной ионным обменом, и гидроксидом цинка. Рентгенограмма полученного образца хорошо совпадает с известной из литературы [6].

Синтез аморфного нитрида углерода из роданида цинка

Термическое разложение роданида цинка изучено недостаточно полно и сведения о механизме его термораспада в литературе отсутствуют. Нами было показано, что разложение роданида цинка в условиях политермического нагревания в вакууме или в атмосфере инертного газа начинается при температурах выше 300 °С и связано с выделением в газовую фазу сероуглерода и серы в количестве около 20% от первоначальной массы. Дальнейшее нагревание приводит к монотонной потере массы, суммарная потеря массы при нагревании образца до 900 °С составляет около 44%. В твердом остатке в виде кристаллической фазы регистрируется сульфид цинка. Изотермическое разложение тиоцианата цинка в вакууме при температуре

около 350 °С сопровождается осаждением на холодных частях пиролизера образовавшейся в результате термолиза серы и твердого вещества, окрашенного в коричнево-желтый цвет. Состав этого кристаллического продукта (возможно, смеси веществ) подробно не изучался, однако методами химического анализа было установлено, что он содержит азот, углерод и серу. В колебательном спектре этого продукта присутствуют полосы поглощения в области 1000—1700 см⁻¹, схожие по положению и форме со спектрами соединений с триазиновыми циклами.

Твердый остаток, полученный в результате термолиза тиоцианата цинка в указанных условиях, дает на рентгенограммах только весьма слабые и размытые линии, которые можно отнести к плохо закристаллизованному сульфиду цинка, остальные присутствующие фазы — рентгеноаморфны. Таким образом, можно предположить, что термораспад роданида цинка, в отличие от роданида ртути, протекает по меньшей мере по двум направлениям, и может быть представлен в общем виде уравнениями 1 и 2:

$$2Zn(SCN)_2 \rightarrow 2ZnS + C_3N_4 + CS_2 \uparrow \tag{1}$$

$$n\text{Zn}(\text{SCN})_2 \rightarrow n\text{ZnS} + 1/2n\text{S}_2 + (m-1)/m\text{C}_3\text{N}_4 + 1/m\text{C}_{3+n-1/n}\text{NS}_{n-1/n}$$
 (2)

где значения m и n не определялись.

С учетом приведенных выше результатов использовалась следующая методика для приготовления аморфного нитрида углерода.

В круглодонную колбу помещался роданид цинка. Колба вакуумировалась, медленно нагревалась до температуры 350 °С и выдерживалась при этой температуре в течение часа. При этом наблюдалось осаждение в непосредственной близости от зоны нагрева продуктов возгонки, окрашенных в желто-коричневые цвета. После охлаждения колбы твердый остаток извлекался и подвергался действию смеси соляной и азотной кислот при комнатной температуре в течение 6—8 часов, затем промывался царской водкой и водой до нейтрального значения рН. Окончательная стадия заключалась в сушке препарата в вакууме при медленном нагревании до 200 °С.

Состав продукта синтеза

Состав полученного препарата устанавливался методами элементного анализа и рентгеновской фотоэлектронной спектроскопии (РФЭС). Элементный анализ проводили на модифицированном автоматическом CHNS-анализаторе фирмы Carlo-Erba (Италия). Согласно данным анализа состав вещества отвечает формуле $C_3N_{4,3}S_{0,3} \cdot H_2O$. При этом присутствие воды обусловлено, по-видимому, контактом высокодисперсного вещества с влагой воздуха, избежать которого в рамках использованного метода аналитического определения состава не представляется возможным. Это подтверждается фактом удаления воды при повторном вакуумировании и нагревании образца до $100\,^{\circ}$ C.

Рентгеновские фотоэлектронные спектры полученных образцов изучались с использованием прибора XPS Spectrometer, PHI 5400, Perkin Elmer в МИСИС в

 Таблица

 Результаты рентгенографических исследований продуктов термобарического превращения аморфного нитрида углерода

№	Пластина 450 °C		Пластина 500 °C		Пластина растерт. 500°C		Объем 450 °C		Объем 500 °C		β-C ₃ N ₄ [5]		α-C ₃ N ₄ [5]	
	d _{эксп} , Å	<i>I/I</i> ₀	d _{эксп} , Å	I/I_0	d _{эксп} , Å	<i>I/I</i> ₀	d _{эксп} , Å	<i>I/I</i> ₀	d _{эксп} , Å	<i>I/I</i> ₀	$d_{ m reop}, \ { m A}$	hkl	$d_{ m Teop}, \ { m A}$	hkl
1					4,183	8,9	4,160	67,9	4,183	15				
2									3,894	5,0				
3			3,794	0,2	3,789	3,0								
4							3,751	17,5	3,751	3,2				
5	3,682	1,3												
6	3,642	1,6											3,604	101
7									3,480+	2,3				
8									3,218	10			3,233	110
9							3,205*	100			3,201	110		
10			3,101+	0,3	3,143	<u>10</u>			3,147+	<u>0</u>				
11									2,910	36				
12									2,870	3,0			2,800	200
13	2,754	0,4			2,753	4,8	2,740	20,8	2,750	2, 7	2,772	200		
14			2,714+	0,3										
15							2,658	<i>5,3</i>	2,670	40			2,67	(111)
16							2,616	5,1						
17					2,511	2,7								
18									2,4145	5,8			2,407	201
19									2,335+	4,7				
20							2,265	5,2					2,26	(101)
21							2,239*	8,0			2,206	101	*	
22							,	,	2,157	1,6	,		2,171	102
23					1,924	<u>44</u>	1,938*	5,7	2,107	2,0	1,922	111	2,171	102
24					1,727	<u> </u>	1,750	3,7			1,722	111	1,904	112
25					<u>1,873</u>	<u>2.0</u>							1,867	300
													1,867	300
26					1,704+	20								
27			1,657+	0,1										
28					<u>1,641</u>	<u>4,2</u>								
29	1,512	0,7	1,503	0,6									1,512	103
29	1,411+	0,5	1,406+	0,3										
30	<u>1,364</u>	<u>100</u>	<u>1,358</u>	<u>10</u>	<u>1,359</u>	<u>8,1</u>								
31			1,334	0,4							1,332	221	1,333	2.22
32	1,245	1,0			1,248						•		1,239	321

Отражения, относящиеся к кремнию, подчеркнуты

лаборатории д.х.н. Е.А. Скрылевой. Согласно полученным данным соотношение элементов в исследованных образцах отвечает формуле $C_3N_{4.23}S_{0.03}$.

Термобарические эксперименты проводили на установках высокого давления в камерах типа «тороид», в которых аморфный нитрид углерода помещали между пластинками кремния Si(100) с нанесенными на них пленками. Пленки имели непосредственный контакт с аморфным нитридом углерода. Условия синтеза были аналогичны условиям, проведенных нами ранее опытов по кристаллизации аморфной формы нитрида углерода, полученной из роданида ртути [4] (давление 6 ГПа, температура — 450 и 500 °C, время экспозиции термобарического воздействия 2—2,5 часа).

Полученные продукты идентифицировали методом рентгенофазового анализа (РФА) на приборе ДРОН-4. Записывались дифрактограммы порошка основной массы нитрида углерода, а также отражения с поверхности кремниевой пластины (100) со стороны, контактировавшей с массивным образцом нитрида углерода, и после разрушения и растирания пластины. Полученные результаты представлены в таблице.

Анализ представленных в таблице результатов по-казывает:

- на рентгенограммах имеются линии, свидетельствующие об образовании кристаллических фаз;
- на рентгенограммах имеются линии, относящиеся к ранее наблюдаемым нами α и β -фазам C_3N_4 .