УДК 661.666.2

Промышленное освоение технологий производства перспективных марок графитов с повышенной плотностью

А. Ю. Железняк, А. Н. Селезнёв, А. А. Бухарова, А. А. Свиридов, Ю. Ф. Гнедин, С. А. Подкопаев, Н. П. Нонишнева

АНДРЕЙ ЮРЬЕВИЧ ЖЕЛЕЗНЯК — заместитель начальника научно-исследовательской лаборатории (НИЛ) ОАО «Челябинский электродный завод». Область научных интересов: технологии производства углеродных материалов. E-mail zhel@chez.ru

АНАТОЛИЙ НИКОЛАЕВИЧ СЕЛЕЗНЁВ — доктор технических наук, генеральный директор OAO «Углеродпром». Область научных интересов: технологии производства углеродных материалов и сырье для них. E-mail Uglerodprom@mail.ru

АЛЕКСАНДРА АЛЕКСЕВНА БУХАРОВА— начальник бюро конструкционного графита НИЛ ОАО «Челябинский электродный завод». Область научных интересов: технологии производства углеродных материалов. E-mail research@chez.ru

АЛЕКСАНДР АФАНАСЬЕВИЧ СВИРИДОВ — кандидат технических наук, генеральный директор ОАО «Челябинский электродный завод». Область научных интересов: технологии производства углеродных материалов. E-mail gendir@chez.ru

ЮРИЙ ФЕДОРОВИЧ ГНЕДИН — кандидат технических наук, главный инженер OAO «Углеродпром». Область научных интересов: технологии производства углеродных материалов. E-mail Uglerodprom@mail.ru

СЕРГЕЙ АЛЕКСАНДРОВИЧ ПОДКОПАЕВ— доктор технических наук, заместитель генерального директора по научно-техническому развитию, директор Научно-технологического центра ОАО «Челябинский электродный завод». Область научных интересов: технологии производства углеродных материалов. E-mail jeny@chez.ru

НАДЕЖДА ПЕТРОВНА НОНИШНЕВА— кандидат технических наук, начальник НИЛ ОАО «Челябинский электродный завод». Область научных интересов: технологии производства углеродных материалов. E-mail noneshneva@chez.ru

454038, г. Челябинск, промзона ОАО «ЧЭЗ»; тел./факс (3512)20-20-91.

111141 Москва, ул. Электродная, д.2; ОАО «Углеродпром», тел. (095) 176-08-37, факс (095) 176-17-46.

Высокоплотные мелкозернистые графиты широко применяются в таких наукоемких отраслях промышленности и техники, как полупроводниковая и ракетная техника, атомная энергетика, металлургия, машиностроение и др.

В производстве графитов конструкционного назначения в качестве наполнителя в течение длительного времени использовали специальный нефтяной пиролизный кокс марки КНПС. Его структура и свойства обеспечивают получение графитов с высоким уровнем физико-механических и теплоэлектрофизических свойств [1]. Кокс КНПС обладает изотропной структурой, обусловленной наличием в сырье коксования (смола пиролиза) веществ, не растворимых в толуоле (карбоидов), которые, равномерно распределяясь в объеме, препятствуют росту мезофазы и, следовательно, образованию протяженных струйчатых элементов, что и приводит к формированию плотной малопористой структуры кокса [2].

С прекращением производства кокса КНПС в 1992—1994 гг. возникла задача подбора наполнителя, близкого по структуре и свойствам к коксу КНПС. С 1994 г. на Челябинском электродном заводе (ЧЭЗ)

проводятся опытно-промышленные работы по поиску альтернативного коксу КНПС сырья для производства конструкционного графита. Заменитель кокса КНПС должен отвечать следующим требованиям. Во-первых, это должен быть малосернистый и малозольный кокс, во-вторых, кокс должен иметь изотропную структуру. Этим требованиям в должной мере удовлетворяет пековый кокс (табл. 1).

Как видно из табл. 1, существенными отличиями пекового кокса от кокса КНПС являются низкое содержание летучих веществ, меньшая истинная плотность и резко иное поведение в интервале температур $1300-2400~^{\circ}\mathrm{C}$.

В лабораторных и промышленных условиях на основе пекового кокса [3] были получены опытные образцы графита различных марок с физико-механическими свойствами, не уступающими графитам на основе кокса КНПС. В результате проведенных работ на ОАО «ЧЭЗ» был возобновлен в полном объеме выпуск всех ранее освоенных марок конструкционного графита — ВПГ, ГМЗ, В-16, РБМК, ПРОГ-2400, МГ, АРВ, ПГ-50 на базе нового технологического углеродистого сырья.

Таблица 1

Свойства пекового кокса.

Для сравнения представлен кокс КНПС-КМ

Показатель	Пековый кокс (Челябинский металлургический комбинат)	кнпс-км
Плотность истинная (по ГОСТ 228-98-78), г/см ³	2,02-2,04	2,04-2,08
Зольность, %, не более	0,27	0,15
Содержание общей серы, %, не более	0,26	0,15
Выход летучих, %, не более	0,7	4,0
Прессовая добротность, отн. ед.	1,82	1,95
Оценка микроструктуры, балл	2,2	2,1
Степень графитации, %	64	58
Изменение объема в интервале температур 1300—2400 °C, $\%$	+2,45	-2,10

Важным направлением в развитии производства углеродных конструкционных материалов, диктуемым требованиями современных отраслей промышленности, является создание крупногабаритных высокоплотных графитов с пониженным размером зерна наполнителя. Для получения таких материалов на ОАО «ЧЭЗ» разработан технологический процесс, основанный на методе экструзионного прессования (рис. 1). Для этой технологии используется кокс, прокаленный в ретортных прокалочных печах.

По технологии экструзионного прессования производятся прессованные заготовки

прямоугольного сечения

 $280 \times 280 \times 650$ мм и $440 \times 580 \times 1300$ мм и круглого сечения

 $\varnothing 300 \times 1300$ мм и $\varnothing 500 \times 1300$ мм.

Максимальный размер зерна 1,25 и 0,5 мм. Повышение физико-механических показателей достигается путем пропитки заготовок каменноугольным пеком. Физико-механические свойства этих графитов в сравнении с выпускаемыми на ОАО «ЧЭЗ» высокоплотным среднезернистым графитом ВПГ и крупнозернистым графитом ППГ приведены в табл. 2.

Сравнительный анализ физико-механических свойств крупногабаритных графитов марок ГРЧ-0,5 и ГРЧ-1,25 (0,5 и 1,25 — максимальные размеры зерна) показывает, что эти материалы имеют высокие значения плотности и теплопроводности, низкую пористость и достаточно высокую механическую прочность, выше чем у конструкционных графитов ППГ и ВПГ аналогичных габаритных размеров.

Достаточно высокие показатели качества графита марок ГРЧ-0,5 и ГРЧ-1,25 позволяют рассматривать его как перспективный материал для новых модификаций атомных графитовых реакторов, а также для изготовления изделий различного назначения.

Другая технология получения крупногабаритных конструкционных графитов с размером зерна 1,25 мм и менее, реализованная на ОАО «ЧЭЗ», базируется на методе горячего прессования в пресс-форме. В качестве сырья используется также прокаленный пековый кокс. По технологии горя-

Рис. 1. Технологическая схема производства крупногабаритных графитов с пониженным размером зерна наполнителя методом экструзионного прессования

Таблица 2

Физико-механические свойства крупногабаритного графита типа «ГРЧ», производимого по технологии экструзионного прессования

Обозначения: D_{κ} — плотность кажущаяся, $\Pi_{\text{общ}}$ — пористость общая, $\sigma_{\text{сж}}$ и $\sigma_{\text{изг}}$ — предел прочности на сжатие и изгиб, соответственно, УЭС — удельное электрическое сопротивление, КТР — коэффициент термического расширения, λ — теплопроводность.

Для сравнения приведены свойства графитов ВПН и ППГ

Марка графита	Размер зерна, мм	D_{κ} , г/см 3	$\Pi_{ m o 6m}, \%$	σ _{еж,} МПа	σ _{изг,} МПа	УЭС, мкОм•м	Зола, %	KTP, 10 ⁻⁶ • K ⁻¹	λ, Βτ/(м • K)
ГРЧ 280×280×650 мм									
с одной пропиткой	1,25 0,5	1,78 1,78	18 19	51,3 49,3	28,5 25,8	9 9	$0,01 \\ 0,01$	3,7 3,6	160 176
с двумя пропитками	1,25 0,5	1,84 1,88	17 14	55,6 59,7	32,6 29,2	6 6	$0,01 \\ 0,01$	3,7 3,6	197 213
ГРЧ 440×580×1300 мм									
с одной пропиткой	1,25 0,5	1,79 1,77	14 13	47,3 51,7	19,6 16,7	8 10	$0,01 \\ 0,01$	4,4 4,2	152 122
ГРЧ, ∅500×1300 мм									
с одной пропиткой	1,25 0,5	1,78 1,80	19 17	41,4 39,5	22,2 18,0	7 7	$0,014 \\ 0,07$	3,6 3,6	172 158
ГРЧ, ∅300×1300 мм									
с одной пропиткой	1,25 0,5	1,83 1,81	11 14	58,1 50,1	27,3 29,9	7 6	$0.01 \\ 0.004$	3,7 3,7	197 188
с двумя пропитками	1,25 0,5	1,87 1,84	9 10	62,2 62,3	25,6 25,6	7 7	$0.01 \\ 0.004$	3,6 3,6	205 217
ВПГ, Ø125×1300 мм с двумя пропитками	1,25	1,81	16	50,8	26,0	8	0,02	4,4	141
ППГ, Ø500×1500 мм с одной пропиткой	2,5	1,76	20	45,0	21,2	8	0,02	4,5	120

Таблица 3 Φ изико-механические свойства крупногабаритного графита «ГРЧ-Г»,

Показатель	Размер зерна 0,5 мм	Размер зерна 1,25 мм		
	одна пропитка	одна пропитка две про		
Плотность кажущаяся, г/см3	1,82	1,85	1,89	
Пористость общая, %	16	15	13	
Предел прочности, МПа				
на сжатие	51,9	52,1	65,1	
на изгиб	17,0	18,5	23,7	
Зольность, %	0,01	0,01	0,02	
Удельное электрическое сопротивление, мкОм · м	8	8	8	
Коэффициент термического расширения, $10^{-6} \cdot \mathrm{K}^{-1}$	4,1	4,5	4,2	
Теплопроводность, Вт/(м · К)	165	133	164	

производимого по технологии горячего прессования

чего прессования на заводе были изготовлены две опытно-промышленные партии мелкозернистого графита Γ PЧ- Γ . Габаритные размеры полученных заготовок $\varnothing 260 \times 300$ мм.

Физико-механические свойства мелкозернистых графитов Γ РЧ- Γ представлены в табл. 3.

Графиты ГРЧ-Г, получаемые по методу горячего прессования по сравнению с графитом ГРЧ, производимом по технологии экструзионного прессования, имеют более высокую плотность и большую прочность на сжатие, но более низкую прочность на изгиб. Графиты ГРЧ-Г могут быть также рекомендованы для

использования в элементах атомных графитовых реакторов, а также для изготовления тиглей, нагревателей и других промышленных изделий.

Еще одна технология получения мелкозернистых конструкционных графитов, освоенная на Челябинском электродном заводе, основана на методе холодного прессования в пресс-форме. По этому методу изготавливается графит с максимальным размером зерна менее 90 мкм. По технологии холодного прессования в пресс-форме на заводе производятся несколько марок конструкционных графитов, в том числе АРВ, ПГ-50 и ГП-05. Сырьем для производства этого графита также служит пековый прокаленный кокс.

Поиски альтернативных источников сырья для производства высокопрочных мелкозернистых графитов привели к исследованию непрокаленных коксов как наполнителей графита, в частности смоляного кокса, получаемого коксованием продуктов переработки горючих сланцев [4, 7].

Смоляной кокс имеет однородную структуру без какой-либо преимущественной ориентации структурных элементов [5]. По графитируемости он не уступает крекинговому коксу. Графитированные продукты из смоляного кокса имеют более низкую реакционную способность [6]. Коэффициент термического расширения смоляного кокса после прокаливания при 1200 °С выше, чем у нефтяных коксов, он менее термостоек и не выдерживает значительных перепадов температур [5].

Смоляной кокс по своим физико-механическим свойствам близок к коксу марки КНПС. Он отличается несколько повышенными зольностью и сернистостью и пониженной истираемостью. По физикомеханическим показателям смоляной кокс вполне пригоден для изготовления графитированных конструкционных материалов.

В пользу смоляного кокса как наполнителя графита свидетельствует мнение авторов работы [7]. По их заключению пековый кокс, получаемый при высокой температуре (950—1100 °С), не может заменить кокс марки КНПС в производстве высокоплотных мелкозернистых углеродных материалов, требующих для своего формирования больших усадок коксопековых композиций, без существенного изменения технологии. В условиях значительного дефицита углеродсодержащего сырья для электродных и алюминиевых заводов коксохимические предприятия вряд ли пойдут

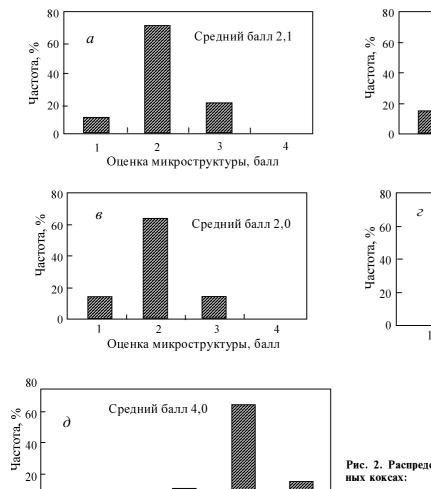
на кардинальные изменения технологии производства пекового кокса. Поэтому на основании всесторонней экономической и технической оценки доступных коксов был выбран смоляной (сланцевый) кокс производства АО «Кивитер» (г. Кохтла-Ярве, Эстония).

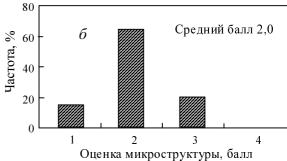
В последнее время на Челябинском электродном заводе отрабатывается технология изготовления искусственных графитов с использованием в качестве наполнителя пекового полукокса, получаемого при низких температурах окончания коксования, нетрадиционных для коксохимических производств [9, 10].

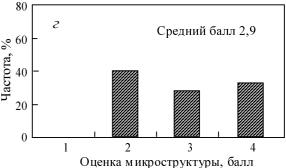
Таким образом, в качестве исходного кокса-наполнителя для производства высокоплотного графита марки ЧКГ (челябинский конструкционный графит) на ОАО «ЧЭЗ» были выбраны непрокаленный смоляной электродный кокс, непрокаленный смоляной изотропный кокс и пековый непрокаленный кокс (полукокс), опытно-промышленное производство которого освоено на Челябинском электродном заводе (табл. 4).

Производство большинства марок графитов конструкционного назначения базируется на использовании в качестве углеродистых наполнителей коксов с различными типами микроструктур. Как правило, для получения графитов с высокими значениями физикомеханических характеристик стремятся применять кокс изотропной структуры. На рис. 2 приведены характерные гистограммы микроструктуры коксов, используемых для изготовления высокоплотных мелкозернистых графитов.

Как видно, в микроструктуре кокса КНПС, изотропного смоляного кокса и пекового кокса преобладает составляющая с оценкой в два балла, построенная в основном из сферолитов. В микроструктуре рядового смоляного кокса преобладает структурная составляющая с оценкой в четыре балла, что, по данным [8], сказывается на прочностных свойствах графита на его основе.

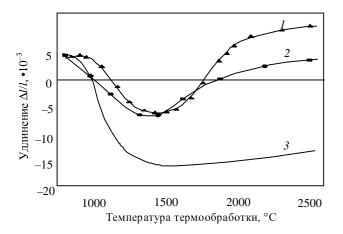

На рис. 3 приведены результаты дилатометрических измерений для пекового кокса, пекового полукокса и кокса марки КНПС. Из рис. 3 следует, что по своим свойствам пековый полукокс ближе к изотропному коксу КНПС, чем пековый кокс.


В табл. 5 приведены физико-механические свойства высокоплотных мелкозернистых графитов марки ЧКГ (размер зерна менее 100 мкм), изготовленных на основе непрокаленного смоляного кокса и низкотем-


 Таблица 4

 Свойства непрокаленных коксов, пригодных для производства графита марки ЧКГ

Показатель	Рядовой смоляной кокс	Изотропный смоляной кокс	Пековый полукокс
Плотность истинная (по ГОСТ 228-98-78), г/см ³	2,10	2,07	2,09
Выход летучих, %	5,1	5,9	2,3
Содержание общей серы, %	0,58	0,38	0,2
Зольность, %	0,39	0,3	0,6
Оценка микроструктуры (по ГОСТ 26132-84), балл	4,3	2,3	3,1
Изменение объема в интервале 1300—2400 °C	+2,0	+0,6	_
Степень графитации, %	84	64	_



a — кокс КНПС; δ — пековый кокс (Нижний Тагил); ϵ — изотропный смоляной кокс; ϵ — пековый полукокс; δ — рядовой смоляной кокс

3

Оценка микроструктуры, балл

Рис. 3. Температурная зависимость линейного изменения образцов пекового кокса (1), пекового полукокса (2) и кокса КНПС (3) при их термообработке

пературного пекового кокса методом холодного прессования в пресс-форме. Максимальный размер зерна при прессовании заготовок ЧКГ составил 0,09 мм. Заготовки готовили по технологии подготовки и переработки композиционного наполнителя, которая обеспечивает высокий выход годных заготовок ЧКГ-3 и ЧКГ-4. Представленные в таблице данные показывают, что мелкозернистые графиты марок ЧКГ-3 и ЧКГ-4 имеют более высокую механическую прочность, чем конструкционный графит АРВ.

Итак, на ОАО «Челябинский электродный завод» разработаны и освоены промышленные технологии производства высокоплотных мелкозернистых графитов из наполнителей различной природы. Сочетание разных технологий производства и наполнителей позволило расширить номенклатуру конструкционных марок графитов. Графиты обладают высокими физико-механическими свойствами, позволяющими рекомендовать эти углеродные материалы для использования в энергоемких технологиях в ряде отраслей промышленности.

Таблица 5 Физико-механические свойства высокоплотного графита марки ЧКГ на основе непрокаленных коксов

Показатель	ЧКГ-3 из с	моляного кокса	ЧКГ-3 из	ЧКГ-4 из	АРВ (по техническому проекту)	
	рядового	изотропного	пекового полукокса	смоляного изотропного кокса		
Плотность, г/см ³						
кажущаяся	1,80	1,79	1,79	1,82	1,76	
истинная	2,30	2,16	2,18	2,14	2,13	
Пористость общая, %	15	17	15	15	17	
Предел прочности, МПа						
на сжатие	52,9	62	58,3	70,6	46,1	
на изгиб	25,2	20,8	21,8	20,4	17,0	
Модуль упругости, ГПа	10	9,8	8,9	11,3	7,9	
Зольность, %	0,04	0,021	0,022	0,04	0,04	
Удельное электрическое сопро- тивление, мкОм · м	10,3	12,0	11,0	11,5	11,0	
Коэффициент термического расширения, $10^{-6} \cdot K^{-1}$	4,2	4,5	4,3	4,3	4,8	
Теплопроводность, Вт/(м · К)	116	105	115	118	87	

ЛИТЕРАТУРА

- 1. Островский В.С. В сб. науч. тр. НИИГрафит. М.: Металлургия, 1987, с. 7—16.
- 2. Аверина М.П., Чикунова Л.А. Конструкционные материалы на основе графита. М.: Металлургия, 1974, № 8, с. 25—31.
- 3. *Селезнев А.Н.*, *Шеррюбле Вал. Г.* Химия твердого топлива, 1998, № 6, с. 71—78.
- 4. Авраменко П.Я., Лаврухин С.П. В сб.: «Современные проблемы производства и эксплуатации углеродной продукции». Челябинск, 2000, с. 70-71.
- 5. Походенко Н.Т., Бонз Б.И. Получение и обработка нефтя-
- ного кокса. М.: Химия, 1986, 312 с. 6. *Сухоруков И.Ф., Павловский А.М., Фриш М.А.* О техническом развитии производства углеграфитовых материалов и изделий (обзор). М.: ГОСНИЭП, 1968, 100 с.
- 7. Селезнев А.Н., Рядинский В.И. Цветная металлургия, 1999, № 11—12, c. 33—38.
- 8. Селезнев А.Н. Углеродное сырье для электродной промышленности. М.: Профиздат, 2000, № 26—27, 84—92 с.
- 9. *Селезнев А.Н., Шеррюбле Вик.Г.* Цветная металлургия, 2001, № 7, с. 27—29.
- 10. Селезнев А.Н., Свиридов А.А., Бухарова А.А. и др. Там же, 2004, № 3, c. 28-32.