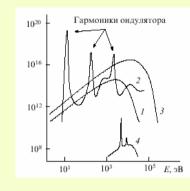
Ю.Л.Словохотов, Я.В.Зубавичус

Обзор рентгеновских инструментальных методов на синхротронном излучении

см. http://www.ineos.ac.ru\lsip

Школа пользователей синхрогронного излучения

Взаимодействие рентгеновского излучения с веществом

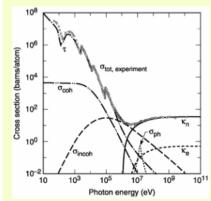

- Упругое рассеяние
- Неупругое рассеяние
- Поглощение за счет возбуждения электронов
- Поглощение за счет возбуждения ядер
- Рождение электрон-позитронных пар

Сечение процесса σ_i [см²]: отношение частоты событий [1/c] к плотности потока возбуждающих частиц [1/с·см²].

Для процессов взаимодействия рентгеновских фотонов с веществом используется единица **барн** = 10^{-24} см²

Школа пользователей синхрогронного излучения

Уникальные свойства СИ



- Очень высокая интенсивность
- Непрерывный спектр
- Поляризация
- Модулированный пучок
- Частичная когерентность (источники 3-го и 4-го поколения)

Школа пользователей синхрогронного излучения

Сечения различных процессов для Рь

J. Kirz, in X-ray Data Booklet, ALS, p. 3-4

- σ_{tot} пол ное сечение взаимодействия
- τ сечение фотоионизации (электр. поглощения)
- $\sigma_{co\,h}$ сечение у пру гого рассеяния (томсоновского)
- о_{теон} сечение неу пру гого
- рассеяния (комптоновского) σ_{nb} - сечение ядерного поглощения
- к_n сечение создания электрон-
- позитронных пар на ядрах
- κ_e сечение создания электронпозитронных пар (E_p >1.1 M₃B)

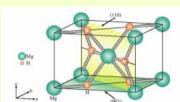
Школа пользователей синхрогронного излучения

Упругое (томсоновское) рассеяние рентгеновского СИ

Монокристаллы с размерами 1-10 мкм

Прецизионные исследования распределения электронной плотности

Нр/НТ-исследования монокристалов в алмазных наковальнях

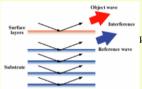

Рентгеностру кту рный анализ поликристаллических образцов

Плохо рассеивающие, в т.ч. слабоу порядоченные образцы (SAXS/WAXS)

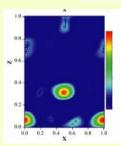
Макромолеку лярная кристалография (белки, вирусы, ДНК)

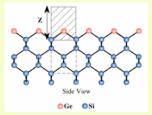
Жесткое рентгеновское излучение (~100 кэВ): неорганические стекла и т.д.

Микродифракция и комбинированные методы


Стр уктура ${\rm MgH_2}$ по данным порошковой диф ракции на СИ T.Noritake et al., Toyota & SPR ing-8, 2002

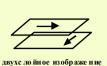
зователей


синхрогронного излучения


Рентгенодиф ракционная голография

(T.Takahashi, K.Sumitani, Univ. of Tokyo & SPRing-8, 2001)

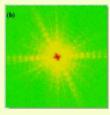
Интерференция лучей (схема)

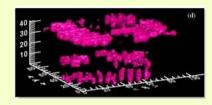


Эшин женажна в й слой Ge на грани Si (001) синхрогронного излучения

Рентгеновская дифракционная микроскопия

(SPRing-8; J.Miao et al., Phys. Rev. Lett. (2002), 088303)





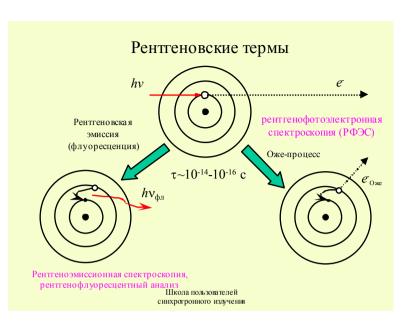
ухслоиное изображение

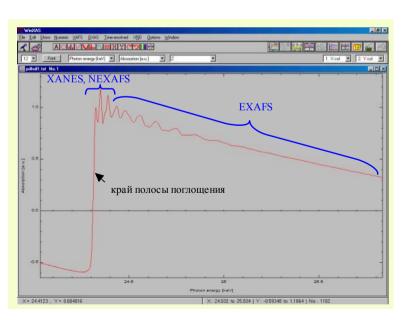
SEM

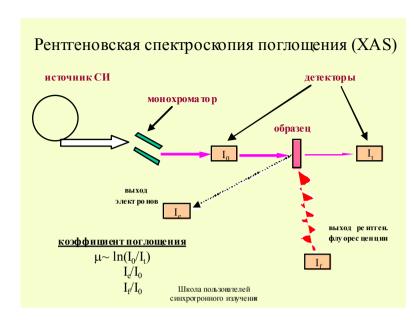
X-ray, 2D image

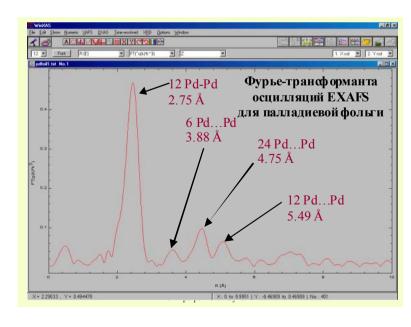
X-ray diffr action pattern

Школа пользовательну, 3D reconstruction синхрогронного излучения

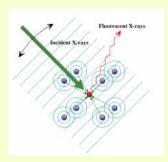

Дополнительные вклады в атомный фактор рассеяния

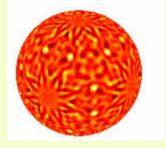

Рассеяние на спиновой электронной плотности (магнитное рассеяние)


Рассеяние на ядрах


Оба вклада незначительны при обычных энергиях, но резко возрастают в области **резонансного электронного или ядерного поглощения**

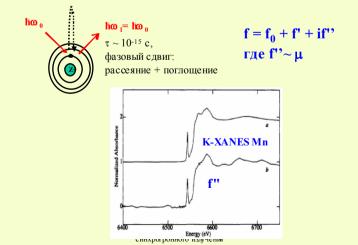
Школа пользователей синхрогронного излучения



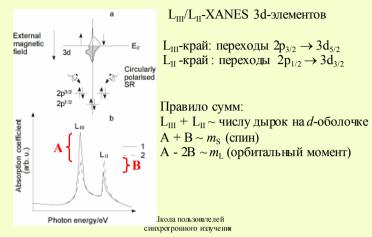


Рентгенофлуор есцентная голография

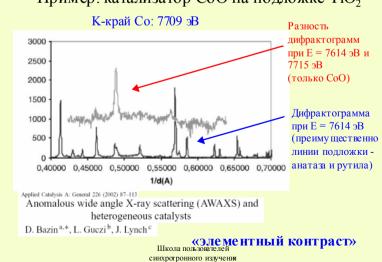
(K. Hayashi, et al., Tohoku University & Spring-8)



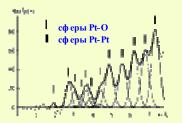
Получен ие изображения (схема)


Голограмма Si₀₉₉₉Ge_{0.001} по K-флуоресценци и Ge

Школа пользователей синхрогронного излучения


Аномальное рентгеновское рассеяние

Поляризация СИ: рентгеновский магнитный круговой дихроизм (XMCD)



Пример: катализатор СоО на подложке ТіО2

Рассеяние с элементным контрастом: ASAXS, AWAXS

Pt L_{III} AWAXS аморфного катализатора Euro Pt-1 на полложке (А.Н.Шмаков, Э.М.Мороз, СЦСИ, 1998)

К-край Fe

E(eV)

7110 7115 7120

возле края поглощения ц, а значит и f", одного и того же элемента в разных степенях окисления различны

«валентный контраст»

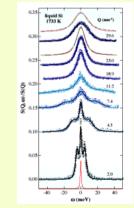

7125 7130 7135 7140 7145 7150 рателей

Неупругое рентгеновское рассеяние

Комптоновское рассеяние $\Delta\lambda = (h/mc)(1-cos2\theta)$, выбивание внешних электронов: распределение импульса электронов в зоне проводимости

Фононные потер и: возбуждение коллективных колебаний атомов, $\Delta E \sim 1-10$ мэВ Возбуждение валентных электронов: ∆Е ~1-5 эВ

Плазмонные потер и: возбуждение колебаний электронного газа, ∆E ~10-20 эВ **Рамановское рассеяние**: ионизация остовных уровней легких атомов, $\Delta E \sim 100-500~{\rm 3B}$


Также на основе аномального рассеяния:

Экспериментальное решение проблемы фаз - определение фаз (т.е. F_{hkl}) рентгеновских рефлексов. Multi-wave Anomalous Diffraction (MAD): основной современный метод расшифровки структур белков с использованием СИ

XAFS-подобная тонкая структура $I_{hkl}(\hbar\omega)$. Diffraction Anamolaus Fine Structure (DAFS): Селективное определения локального окружения тяжелых атомов в смесях поликристаллических фаз и локального окружения кристаллографически неэквивалентных атомов в одной фазе

> Школа пользователей синхрогронного излучения

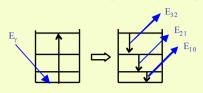
Неупругое рентгеновское рассеяние

в расплавленном кремнии (S. Hosokawa et al, SpRing-8)

Сателлиты фононных потерь

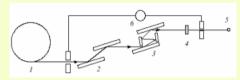
Спектры фононных потерь (~ NIS) Электронные возбуждения (~ EELS) Резонансное неупругое рассеяние (RIXS)

Рамановское рентгеновское рассеяние (E_v~7 keV)


Гексагональный BN

XANES на К-крае бора:

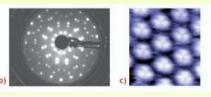
XANES на К-крае азота:


H.Havashi et al. J.Synchr. Rad. **5**, 1052 (1998) Школа пользователей синхрогронного излучения

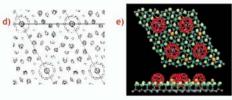
Мессбауэровская спектроскопия на СИ

поглощение фотонов ядрами в узком интервале энергий без применения долгоживу щих «мессбау эровских» изотопов. Схема фронтального рассеяния на ядрах

Nuclear forward scattering (NFS) scheme



I - pulse SR source, 2 - pre-mono, 3 - nested mono (dE/E \sim 10 $^{-7}$) 4 - sample, 5 - avalance photodrode 6 - delay circuit синхрогронного изучения


Пример: дифракция на реконструкции поверхности Ge(111)-C $_{60}$ ($\sqrt{13}$ × $\sqrt{13}$) в геометрии скользящего падения

X. Torrelles et al., ESRF, 2003

данные LEED

данные STM

карта электронной плотности
Пкола пользовате друктурная модель поверхности
по рентгеновским другом пользовате другом по реньтранующего измучения

Исследования поверхности

Комбинированные методики с использованием фотонных и электронных пучков. Широкие практические приложения

Фотоэлектронная спектроскопия с угловым разрешением (ARPES, ARXPES): использование дифракции фотоэлектронов. Межатомные расстояния. Фотоэлектронная голография.

Полное внешнее отражение (ПВнО): grazing incidence. Селективное взаимодействие фотонов с внешним слоем толщиной \sim нм, чувствительность анализа до 10^{-15} г/г.

Стоячие рентгеновские волны: интерференция лучей, отраженных от системы плоскостей (hkl) $(2d_{hkl}\sin\theta=n\lambda)$; варьируемое проникновение в атомный слой $(2d_{hkl}\sin\theta=n\lambda)$ с регистрацией выхода фотоэлектронов и флуоресценции.

Школа пользователей синхрогронного излучения

Выводы

Уникальные характеристики СИ позволяют изучать свойства веществ, недоступные для классических экспериментальных методик.

Использование СИ многократно увеличивает объем информации о строении вещества, порождая новые области исследования.

Взаимодействие новых областей исследования в центрах СИ принципиально ускоряет развитие академических и прикладных научных дисциплин.

Замедленное освоение современных экспериментальных методов на основе СИ приводит к необратимому отставанию страны в науке и технологии.

Школа пользователей синхрогронного излучения