Мезофаза циклопентана (175–180 К): конформационное псевдовращение

- К конформация конверта (envelope)
- Т твист-конформация
- +,-: отклонение атомов С от пл-сти цикла

Структурная нежесткость PF₅ (синглет в ЯМР ¹⁹F): псевдовращение (по) Берри

тригональная бипирамида (ось 3 вертикально) тетрагональная пирамида (ось 4 горизонтально) тригональная бипирамида (ось 3 горизонтально)

Но по данным PCA PCI₅ = [PCI₄]⁺[PCI₆]⁻, а PBr₅ = [PBr₄⁺]⁺Br⁻, т.е. возможны также перегруппировки с межмолекулярным обменом лигандами

Устройство банка структурных данных

Статистическая обработка данных Программы поиска данных Новые исследования Кристаллографические данные, характеристики исследования, координаты атомов в ячейке

Cambridge Structure Database (CSD) ~350000 структур Inorganic Crystal Structure Database (ICSD) ~60000 структур International Crystal Diffraction Database (ICDD) ~70000 дифрактограмм Protein Diffraction File (PDF)

Поиск соединений по Кембриджскому Банку: CONQUEST

CCDC ConQuest (1)		000
<u>F</u> ile <u>E</u> dit <u>O</u> ptions <u>V</u> iew Databases <u>R</u> esults <u>H</u> elp		
Build Queries Combine Queries Manage Hitlists View Results		<u> </u>
Draw	1	
Peptide		
Author/Journal		
Name/Class		
Elements		
Formula		
Space Group		
Unit Cell		
Z/Density		
Experimental		
All Text		
Refcode (entry ID)		
Search Reset		
	1	*
🐝 📣 🐴 - 🚺 - 🐝 mc - ~/CSD/tmp - Shell - 🛛 💥 CCDC ConQuest (1)		· K M · 14:17:19 7.12.2006 ·

CONQUEST: построить искомый фрагмент

CONQUEST: задать геометрические параметры

X CODC ConQuest (1)			9	8 ×
File Edit Options View Databa	ises <u>R</u> esults <u>H</u> elp			
Bu Draw (1) - New				-
<u>File E</u> dit <u>A</u> toms <u>B</u> ond	s <u>3</u> D <u>O</u> ptions <u>H</u> elp			
Click and dr. Drag to an e	ag to create a bond. xisting atom to make a connection.	Defined Torsion [TOR1]: C1 C6 C23 O24	3D Parameters: ANG1 ANG2	
DRAW			TOR2	
EDIT	Ť			
ERASE				
ADD 3D		_د ا	Options	
CONTACT			Delete	
	ij li	-	Contacts:	
	° C		1	
			Options	
			Delete	
RingMaker				
		2	Search	
Se		C Pond: Single	Store	
Templates	7 A 3 F F C Ally More Groups	C Bond. Single –	Cancel	
Non.				
				•
110				
🐝 🤞 🐴 - 📶 - 🐝 mc - ~/CS	SD/tmp - Shell - N 🗙 CCDC ConQuest (1)	💥 Draw (1) - New	14:30:59 7.12.	2006

параметры поиска в CSD

CCDC ConQuest (1)			008
<u>File E</u> dit <u>O</u> ptions <u>V</u> iew Databases	s <u>R</u> esults <u>H</u> elp		
Build Queries Combine Quer	ies Manage Hitlists View Results		<u> </u>
Drag Query Icons into Boxes			
Find entries that: must have (boolean AND) ? Query 1 Query 2	Query 1	Edit Delete	
must not have (NOT)	P-factor<= 0.05 fractional QUERY 2	Edit Delete	
must have at least one of (<i>UR</i>)			
Search Reset			
			•
*¥ 📣 ♠ * 🔳 * 🕸 mc - ~/CSD/	/tmp - Shell - N 🗙 CCDC ConQuest (1)		14:34:38 7.12.2006 ·

дополнительные параметры поиска

Результат поиска: список соединений из CSD с рассчитанными геометрическими параметрами

Статистическая обработка данных: VISTA

Quest File : /home/person/csds_data/searches/temp/cg_temp0								Quest F	Files	
				i - i					Load	Save
Contraction of the second		Test: Tota	Tatal		Costa eterat		Concerned			
	X.	Doromotoro	Total		Selected	i.	Suppressed		Data Visua	lization
-0-		Refcodes	1575		n/a	n	7a 7a		Histogram	Scattergram
	•	Fragments	2237		0	0			Polar Histo	Polar Scatt.
<home></home>	PARAMS	1	2	3	4	5	6	7	View REF	CODes
REFCOD		NFRAG	REFCOD	ANGI	ANG2	TORI	TOR2		Correlation/C	ovariance
1	ABECEP	ť	ABECEP	121.948	108.597	-179.762	178.622	-	View Quest I	Fragment
2	ABEJAT	2	ABEJAT	120.687	117.053	2.963	-0.326			
3	ABIXOV	3	ABIXOV	120.103	120.781	176.757	-10.453		Parame	ters
4	ABIXOY	4	ABIXOV	118.664	122.627	165.374	8.277		Generate P.C	C. Scores
5	ABODEB	5	ABODEB	120.275	122.241	177.289	-3.556		Create	Transform
6	ABODEB	6	ABODEB	120.274	122.013	-172.338	-6.594		Creach	Denews
7	ABOHU	7	ABOHIJ	117.327	123.233	-174.887	-4.702		Search	Re-name
8	ABOHIJ	8	ABOHIJ	120.230	122.895	175.636	5.701		Export	Swap
9	ABUKOX	9	ABUKOX	119.552	117.234	-7.032	1.832		Select Pars.	Clear Pars.
10	ABUKOX	10	ABUKOX	119.919	118.443	-6.425	3.115		Delete F	Pare
11	ABUKOX	11	ABUKOX	119.682	123.284	168.684	1.515		L'eicie	
12	ABUMAL	12	ABUMAL	117.732	122.142	-112.872	3.496		Pofcodo	c
13	ABUMAL	13	ABUMAL	123.786	115.519	-121.697	5.840		Select Deta	Plant Both
14	ACNPHB	14	ACNPHB	120.445	118.267	-7.159	0.241		Delect Heis	Clear Heis.
15	ACNPHD	15	ACNPHD	119.933	121.079	-173.152	1.254		Invert	Delete Refs.
16	ACNPHD	16	ACNPHD	120.833	121.519	-169.858	2.343		Suppress Un	iselected
17	ACNPHE	17	ACNPHE	122.353	122.346	-175.737	-3.257		Suppress S	elected
18	ACNPHE	18	ACNPHE	122.935	119.692	179.670	1.847		Destruction	Calls Convert
19	ACNRDS	19	ACNRDS	120.807	122.241	-160.165	4.872		Restore	Save Coords.
20	AFADAM	20	AFADAM	118.647	118.433	-3.332	0.028		· · · ·	
	AFLIPOG	21 1	AFUPOG	118.656	119.350	7.057	-2.488	V	Miscellar	reous

химфак МГУ, осень 2009

Строение кристаллических веществ и материалов

лекция №16

Полимеры и биополимеры

В.Г.Дашевский, Конформационный анализ макромолекул, М, Наука, 1987

Вытянутые молекулы: *н-*алканы C_nH_{2n+2}

H-C₂₀H₄₂: P $\overline{1}$, Z=1, a=4.29, b=4.84, c=27.35 Å, α=85.3⁰, β=68.2⁰, γ=72.6⁰ H-C₃₀H₆₂: Pbca, Z=4, a=9.76, b=7.34, c=81.60 Å

Рис. 1.40. Грань aobo ромбической ячейки парафина. Оси молекул перпендикулярны к чертежу.

> a=7.43, b=4.95, c=61.96 . . .

Полиэтилен: a=7.45, b=4.97, c=2.54 Å

Дифрактограмма полиэтиленовой пленки (λ Си Кα)

Конформационная карта элементарного звена насыщенной полиэтиленовой цепи

Рис. 2.5. Конформационная энергия цепи политетрафторэтилена в зависимости от угла вращения φ (в кДж/моль на повторяющуюся единицу; торсионная энергия не учтена)

Отталкивание атомов F в 1,3-положениях смещает минимумы от точных значений ϕ_1 , $\phi_2 = 60$, 180, 300°: наиболее устойчивой становится спиральная конформация цепи. Это справедливо при любой природе «дальнодействия» элементарных звеньев полимеров (например, для H-связей в белках)

ПОЛИАЦЕТИЛЕН [—CH=CH-]*n* или (CH)*n*, полимер ацетилена. В зависимости от метода получения - черный порошок. сероватый пористый материал, серебристые или золотистые пленки; плотн. 0,04-1,1 г/см, степень кристалличности 0-95%. Известны *цис-* и *транс-формы* **полиацетилена**; *цис-форма* при нагревании до 100-150 °C переходит в *транс-форму.* Полиацетилен не растворяется ни в одном из известных органических растворителей. **Молекулярный полупроводник**: электропроводность 10⁻⁷ (цис-) и 10⁻³ Ом⁻¹·м⁻¹ (транс-форма); повышается при допировании донорами (щелочные металлы) или акцепторами (галогены)

(цис-С ₂ Н ₂) _n	a=7.68, b=4.46, c=4.48 Å
$(TpaHc-C_2H_2)_{n}$	a=7.32, b=4.24, c=2.46 Å
Полиэтилен:	a=7.45, b=4.97, c=2.54 Å

Дифрактограмма целлюлозы (λ Cu Kα) *a*=8.95, *b*=10.31, *c*=7.87 Å, α=γ=90°, β=106.2°

степень кристалличности полимера: отношение интегральной интенсивности рефлексов к интегральной интенсивности фона (выделен цветом)

кристаллическая структура

внутрицепочечные и межцепочечные Н-связи

Целлюлоза [C₆H₁₀O₅]_n, n = 500 – 1000

OH

ÓН

сн₂он

CH₂OH

ÓН

OH

Морфология целлюлозы: цепи, волокна, фибриллы

Assembly of a cellulose fiber in algae

Конформационная карта дисахаридного звена

Рис 5.3. Целлобиоза

Рис 5.4. Карта разрешенных и запрещенных областей дисахарида целлобиозы. Сплошной линией показаны границы полностью разрешенной, штриховой — границы частично разрешенной области; • соответствуют кристаллической структуре целлобиозы, • структуре целлюлозы по Германсу

Белки: нерегулярные полипептиды; в кристалле глобулы из элементов вторичной структуры (α–спираль, β–лист, неупорядоченные участки) + большое число молекул воды

α-спирали

Конформационные состояния пептидных звеньев

точки – данные CSD по олигопептидам

Фибриллярные белки: α–спираль

Высокоупорядоченные полимеры

Сплетение трех спирализованных α–спиралей в фибриллярном белке (α–кератин)

----- - - ------------- Божетново писто моловин(они

Б.К.Вайнштейн, Современная кристаллография, т.2, гл. 2, с.с. 193-245

Дифрактограмма соединительной ткани хвоста крысы (коллаген) А.А.Вазина и соавт., Сибирский центр СИ

Фибриллярные белки: β–лист

Парэллельная (а) и антипараллельная (б) β-структуры

Параллельные цепи

Антипараллельные цепи

2D-мотивы расположения фрагментов полипептидных цепей; фрагменты одной цепи в β-листе соединены «поворотом», или «шпилькой» (β-turn)

Грамицидин (комплекс с мочевиной), CSD

G.N.Tishchenko, et al, Acta Crystallogr.,Sect.D, 53, 151 (1997) модельная β -складка в циклическом олигопептиде

LEU-PHE-PRO-VAL-ORN

Рис. 6.6. "Стилизованное" изображение молекулы флаводоксина [645]. Стрелками показаны β-тяжи; цифры указывают номер β-тяжа от N-конца. α-спирали показаны в виде лент

Мембранные белки: порин

Высокоупорядоченные полимеры (гидрофобные фрагменты направлены внутрь мембраны, боковая поверхность – «цилиндрический» β–лист)

А.В.Финкельштейн, О.Б.Птицин, Физика белка, М., Университет, 2005

Глобулярные белки: различные представления глобулы

space-filled: плотная упаковка

цепь + внешние фрагменты

только цепь (backbone)

Участки α–спиралей и β–листа в окружении квазисферического гидрофобного ядра

Плотная упаковка фрагментов вторичной структуры вокруг квазисферического гидрофобного ядра глобулы. Полиэдры – позиции вокруг ядра; α–спирали по ребрам полиэдров

она концентрирует наше внимание на расположении спиралей вокруг шарового ядра глобулы. Модель учитывает только, что α-спирали — твердые вытянутые частицы — плотно окружают ядро; и что полярные концы спиралей должны находиться на поверхности глобулы. Каждая упаковка спиралей может моделироваться многогранником (рис. 14-6), каждая вершина которого соответствует как бы половине спирали. Самые компактные, «квазисферические» многогранники (рис. 14-7) описывают компактные глобулы. Упаковки, близкие к идеальным, и наблюдаются в глобулярных α-белках. При этом каждому данному числу спиралей отвечает один многогранник, а в его рамках существует несколько (от двух до десяти) типов укладок, соответствующих различным размещениям осей спиралей на ребрах этого многогранника. Среди этих укладок есть и рассмотренные выше «пучки спиралей», и «скрещенные слои».

Рис. 14-7. Квазисферические многогранники (а), описывающие компактные укладки трех, четырех, пяти и шести спиралей. Большее число спиралей не может уложиться вокруг округлого ядра. Каждый многогранник описывает несколько типов укладок, т. е. типов «штабелей» спиралей, соответствующих различным размещсниям осей спиралей на его ребрах. Таких укладок — две для трехспирального комплекса [(в) лево-, и (б) правозакрученный (как на рис. 14-3, 14-4) пучок], десять для четырехспирального, дсеять — для пятиспирального комспирального комплекса («штабеля» для 4-6-спиральных глобул не показаны, но их, при желании, легко построить самостоятельно, разместив спирали — всеми возможными способами — на ребрах многогранника так, чтобы каждая вершина многогранника соответствовала одному концу одной спирали). Те упаковки, где межспиральные углы способствуют плотному контакту спиралей — см. рис. 14-9 встречаются в белках чаще, чем прочие

Интересно, что в наблюдаемых архитектурах α-спиральных белков вдоль ребер квазисферических многогранников идут не только спирали, но и — как правило — соединяющие их нерегулярные петли (см. рис. 14-4, 14-5). Иными словами, в типичном случае белковая цепь как бы обволакивает свое гидрофобное ядро, следуя по непрерывной цепочке ребер квазисферического многогранника.

 Обратимся теперь к вопросу о том, как создается плотная упаковка в белковой глобуле. То, что такая упаковка существует, следует из экспериментов, показавших, что белок так же плотен и так же тверд, как органический кристалл. Однако еще предстоит объяснить, как достигается такая упаковка, — слишком уж сложны по форме и разнообразны боковые группы белковой цепи.

178

А.В.Финкельштейн, О.Б.Птицин, Физика белка, с.с 178-179

Белковая кристаллография

ОСОБЕННОСТИ РСА МАКРОМОЛЕКУЛ

- 1. Большие размеры молекул. Слабая рассеивающая способность. I (hkl) ~ I₀ (1/ ω) λ^3 (Vcryst / (Vcell)²) |F(hkl)|²
- 2. Большой объем дифракционных данных

N = 4/3
$$\pi$$
 Vcell / d³

где d – разрешение (2d sin θ = n λ) a=b=c=50A Sp.gr P1 N~4000 при d= 5A N~600000 при d=1A 3. Радиационное разрушение

Канал белковой кристаллографии в Курчатовском центре СИ

Edits allowed	Select item	
Processing params a : 126.1 b : 126.1	Main menu	Min 1 Max 2207 Cursor position Overlay ⊽on Contrast → □ Colour ⊽Black on whi Mag ⊽x4 PS Zoom
alpha : 90.0	Find spots	
beta : 90.00 gamma : 120.00	Edit spots	
PsiX : 0.0	Clear spots	
PsiZ : 0.0	Select images	
Mosaic : 0.51 Divh : 0.00	Autoindex	
Divv : 0.00	Estimate mosaicity	
Distance: 250.0	Predict	
Beam X : 149.6 V : 149.7	Clear prediction	
CCOMEGA : 0.00	Refine cell	
TOFF : 0.0	Integrate	
YSCAL : 1.000 Pick area: X: 1	Strategy	
Y: 1	Keyword input	
Vector scale	Find hkl	
Two theta 0.00 Resolution 2.8	Pick	
SPOT SEARCH	Measure cell	
Rmin 15.0	Circles	
Rmax 135.0	Beam / backstop	
Y offset 0.0	Save/Exit	
Min X size 0.5 Max X size 2.0		
Min Y size 0.5	;∥□	
Min no of pix	Output	
X splitting 0.3 Y splitting 0.3	XC, YC mm 300.0 0.0	
AUTOINDEXING	Indices 0 0 0	
	/ F Phi 0.00 width 0.00 Intensity 0	
UPrompts On Update display:	Sigma 0	
After refinement No	Spacing A 0.000	
	Average 0.0 Rms 0.0	
Timeout mode Off	Number 0	
	Circle resolution A	
	Phi 279.00 280.00	
	Missets ThetaX,Y,Z	Blue: fulls, Yellow: partials, Red: overlaps

СТРУКТУРЫ БЕЛКОВЫХ КРИСТАЛЛОВ

Леггемоглобин

Молекула димарганцевой каталазы Thermus thermophilus Вирус крапчатости гвоздики

Различные изображения структуры β-экспансина EXPB-1 (C2, a=113.7, b=45.2, c=70.3 Å, b=124.6⁰, Z=2)

(N. Yennawar et al., PNAS, 2006, 103(40), 14664)

Фотоионизированный атом: рентгеновский терм

см. лекцию №1

Вид рентгеновской полосы поглощения

Аномальное рентгеновское рассеяние

Метод MAD (Multi-wavelength Anomalous Diffraction)

- Прямое определение фаз рефлексов в белковой кристаллографии (для низкомолекулярных соединений проблема фаз эффективно решается статистическими прямыми методами)
- Для процедуры MAD необходимы точные значения f' и f" для тяжелых атомов в исследуемом кристалле.
- В элементарной ячейке должен быть хотя бы один достаточно тяжелый атом (металлы, селен, бром)
- Искусственное введение тяжелых атомов: замещение ионов металлов, селенометионин, бром-урацил
- Съемка данных с монокристалла под давлением Хе (частично внедряется в позиции молекул воды)

SCHEMATIC STRUCTURE OF THE SKELETAL MUSCLE

Дополнительный материал: сокращение мышцы

Упорядоченность на мезо-уровне (периоды ~ мкм): дифракционная картина на малых углах рассеяния. «Структурная биология»

Experimental set-up and preparation. The incident-beam intensity of the synchrotron x-ray source was modulated by aluminum filters of varying thickness (maximum flux, $\sim 2.0 \times 10^{13}$ photons/s; wavelength, 0.103 nm). The camera length was 1.5 m (fly-to-detector distance); the spot size at the CCD-based detector was $\sim 30 \times 200 \ \mu m$ (full width, half maximum); the spot size at the sample was $\sim 250 \times 250 \ \mu m$.

