химфак МГУ, осень 2009

Строение кристаллических веществ и материалов

Лекция 15

Органическая кристаллохимия

Особенности строения кристаллов органических соединений

- 1. Островные мотивы из низкосимметричных молекул
- 2. Низшие сингонии; типичные и «запрещенные» группы
- 3. Слабые межмолекулярные взаимодействия:
- а) дисперсионные (ван-дер-ваальсовы)
- б) ван-дер-ваальсовы + электростатические
- в) ван-дер-ваальсовы взаимодействия + Н-связи
- 4. Мотивы из молекул, объединенных такими взаимодействиями

van der Waals (ван дер Ваальс)

1943 202 1 rogynato "npuseyun "no moneny A Koria Caurence 2a cuonomenue Vobannein ue co pacinono m-ne nampy unenyny Handlement assen up ge Raano colinere

Институт элементоорганических соединений (ИНЭОС РАН), лаб. структурного анализа (с 1954 г.)

А.И.Китайгородский 1914 – 1985

Метод атом-атомных потенциалов

Энергия системы из N атомов = функция 3N-6 переменных. Эмпирически:

 $U(x_{1}y_{1}z_{1}...x_{N}y_{N}z_{N}) = U_{CB.} + U_{yrn.} + U_{Topc.} + U_{дисп.},$ где $U_{CB.} = \sum k_{i}(d_{i}-d_{i}^{(0)})^{2} - растяжение и сжатие связей$ $U_{yrn.} = \sum k'_{i}(\theta_{i}-\theta_{i}^{(0)})^{2} - деформации валентных углов$ $U_{TODC.} = изменения торсионных углов:$

напр. U(τ) = U₀(1+cos 3 τ) для C(sp³)–C(sp³)

U_{дисп.}= суммарная энергия невалентных (дисперсионных, или ван-дер-ваальсовых) взаимодействий несвязанных атомов

Набор стандартных геом. параметров {d_i⁽⁰⁾, θ_i⁽⁰⁾}, силовых констант {k_i, k_i} и потенциалов U_{дисп.} – СИЛОВОЕ ПОЛЕ (молекулы или кристалла)

Модельные потенциалы ван-дер-ваальсовых взаимодействий

 $U = -Ar^{-6} + Br^{-12}$ потенциал Леннард-Джонса (LJ, «6-12»)

 $U = -Ar^{-6} + Be^{-Cr}$ потенциал Букингема («6-ехр»)

Расчеты строения органических кристаллов методом атом-атомных потенциалов (молекулярной механики, ММ)

Геометрические параметры молекулы в кристалле: {d_{ij}} (длины связей), {θ_{ijk}} (валентные углы), {τ_{ijkl}} (торсионные углы); обычно d_{ij}≈d_{ij}⁽⁰⁾, θ_{ijk}≈θ_{ijk}⁽⁰⁾ (молекулы «жесткие»)

Положения центров тяжести «жестких» молекул в ячейке и их ориентация относительно осей **а**, **b** и **с** варьируются

Возможно внутреннее вращение вокруг одинарных связей С–С, С–N, С–O, N–N в молекуле; торсионный угол τ – варьируемый параметр

где $r_0(X)$, $r_0(Y)$ – вандерваальсовы радиусы атомов X и Y

X
 U(r)

$$I_{1,s}$$
 $I_{1,s}$
 $I_{1,s}$

Модель твердых сфер

Ковалентные и ван-дер-ваальсовы радиусы главных элементов-органогенов

r _{ков} , Å	H 0.35	С 0.77(sp ³) 0.70(арен.) 0.67(sp ²) 0.60(sp)	N 0.71(sp ³) 0.65(sp ²) 0.55(sp)	O 0.65(sp ³) 0.55(sp ²)	F 0.70
R _{вдв} , Å	1.15	1.7	1.5	1.4	1.35
r _{ков} , Å		Si 1.2	P 1.30	S 1.02	CI 0.98
R _{вдв} , Å			1.9	1.85	1.8

 $r_0^{vdW} < r_{min}$!

Пример (см. лекцию 10): кратчайшие межмолекулярные контакты C₆₀...C₆₀

Графит: С...С 3.40 Å потенциал 6-ехр С...С: 2r₀=3.80 Å

Суммы ван-дер-ваальсовых радиусов отвечают стерическому *отвалкиванию* соседних молекул.

Отталкивание компенсируется ван-дер-ваальсовым притяжением удаленных частей молекул

Два способа изображения молекул в органической кристаллохимии

Органическая кристаллохимия: ван-дер-ваальсовы кристаллы

Плотная упаковка молекул: низкосимметричных «тел», ограниченных ван-дер-ваальсовыми сферами атомов

коэффициент упаковки молекул в кристалле **k = 0.65 – 0.80** (в ГЦК и ГПУ k=0.74)

молекулярное координационное число (**МКЧ**): число соседних молекул, образующих невалентные контакты с данной молекулой; **МКЧ = 10 – 14**.

«Удельные» теплоты сублимации 5 – 10 кдж/(г-атом С)

Упаковка молекул «выступ к впадине»

Рис. 1.9. Триазид циануровой кислоты. Плотная упаковка в слое *ab*.

 $1,3,5-C_3N_3(N_3)_3$

 π -C₆H₄Cl₂

Инкременты ван-дер-ваальсова объема для некоторых групп, Å³

C(sp²)	8.4
HC(sp²)	14.7
HC(sp³)	11.1
CH ₂	17.1
	23.5
NH ₂	19.7

Аддитивная модель молекул и кристаллов

Высокосимметричные молекулы: метан

1/2 1/2

1/2

ГЦК-мотив СН₄:

I: Fm-3m, Z=4, 20 < T < 80 K II: F-43m, Z=4, T < 20 K (разупорядочены)

> ротационная («пластическая») мезофаза

трансляционная симметрия («дальний порядок») в положениях центров молекул

(см. лекцию №12)

1/2

Другие высокосимметричные молекулы

Адамантан (CH₂)₆(CH)₄ a=9.43 Å, F 43m, Z=4 «ГЦК» Уротропин (CH₂)₆N₄ a=7.02 Å, I 43m, Z=2 «ОЦК»

Рис. 1.6. Кристаллическая структура адамантана. Атомы Н не показаны.

Рис. 1.14. Кристаллическая структура гексаметилентетрамина. Атомы Н не показаны.

кристаллы склонны к переходам в ротационные фазы при p = 1 бар могут возгоняться, не плавясь Упаковка молекул в гексахлорбензоле a=8.08, b=3.87, c=16.65 Å, β =117.0⁰ пр. гр. P2₁/c, Z=2 (1),

Рис. 1.3. Проекция хОг структуры гексахлорбензола.

Вытянутые молекулы: *н-*алканы С_nH_{2n+2}

H-C₂₀H₄₂: P 1, Z=1, a=4.29, b=4.84, c=27.35 Å, α=85.3⁰, β=68.2⁰, γ=72.6⁰ H-C₃₀H₆₂: Pbca, Z=4, a=9.76, b=7.34, c=81.60 Å

Ван-дер-ваальсовы поверхности молекул С₂₀Н₄₂

Альтернирование Т_{пл} нормальных алканов («четные» упакованы лучше «нечетных»)

The second se

c

H C H

 b_0

j j

Рис. 1.40. Грань аобо ромбической ячейки парафина. Оси молекул перпендикулярны к чертежу.

Другой тип мезофазы: жидкие кристаллы (элементы дальнего порядка в ориентации молекул)

LAMELL

smectic смектические ЖК

nematic нематические ЖК

cholesteric холестерические ЖК

Предшественник ЖК-фазы: кристалл (n-C₈H₁₇)–C₆H₄–C₆H₄CN

Т_{пл} маргарина: упаковка С_nH_m-цепочек

Животные жиры: предельные трансоидные н-С_nH_{2n+1}, конформация «камертона» (tuning-fork), упаковка цепочек плотная, Т_{пл} выше

a=8.21, b=65.34, c=5.46Å, a=87.8, b=88.8, g=89.7° P-1, Z=2

(б) кристаллическая структура

Бензол C₆H₆: Pbca, Z=4 (молекулы в позициях $\overline{1}$)

Ван-дер-ваальсовы поверхности молекул С₆Н₆

Рьса: псевдо-ГЦК

Бензол С₆H₆: т. пл. 278 К; толуол СH₃C₆H₅: т. пл. 179 К Циклогексан С₆H₁₂: т. пл. 280 К, метилциклогексан CH₃C₆H₁₁: т. пл. 146 К

Понижение Т_{пл} в монозамещенных бензолах

Нафталин С₁₀Н₈

а=8.23, b=6.00, c=8.66 β=122.9⁰, P2₁/a, Z=2: молекулы (mmm) в центрах 1, «паркетная» (herringbone) упаковка молекул

<u>Антрацен С₁₄Н₁₀</u>: a=8.56, b=6.04, c=11.16 Å, β=124.7⁰, P2₁/a, Z=2

Ван-дер-ваальсовы поверхности молекул нафталина

Ферроцен (C₅H₅)₂Fe a=10.56, b=7.60, c=5.95Å, β=121.0⁰, P2₁/a, Z=2

Молекулы в шахматной конформации (D_{5d}) в позициях $\overline{1}$

Упаковка низкосимметричных молекулярных «тел»

А.И.Китайгородский, Молекулярные кристаллы, М.: Наука, 1971

Рис. 1.16. Плотный слой сим- Рис. 1.17. Плотный слой симметрии *p*1.

метрии *p*2.

Рис. 1.30. Слой симметрии р2 ИЗ центросимметричных фигур.

Плотная упаковка в слое

Рис. 1.18. Слой симметрии рт.

Рис. 1.19. Слой симметрии ртт.

Неплотная упаковка в слое

«Уплотняющие» элементы симметрии: *трансляция Т* центр 1 плоскости скольжения винтовые оси «Разрыхляющие» элементы симметрии и (особенно) их сочетания: плоскость т оси 2(<)3(<)4(<)6 mm2 mmm N/m

79% органических соединений: «плотные» пространственные группы P2₁/с (36%) Р 1 (22%) кристаллы оптических изомеров P2₁2₁2₁(8.6%) P2₁ (5.6%)

Кристаллы оптических изомеров

Трехмерная фигура (конечная или бесконечная), у которой нет несобственных вращений, называется **ХИРАЛЬНОЙ**

> Хиральная фигура существует в виде «левой» и «правой» форм, которые нельзя совместить в трехмерном пространстве

(см. лекцию №4)

Следствие:

Кристаллы оптических изомеров (т.е. построенные из хиральных молекул) относятся **только** к «хиральным» пространственным группам, в которых нет центров 1, осей 4 и плоскостей симметрии (в том числе плоскостей скольжения)

«Нехиральные» пространственные группы характерны для кристаллических рацематов

Триклинные кристаллы (Р 1 или Р 1):

Оптические изомеры – только в группе Р 1

Рацематы – **предпочтительно** в группе Р 1 (но группа Р 1 с Z=2 для них не запрещена)

Моноклинные кристаллы (13 групп):

Оптические изомеры – только в группах P2, P2, или C2, не содержащих плоскостей симметрии

Группа Р2, предпочтительнее для плотной упаковки

Рацематы – обычно в центросиметричных группах

и так далее

Особенность кристаллов:

возможны хиральные структуры из ахиральных молекул

пример: группа Р2, молекула АВ на оси 2 (Z=1)

хиральная кристаллическая структура из двухатомных молекул АВ

пример 2: молекулы АВ в общем положении (Z=2)

- тоже хиральная структура

пример 3: P2₁, Z=2

– также хиральная структура, НО

упаковки молекул «выступ к впадине»

Смешанные кристаллы: изоморфное замещение. Условие образования твердого раствора – подобие ван-дер-ваальсовой формы и близость размеров молекул


```
толан С<sub>6</sub>Н<sub>5</sub>–С≡С–С<sub>6</sub>Н<sub>5</sub>
```


дифенилртуть $C_6H_5-Hg-C_6H_5$

область изоморфного замещения молекул PhC≡CPh на Ph₂Hg в структуре толана Твердые растворы внедрения: сольваты фуллеренов

С₆₀-2(m-C₆H₄Br): ПК фуллереновых «сфер», растворитель в каналах

Полиморфные модификации 1,1-дициано-4-(4-диметиламинофенил)-1,3-бутадиена

Рис. 1.54. Ориентация молекул в триклинной и моноклинной модификациях парадихлорбензола.

2 независимые молекулы 1,3,5-тринитробензола в кристалле

Органическая кристаллохимия: ван-дер-ваальсовы + другие межмолекулярные взаимодействия

Межмолекулярные силы: ван-дер-ваальсовы, специфические, кулоновские, Н-связи

Разделение областей с преобладанием полярных и неполярных фрагментов в кристалле: «гидрофобное взаимодействие»

Кулоновская дестабилизапция конденсированной фазы: Т_{кип} замещенных бензолов С₆Н_{6-n}Х_n

Бензол С₆H₆, т. пл. 279 К; гексафторбензол С₆F₆, т. пл. 278 К Молекулярный комплекс С₆H₆•С₆F₆ (1:1), т. пл. 298 К

нет переноса заряда (и даже точной стехиометрии) Повышение Т_{пл}: разбавление полярных мол-л неполярными

Донорно-акцепторный молекулярный комплекс

пр. группа С -1, Z=2 стопки …DADADA…

Ион-радикальная соль [TTF+•][TFTCNQ-•]

Р 2/m, Z=2, разделенные проводящие стопки ...D+D+D+D+D+...и ...А-А-А-А-...

Na⁺[CH₃COO]⁻: пространственное разделение ионных и ван-дер-ваальсовых взаимодействий

Моногидрат бифталата калия (БФК): К+[o-C₆H₄(COOH)COO⁻]-H₂O БФК – органический сегнетоэлектрик

Предшественник «ионной жидкости»: кристалл $[(CH_3)_2CHN_2C_3H_3CH_3]Br$ (iPmimBr)

Типы водородных связей

Природа Н-связи: электростатическое притяжение Н^{δ+}---Ү^{δ-}

Геометрический признак Н-связи: d_{х...y} ~ R^{вдв}(X) + R^{вдв}(Y)

	d _{xy} , Å	θ _{х-н-Υ} , град.	Е, кдж/моль
Сильная Н-связь	≤ 2.6	170-180	50 – 100
Средняя Н-связь	2.6 – 2.8	140-170	20 – 30
Слабая Н-связь	> 2.8	< 140	5 – 10

В отличие от ван-дер-ваальсовых сил, Н-связи локализованы в пространстве → **k** и **MKЧ** в кристаллах с Н-связями ниже, чем в неполярных углеводородах

Энергии Н-связей выше, чем у дисперсионных взаимодействий → при близкой массе молекул **Т**_{пл} и **Т**_{кип} повышаются:

толуол $C_6H_5CH_3$, M=92, $T_{nn} = 179$, $T_{киn} = 384$ К фенол C_6H_5OH , M=94, $T_{nn} = 315$, $T_{киn} = 455$ К

аминокислоты: цвиттер-ионная форма NH₂CHRCOOH \rightarrow ⁺NH₃CHRCOO⁻ аланин C₄H₇NO₂ (+NH₃CHMeCOO⁻), M=89, T_{пл}= 570 К (разл.)

Водородные связи

К.А.Лысенко, 1-я Школа по СИ, 2005 г.

Н-связанные димеры в кристалле п-СН₃С₆Н₄СООН

Цепи Н-связанных молекул CH₃COOH (Pna2₁, Z=4)

Упаковка цвиттер-ионов H₃N⁺-CH₂COO⁻ в α–глицине: «голова к хвосту»; H-связи

Рис. 1.62. Глицин. Одиночный слой.

Спирали в кристалле γ-глицина (Р 3₂, Z=3) О…N 2.82 Å

Лед XII (5 Мбар, ρ**=1.54 г/см³)** C.Lobban, *Nature*, 1998, **391**, 268 **C**₄**N**₂**H**₁₀-6**H**₂**O** D.Schwarzenbach, J. Chem. Phys., 1968, **48,** 3164

Нанотрубки (H₂O)_∞ в кристалле CH₃NH₃⁺F⁻(18-краун-6)·6H₂O (К.А.Удачин, Я.Липковски, Ж. структ. химии, 2002, 43, 757)

Полезная литература по органической кристаллохимии

ОБЯЗАТЕЛЬНАЯ

Г.Б.Бокий, Кристаллохимия (З-е издание), гл. ХХ, М., Наука, 1971 г.

ДОПОЛНИТЕЛЬНАЯ

А.И.Китайгородский, Органическая кристаллохимия, М., АН СССР, 1955 г.,

А.И.Китайгородский, Молекулярные кристаллы, М., Наука, 1971 г.,

J. Israelashvili, Intermolecular and Surface Forces, Academic Press, 1992

Дж.Бернштейн, *Полиморфизм молекулярных кристаллов*, М., Наука, 2007 г.