Строение кристаллических веществ и материалов

Лекция № 4 Симметрия молекул и фигур. Конечные точечные группы Идеальный кристалл – это бесконечная периодическая структура, т.е. «фигура», составленная из атомов

Как любая геометрическая фигура, кристалл обладает <u>симметрией</u>

По сравнению с молекулами, у кристаллов очень высокая симметрия

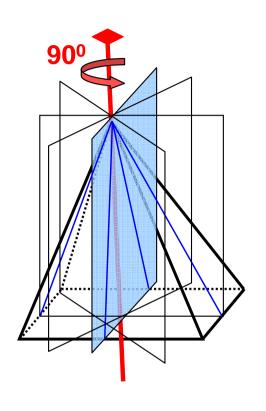
Симметрией определяются очень многие свойства кристаллов Преобразования геометрической фигуры: любые изменения положения в пространстве всей фигуры или ее составных частей

сдвиги, деформации, повороты, отражения и их сочетания (кручения, инверсия и др.)

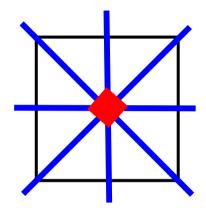
Тождественное преобразование: фигура не преобразуется

Фигура *симметрична*, если существуют преобразования, переводящие ее в саму себя. Такие преобразования называются *операциями симметрии*.

тетрагональная пирамида



(вид сверху)



Совокупность всех операций симметрии фигуры называется ее группой

Число операций в группе: <u>порядок группы</u>

Графический символ операции: <u>элемент симметрии</u>

Симметрия молекул и конечных фрагментов кристалла: точечные группы

система **Шёнфлиса**

Симметрия кристаллов и бесконечных «структурных мотивов»: пространственные группы

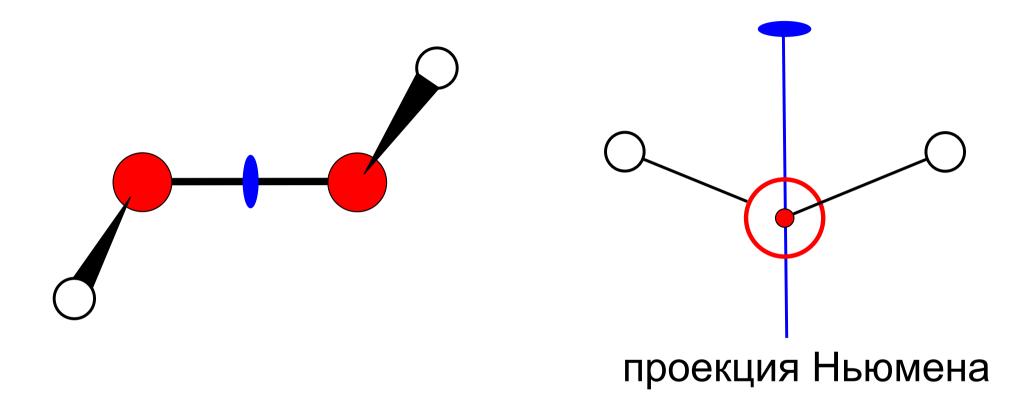
международная система Германа-Могена

Произведение операций симметрии: их последовательное выполнение

Произведение двух любых операций симметрии фигуры = операция симметрии той же фигуры

«взаимодействие элементов симметрии»

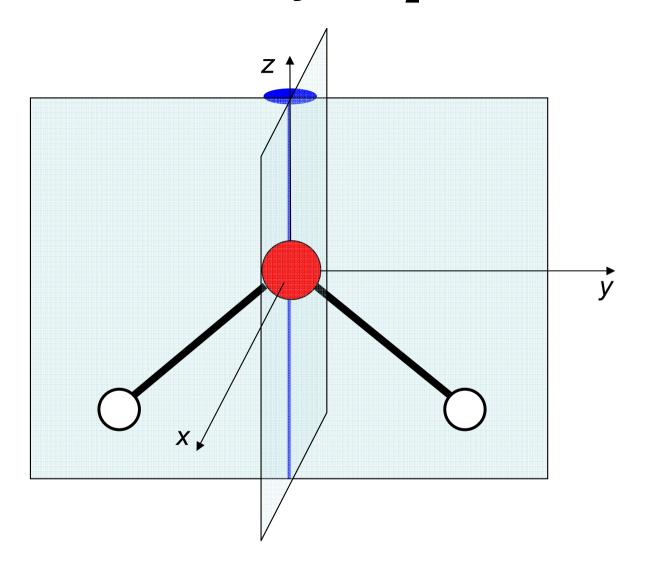
Moлeкула H₂O₂



 $C_2 \ C_2 = e$ (тождественное преобразование; входит в состав любой группы)

группа C₂: { C₂, e }

Молекула H_2O



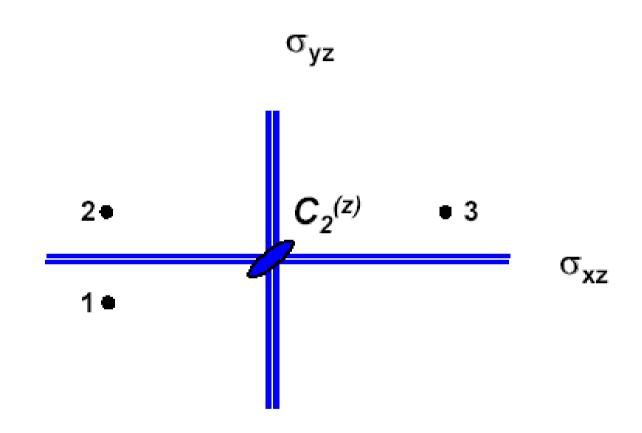
точечная группа C_{2v} (σ_{xz} , σ_{yz} , $C_2^{(z)}$, е)

Симметрия конечных фигур: *точечные группы* и *закрытые элементы симметрии*

К одной и той же точечной группе относятся многие фигуры (в частности, разные молекулы)

Поэтому для анализа симметрии достаточно рассмотреть все возможные расположения элементов симметрии в трехмерном пространстве - т.е. *графики* всех точечных групп

Набор элементов симметрии точечной группы $C_{2\nu}$



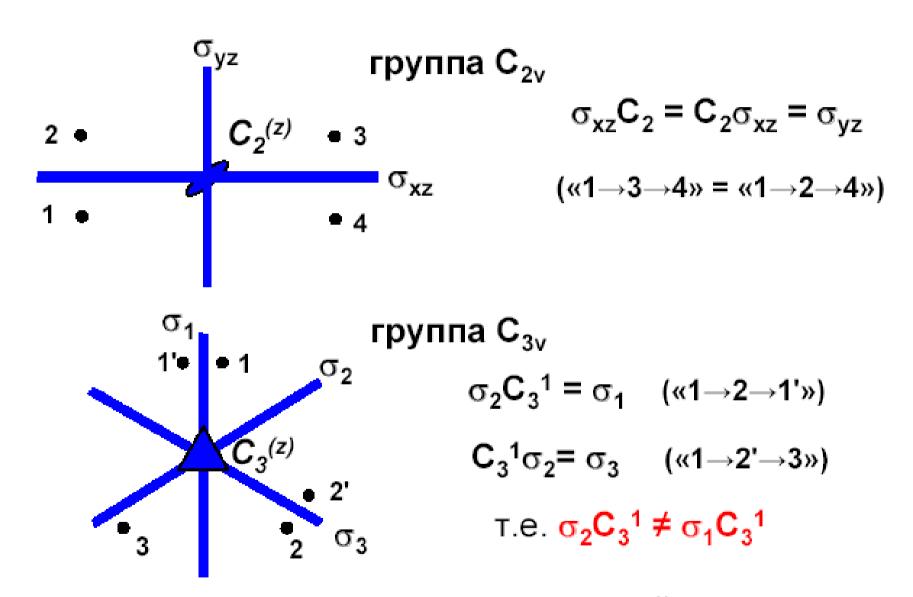
$$\sigma_{yz} \sigma_{xz} = C_2$$

$$C_2 \sigma_{xz} = \sigma_{yz}$$

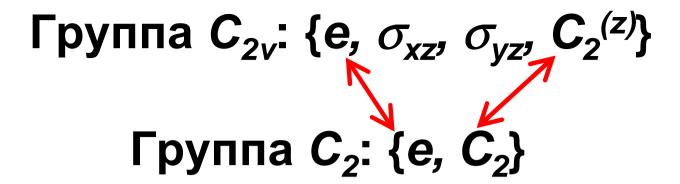
$$(1 \rightarrow 2) + (2 \rightarrow 3) = (1 \rightarrow 3)$$

$$(2 \rightarrow 1) + (1 \rightarrow 3) = (2 \rightarrow 3)$$

У операций точечных групп необычная алгебра!



во многих группах «умножение» операций симметрии НЕКОММУТАТИВНО



Если в группе **G** есть такие операции симметрии, которые сами образуют группу **G**₁, набор этих операций называется <u>подгруппой</u>:

 $G_1 \subset G$

например, $C_2 \subset C_{2v}$

порядок группы = $\mathbf{m} \times ($ порядок подгруппы)где \mathbf{m} — целое число

Два вида закрытых преобразований симметрии

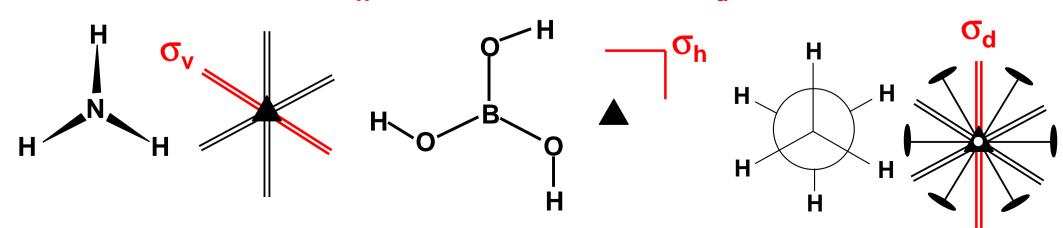
- 1. Собственные вращения: повороты фигуры как единого целого
- 2. Несобственные вращения: перестановка одинаковых частей фигуры (отражение, инверсия и их комбинации с поворотами)

Артур Шёнфлис (Arthur Shönflies), 1853 – 1928

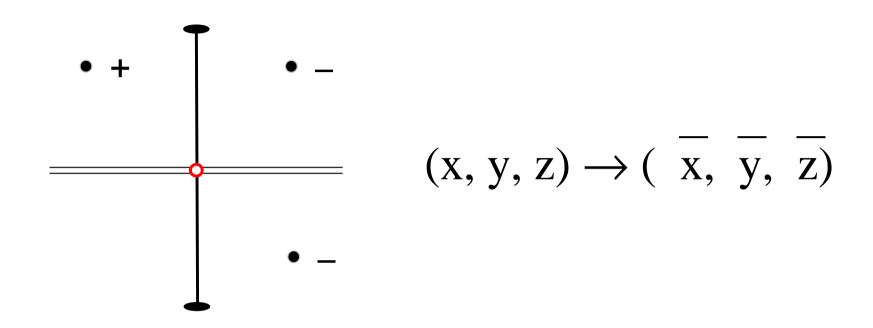
Немецкий математик, ученик Вейерштрасса и Клейна, работал в областях кинематики, геометрии, топологии, кристаллографии. В 1888-1891, параллельно с Е.С.Федоровым, вывел 230 пространственных групп. Символы кристаллографических классов «по Шёнфлису» стали основной системой обозначения точечных групп в физике, химии и спектроскопии

элементы симметрии по Шёнфлису

- 1. Поворотные оси: C_n , повороты на $(2\pi/n)k$: C_n^k
- 2. Зеркально-поворотные оси: S_n , повороты с отражением S_n^k
- 2а. В частности, $S_1 = \sigma$ (отражение), $S_2 = i$ (инверсия)
- 3. По расположению к осям C_n различают «вертикальные» σ_v , «горизонтальные» σ_h и «диагональные» σ_d плоскости



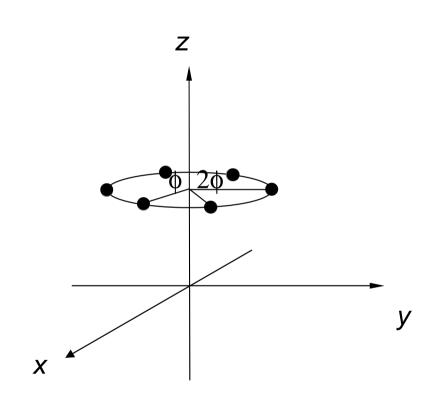
Операция инверсии

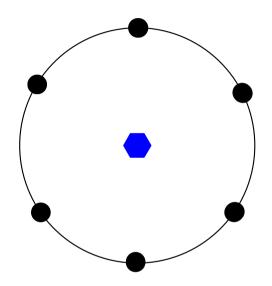


$$C_2 \sigma = i$$

Поворот на 180° (C_2), отражение (σ), инверсия (i) – элементы симметрии порядка 2

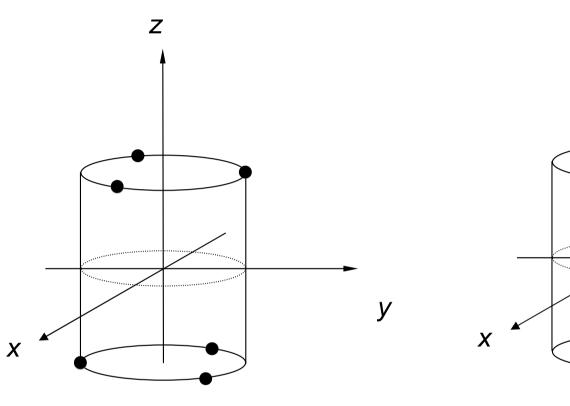
Собственные вращения на $2\pi k/n$ (C_n)



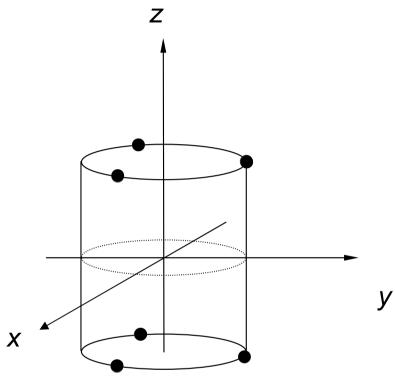


«вид сверху» (т.е. проекция)

Несобственные вращения на $2\pi k/n$ (S_n)



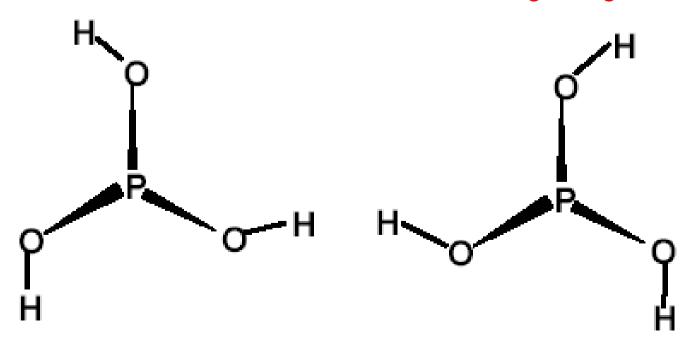
n=2k
(например S_6)
связывает
вершины
антипризмы



n=2k+1 (например S₃) связывает вершины призмы Трехмерная фигура (конечная или бесконечная), в группе которой нет несобственных вращений, называется **ХИРАЛЬНОЙ**

У каждой хиральной фигуры есть **две** формы («**левая**» и «**правая**»), которые нельзя совместить в трехмерном пространстве

пример: молекула Н₃РО₃



ИТАК:

Фигура *симметрична*, если существуют преобразования, переводящие ее в саму себя. Они называются *операциями симметрии*.

Элемент симметрии – это геометрический «символ» операции симметрии: ось, плоскость или центр

Симметрию конечных фигур задают точечные группы, составленные из закрытых элементов симметрии

Два вида закрытых преобразований симметрии

- 1. Собственные вращения: повороты фигуры как целого
- 2. Несобственные вращения: перестановка одинаковых частей фигуры (отражение, инверсия и их сочетания с поворотами).

СЕМЕЙСТВА ТОЧЕЧНЫХ ГРУПП ПО ШЁНФЛИСУ

- 1. Одна поворотная ось C_n : группы C_n абелевы группы
- 2. Одна «четная» зеркально-поворотная ось S_n : группы S_n
- 3. Ось C_n + плоскость σ_h (+ «порожденная» S_n): группы C_{nh}
- 4. Ось C_n + n «вертикальных» плоскостей σ_v : группы C_{nv}
- 5. Ось C_n + n «горизонтальных» осей C_2 : группы D_n
- 6. Ось C_n + n C_2^{\perp} + плоскость σ_h : группы D_{nh}
- 7. Ось C_n + n C_2^{\perp} + n «диагональных» σ_d : группы D_{nd} неабелевы группы при n>2

И еще 7 точечных групп высшей категории (неабелевых)

Категории симметрии

1. Низшая категория: нет осей порядка выше 2. Возможные элементы: C_2 , $\sigma = S_1$, $i = S_2$ ($e = C_1$)

$$7 \text{ групп:} (C_1) C_2, C_s, C_i, C_{2h}, C_{2v}, D_2, D_{2h}$$

2. Средняя категория: ОДНА (и только одна) ось $\boldsymbol{C_n}$ или $\boldsymbol{S_n}$ порядка n > 2

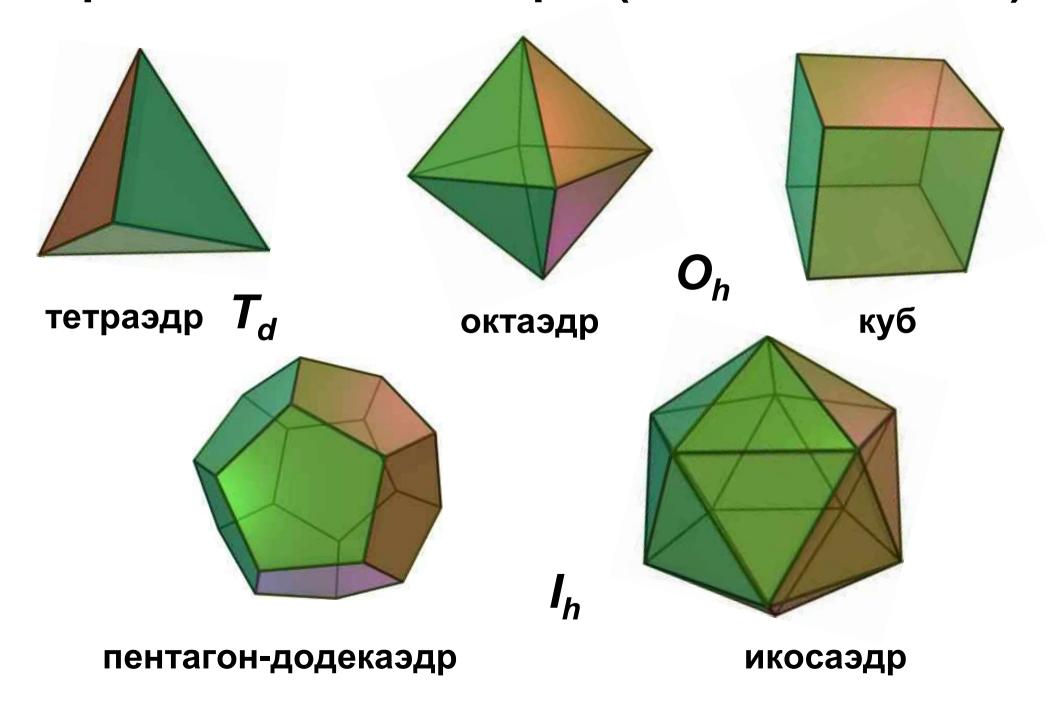
$$7$$
 семейств: C_n , S_n (n=2k), C_{nh} , C_{nv} , D_n , D_{nd} , D_{nh}

3. Высшая категория: БОЛЬШЕ ОДНОЙ оси C_n или S_n порядка n > 2.

7 групп:
$$T$$
, T_h , T_d , O , O_h , I , I_h

$$7 + 7 + 7$$

Правильные полиэдры (платоновы тела)



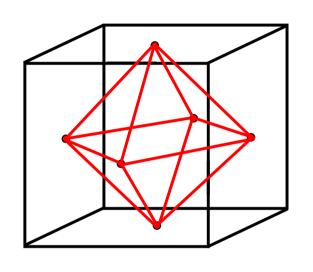
Группы высшей категории: 3 семейства

Семейство тетраэдра: T, T_h , T_d

Семейство октаэдра: O, O_h

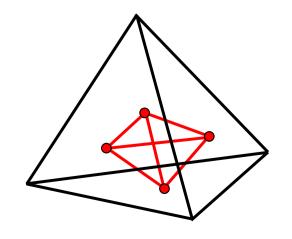
Семейство икосаэдра: *I, I_h*

Дуальные полиэдры



I. куб (гексаэдр) и октаэдр, точечная группа O_h

II. Пентагондодекаэдр и икосаэдр, точечная группа I_h



III. Тетраэдр дуален сам себе, точечная группа T_d

Семейство тетраэдра

 T_d (симметрия тетраэдра): четыре оси C_3 , три оси S_4 , шесть плоскостей σ_d ; НЕТ ЦЕНТРА I, порядок = 24

T(все повороты тетраэдра): четыре оси C_3 , три оси C_2 , порядок = 12, xиральные фигуры

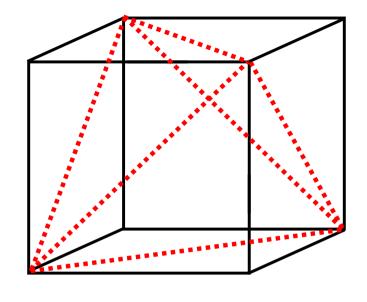
 T_h : операции группы T + центр инверсии i порядок = 24

группы T, T_h, T_d $T \subset T_d$ и $T \subset T_h$

Семейство октаэдра

 O_h : симметрия куба и октаэдра три оси C_4 , четыре оси C_3 (S_6), шесть осей C_2 , девять плоскостей σ , центр инверсии i; порядок = 48

О: повороты куба и октаэдра порядок = 24, хиральные фигуры, $O_h \supset O$, $O \sim T_d$ (изоморфны)



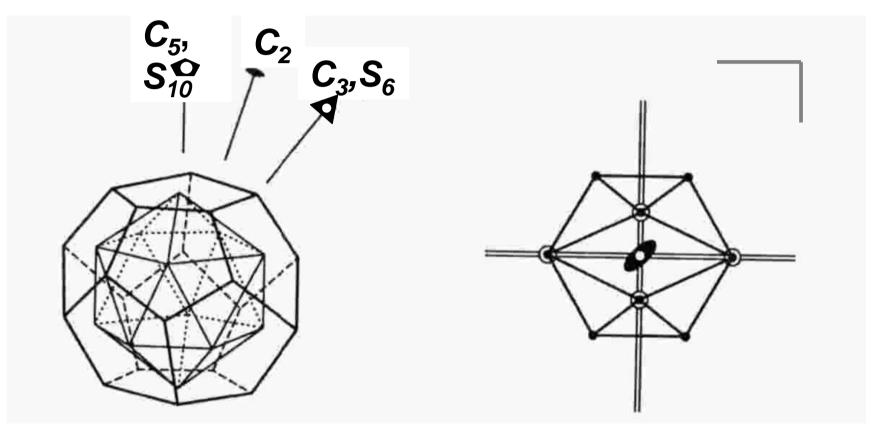
 $O_h \supset T_d$

Семейство икосаэдра

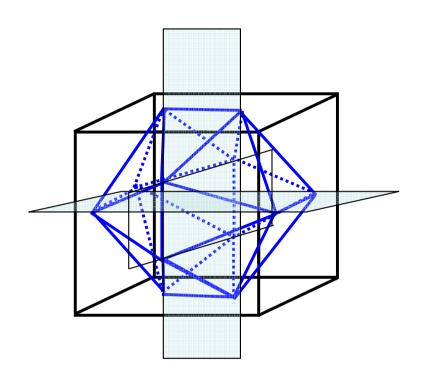
 I_h : симметрия икосаэдра и пентагондодекаэдра шесть осей C_5 (S_{10}), 10 осей C_3 (S_6), 6 осей C_2 , 15 плоскостей σ , центр инверсии I; порядок = 120

I: повороты икосаэдра и пентагондодекаэдра порядок = 60, хиральные фигуры, $I_h \supset I$

Элементы симметрии группы І_һ



координатные оси $C_2^{(x,y,z)}$



икосаэдр, вписанный в куб

$$T_h = O_h \cap I_h$$

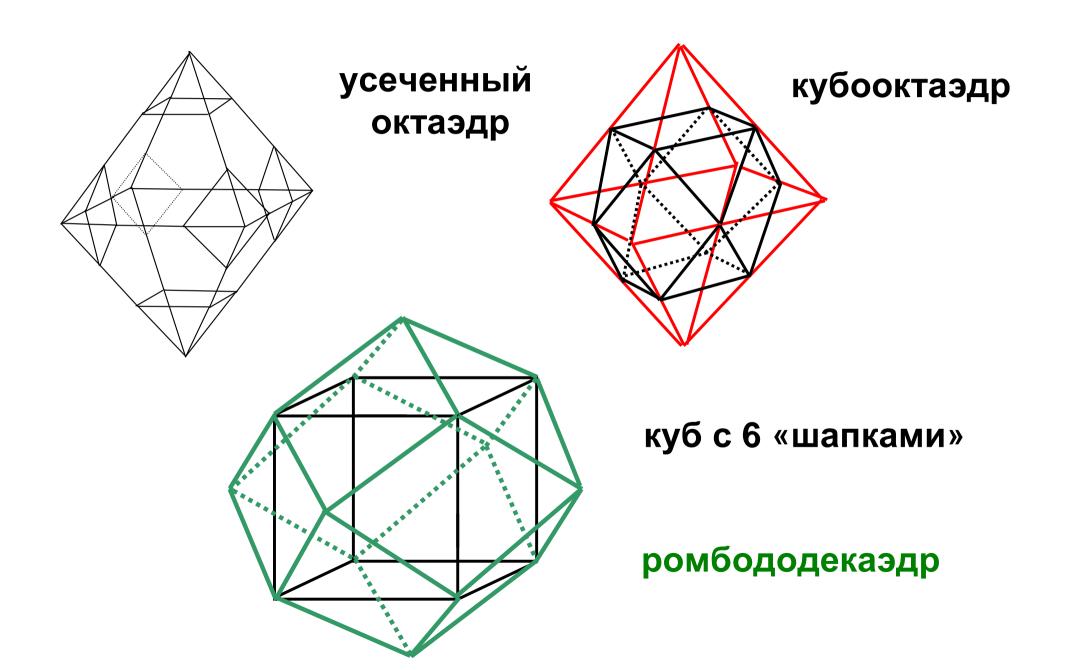
Теорема Эйлера

$$B-P+\Gamma=2$$

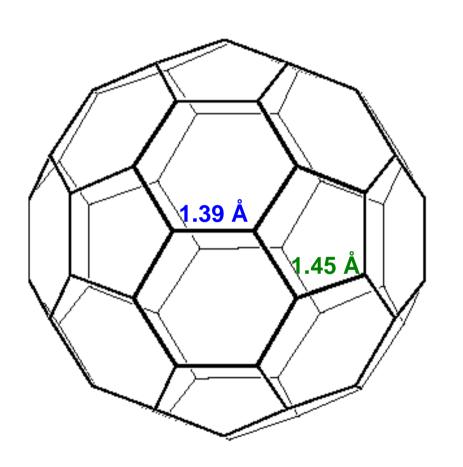
где

В – число вершин полиэдраР – число ребер полиэдраГ – число его граней,

Важные полиэдры симметрии O_h



Молекула C_{60} : усеченный икосаэдр (I_h)



B =
$$60$$

 $\Gamma = 20+12 = 32$

B – **P** +
$$\Gamma$$
 = **2**,
τ.e. P = 60 + 32 – 2 = 90

30 связей 6/6 (1.389 Å) 60 связей 6/5 (1.450 Å)

Основная литература по симметрии в кристаллографии:

П.М.Зоркий, «Симметрия молекул и кристаллических структур», МГУ, 1986

ИЛИ

П.М.Зоркий, Н.Н.Афонина, «Симметрия молекул и кристаллов», МГУ, 1979;

Ю.Г.Загальская, Г.П.Литвинская, Геометрическая микрокристаллография, МГУ, 1976

Вводная литература по этой лекции:

Ф.Коттон, Дж.Уилкинсон, «Современная неорганическая химия» (Мир, 1969), т.1, гл. 4, разд. 4.7 («Молекулярная симметрия»): стр. 139-146