Московский государственный университе	г имени М. В.	Ломоносова

Химический факультет

Т.В. Богдан

ОПИСАНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР МЕТАЛЛОВ В ТЕРМИНАХ ШАРОВЫХ УПАКОВОК И КЛАДОК

Учебно-методическое пособие к общему курсу «Кристаллохимия»

Принцип заполнения пространства шарами разного размера оказался плодотворным в описании строения веществ, состоящих из структурных единиц шарообразной формы (атомов, ионов, молекул), связанных между собой ненаправленными связями (металлической, ионной или вандерваальсовой).

Цель данного пособия — ознакомить студентов с концепцией шаровых упаковок и кладок в применении к описанию кристаллических структур металлов и соединений на их основе.

Представленный материал соответствует программе общего курса «Кристаллохимия», читаемому автором на Химическом факультете МГУ имени М.В. Ломоносова.

1. Концепция шаровых упаковок	4
Упаковки шаров на плоскости	4
Трехмерные шаровые упаковки и кладки	5
Простая кубическая кладка (ПКК)	5
Простая гексагональная кладка (ПГК)	6
Плотнейшие шаровые упаковки	7
Двухслойная ПШУ	10
Трехслойная ПШУ	12
Объемоцентрированная кубическая кладка	12
Коэффициент плотности упаковки	14
Определение радиусов шаров из параметров ячейки	13
Пустоты в шаровых упаковках и кладках	14
2. Кристаллические структуры металлов	19
Основные структурные типы	19
Металлические радиусы.	25
Твердые растворы внедрения и замещения	25
Фазы внедрения	26
Твердые растворы замещения	27
Полиморфизм металлов	29

1. Концепция шаровых упаковок

Принцип заполнения пространства шарами разного размера оказался плодотворным в описании строения веществ, состоящих из структурных единиц (атомов, ионов, молекул) шарообразной формы, связанных между собой *ненаправленными* связями: металлической, ионной или вандерваальсовой. Развитие этой концепции связано, прежде всего, с описанием кристаллических структур металлов.

Упаковки шаров на плоскости

Существует два способа расположения шаровых рядов на плоскости: *плотным* образом (шары касаются друг друга так, что у каждого шара в слое будет 4 соседа) или *плотнейшим* (ряды шаров сдвинуты друг относительно друга, при этом у каждого шара в слое будет 6 соседей). Плотный слой называют также тетрагональным, а плотнейший — гексагональным (рис. 1), что отражает их симметрию: в тетрагональном слое через шар проходит ось четвертого порядка, а в гексагональном — шестого.



Рис. 1. Расположение шаров на плоскости: а) тетрагональный (плотный) слой; б) гексагональный (плотнейший) слой. Выделены элементарные ячейки слоев.

Трехмерные шаровые упаковки и кладки

При переходе к трехмерным шаровым упаковкам существует два способа наложения слоев друг на друга: плотный (шар на шар) или плотнейший (шары верхнего слоя попадают в лунку между шарами нижнего слоя). Накладывая слои такими способами, мы получим следующие варианты расположения шаров в трехмерном пространстве:

- 1) Простая кубическая кладка: тетрагональные слои накладываются плотным образом;
- 2) Простая гексагональная кладка: гексагональные слои накладываются плотным образом;
- 3) Плотнейшая шаровая упаковка разной слойности: гексагональные слои накладываются плотнейшим образом, при этом расстояние между шарами в слое и между слоями одинаковое¹;
- 4) Объемноцентрированная кубическая кладка: тетрагональные слои накладываются по принципу «шар в лунку», при этом расстояние между шарами в слое немного больше, чем расстояние между слоями (иными словами, шары в слое раздвигаются).

Простая кубическая кладка (ПКК)

Элементарная ячейка простой кубической кладки (ПКК) описывается пространственной группой P m $\overline{3}$ m, Z=1, a=b=c, $\alpha=\beta=\gamma=90^\circ$. Атомы находятся в вершинах примитивной кубической ячейки (рис. 2). Координационное число шара в ПКК равно 6, координационный полиэдр – октаэдр. ПКК характеризует расположение атомов в кристаллической структуре α –Po, а также в фазах высокого давления фосфора, мышьяка, сурьмы и висмута.

5

¹ Плотнейшее наложение тетрагональных слоев приводит к гранецентрированной кубической кладке (ГЦК), которая представляет собой вариант трехслойной ПШУ (см. далее).

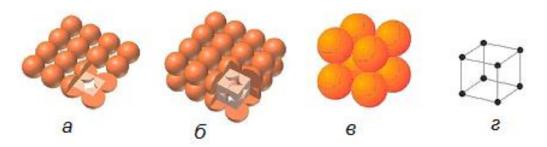


Рис. 2. Расположение шаров в простой кубической кладке: а) тетрагональный слой, выделена элементарная ячейка слоя; б) плотное наложение тетрагональных слоев приводит к простой кубической кладке, выделена элементарная ячейка трехмерной структуры; в) перспективный вид элементарной ячейки: шары касаются друг друга по координатным направлениям; г) перспективный вид элементарной ячейки, шары малого радиуса в вершинах ячейки.

Простая гексагональная кладка (ПГК)

Элементарная ячейка простой гексагональной кладки (ПГК) (рис. 3) описывается пространственной группой P6/mmm, Z=1. Элементарная ячейка представляет собой ромбическую призму, в основании которой лежит ромб с углом 120° . Соотношения между параметрами элементарной ячейки следующие: a=b=c, $\alpha=\beta=90^\circ$, $\gamma=120^\circ$. Координационное число шара в ПГК равно 8, координационный полиэдр — гексагональная бипирамида (каждый шар имеет 6 соседей в слое и по одному сверху и снизу).

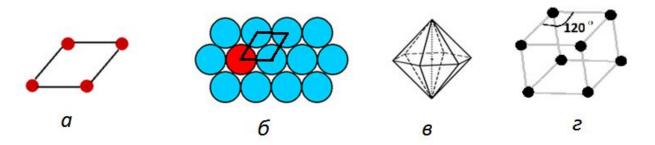


Рис. 3. Простая гексагональная кладка: а) проекция элементарной ячейки; б) координационное окружение шара в плотнейшем слое (6 соседей); в) координационный полиэдр — гексагональная бипирамида; г) перспективный вид элементарной ячейки.

Плотнейшие шаровые упаковки

Плотнейшие шаровые упаковки (ПШУ) получаются при наложении гексагональных слоев плотнейшим образом: шары верхнего слоя попадают в лунки между шарами нижнего слоя. На элементарную ячейку плотнейшего слоя (ромб с углом $120^{\circ 0}$, см. рис. 1, δ) приходится один шар и две лунки. Следовательно, количество лунок в два раза больше, чем количество шаров, и при наложении второго плотнейшего слоя на первый слой будет занята только половина лунок. Таким образом, есть два равноценных варианта наложения верхнего слоя на нижний, в каждом из которых будет занята только половина лунок (рис. 4).

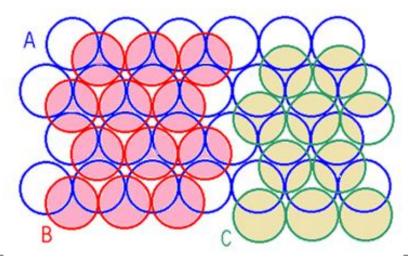


Рис. 4. Два варианта наложения гексагональных слоев в ПШУ: верхние слои (В и С) накладываются на нижний слой (А), в каждом случае занята ½ часть лунок.

Если обозначить расположение шаров в нижнем слое буквой A, то два различных варианта расположения шаров верхнего слоя, отличные от слоя A, обозначают буквами B и C (рис. 4). Буквы A, B, C задают все возможные варианты расположения слоев в ПШУ. Если шары в нижнем слое расположены по мотиву A, а второго слоя — по мотиву B, то расположение третьего слоя можно задать только двумя способами: по мотиву A (при этом лунки, не закрытые слоем B, остаются свободными) или по мотиву C (шары располагаются над лунками, не закрытыми слоем B). Таким образом, буквами A, B и C можно охарактеризовать любую последовательность слоев в ПШУ.

Слойность упаковки определяется числом плотнейших слоев в периоде, перпендикулярном плоскости слоя. В двухслойной ПШУ (гексагональной плотнейшей упаковке, ГПУ) реализуется последовательность слоев ABABAB..., в трехслойной ПШУ (кубической плотнейшей упаковке, КПУ) – ABCABCABC.... (рис. 5).

Возможны другие варианты комбинации слоев, приводящие к образованию многослойных ПШУ. Например, последовательность слоев **ABAC**ABAC... задает четырехслойную ПШУ, которая реализуется в кристаллической структуре лантана, а последовательность **ABACACBCB**ABACACBCB... – девятислойную ПШУ в структуре самария.

Существует другой способ обозначения слоев в шаровых упаковках. Так, буквой «г» обозначают так называемые «гексагональные» слои, расположенные между одинаковыми слоями, а буквой «к» обозначают «кубические» слои, расположенные между разноименными слоями. ¹ (Здесь и в дальнейшем названия слоев в системе обозначений «г, к» мы будем обозначать курсивом.)

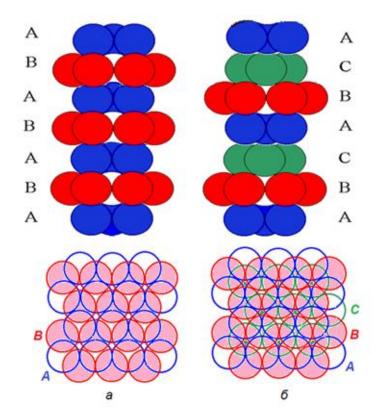


Рис.5. Расположение слоев в двухслойной ПШУ (...ABAB...) (a) и трехслойной ПШУ (...ABCABC...) (б).

_

¹ В системе обозначений «г, к» название «*гексагональный слой*» говорит об окружении слоев, которое реализуется в *гексагональной плотнейшей упаковке* (двухслойной ПШУ). Название «*кубический слой*» в системе обозначений «г, к» также говорит об окружении слоев, реализуемом в *кубической плотнейшей упаковке* (трехслойной ПШУ). На самом деле, и *гексагональные* и *кубические* слои в системе обозначений «г, к» являются плотнейшими гексагональными (см. рис. 1, б,), поскольку, при рассмотрении изолированного слоя, через каждый шар будет проходить ось 6 порядка.

В двухслойной ПШУ есть чередование слоев А и В, поэтому каждый слой окружен одинаковыми слоями, и все слои будут гексагональными:

AB AB AB...

ГГГГГ...

В трехслойной ПШУ каждый слой окружен разноименными слоями, поэтому все слои будут *кубическими*:

ABCABC ...

кккккк...

Четырехслойная ПШУ в данных обозначениях будет выглядеть как чередование букв «г» и «к»:

АВАСАВАС... или АВСВАВСВ...

КГКГКГКГ... ГКГКГКГК...

Для шестислойной ПШУ и десятислойной ПШУ *кубические* и *гексагональные* слои чередуются по-другому:

(ккгккг) ккг (ABCBAC)ABC... (ГГКГГКГГК)К (ABACACBCB)А...

Недостатком данной системы обозначений является то, что периодичность повторения букв «г» и «к» напрямую не связана со слойностью упаковки. Однако в данной системе обозначений есть указание на координационное окружение шаров в слоях.

Координационное число шара в ПШУ равно 12, так как, независимо от слойности упаковки, у каждого шара 6 соседей в слое, три сверху и три снизу. Но координационные полиэдры шара в *гексагональных* и *кубических* слоях будут разные (рис. 6). Шар в *кубическом* слое находится в центре кубооктаэдра — полиэдра с точечной группой m 3 m, содержащий 12 вершин и 14 граней: 6 квадратных, как у куба, и 8 треугольных, как у октаэдра. Шары верхнего и нижнего слоев относительно центрального шара располагаются с поворотом друг относительно друга на 60°, таким образом, через центральный шар проходит поворотная ось третьего порядка и центр инверсии. В *гексагональных* слоях шары верхнего и нижнего слоев над и под центральным шаром располагаются строго друг под другом, поэтому через центральный шар, кроме поворотной оси третьего порядка, проходит плоскость зеркального отражения (что говорит о наличии инверсионной оси 6). Шар в *гексагональном* слое находится внутри антикубооктаэдра или

гексагонального кубооктаэдра (гексагонального аналога кубооктаэдра) – полиэдра с точечной симметрией 6 m2, имеющего 12 вершин и 14 граней.

Таким образом, в двухслойной ПШУ (гексагональной плотнейшей упаковке, $\Gamma\Pi V$) координационные полиэдрами будут только антикубооктаэдры, а в трехслойной (кубической плотнейшей упаковке, $K\Pi V$) — только кубооктаэдры. В многослойных ПШУ есть и *гексагональные* и *кубические* слои, поэтому координационное окружение шаров будет разным, в зависимости от слоя, в котором шар находится.

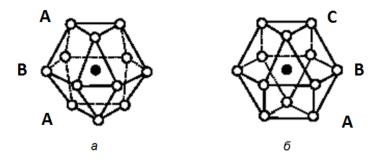


Рис. 6. Координационное окружение в *гексагональных* и *кубических* слоях, соответственно: a) антикубооктаэдр; δ) кубооктаэдр.

Двухслойная ПШУ

Элементарная ячейка двухслойной ПШУ (ГПУ) представляет собой ромбическую призму, в основании которой лежит ромб с углом 120. В центре одной из двух тригональных призм, на которые элементарная ячейка делится плоскостью, проходящей через малую диагональ основания, находится еще один атом (рис. 7). Поскольку в ПШУ расстояния между шарами в слое и между слоями одинаковые, то параметр гексагональной ячейки c равен удвоенной высоте тетраэдра с ребром a. Таким образом, соотношения между параметрами элементарной ячейки идеальной двухслойной ПШУ будут следующие: a = b, $c/a = 2\sqrt{2/3}$ ($c \approx 1.63a$), $\alpha = \beta = 90$ °, $\gamma = 120$ °.

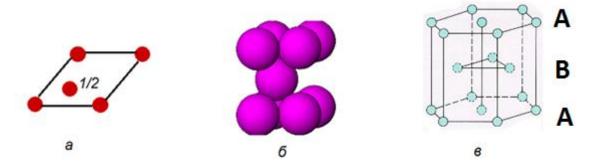


Рис. 7. Двухслойная ПШУ: а) проекция элементарной ячейки; б) расположение шаров в элементарной ячейке, перспективный вид; в) фрагмент структуры.

в) фрагмент структуры.

Элементарная ячейка ГПУ описывается пространственной группой $P6_3$ /mmc, Z=2. Расположение элементов симметрии в пространственной группе $P6_3$ /mmc показано на рис. 8. Шары занимают позицию с симметрией $\overline{6}$ m2, поэтому, чтобы увидеть расположение элементов симметрии в элементарной ячейке, надо поместить начало координат графика группы в эту позицию (рис. 8, θ).

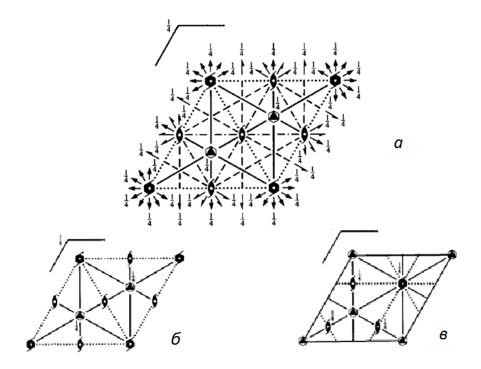


Рис. 8. Пространственная группа Р63/mmc: а) график группы, показаны все элементы симметрии; б) график группы, показаны порождающие элементы симметрии; в) график группы, начало координат смещено в особую точку оси $\frac{1}{6}$.

Трехслойная ПШУ

Трехслойная ПШУ реализуется при наложении тетрагональных слоев плотнейшим образом: в полученной гранецентрированной кубической ячейке плотнейшие слои располагаются перпендикулярно объемным диагоналям ячейки, поэтому для обозначения мотива расположения атомов в трехслойной ПШУ часто используют термин ГЦК (гранецентрированная кубическая кладка) (рис. 9). В элементарной ячейке трехслойной ПШУ (КПУ) шары находятся в вершинах ячейки и на серединах всех граней, Ячейка описывается пространственной группой Fm 3 m, Z=4.

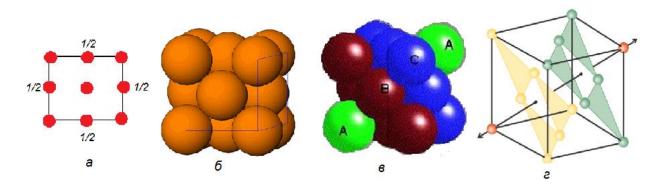


Рис. 9. Трехслойная ПШУ: а) проекция элементарной ячейки; б) перспективный вид ячейки; в) и г) выделение плотнейших слоев в ГЦК-ячейке перпендикулярны объемной диагонали куба.

Объемоцентрированная кубическая кладка

Элементарная ячейка объемоцентрированной кубической кладки (ОЦК) представлена на рис. 10. Ячейка описывается пространственной группой I m $\overline{3}$ m, Z = 2 (рис. 10). Кладку можно представить как плотнейшее наложение тетрагональных слоев с той особенностью, что шары в слоях немного раздвинуты: расстояние между слоями (d₁) примерно на 15% меньше, чем между шарами в слое (d₂), d₁ = 0.86 d₂. Каждый шар окружен 8 шарами на расстоянии d₁ и 6 шарами на расстоянии d₂. С учетом того, разница между расстояниями d₁ и d₂ невелика, координационное число шара в ОЦК определяют как (8+6), координационным полиэдром является ромбододекаэдр (полиэдр, содержащий 12 граней в форме ромба).

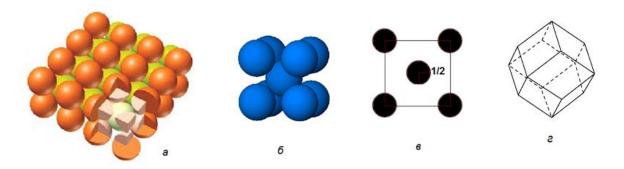


Рис. 10. Объемноцентрированная кубическая кладка: а) шары в тетрагональных слоях раздвинуты; б) перспективный вид элементарной ячейки; в) проекция элементарной ячейки;

г) координационный полиэдр в ОЦК – ромбододекаэлр.

Определение радиусов шаров из параметров ячейки

Если кристаллическая структура вещества описывается в рамках шаровых упаковок, то из определяемых экспериментально параметров элементарной ячейки можно определить радиусы образующих шаровые упаковки атомов, ионов, молекул («шаров»).

В ПКК, ПГК и ГПУ касание шаров осуществляется вдоль ребра a элементарной ячейки (рис. 12), и радиус шара определяется как половина ребра элементарной ячейки: R = a/2. В ОЦК шары касаются по объемной диагонали кубической ячейки, на диагональ куба приходится 4 радиуса шара:

 $R=rac{a\sqrt{3}}{4}$. В КПУ (ГЦК-ячейка) касание шаров происходит по диагонали грани кубической ячейки, на диагональ грани приходится 4 радиуса шара ($R=rac{a\sqrt{2}}{4}$).

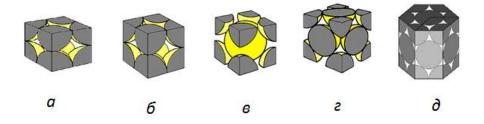


Рис. 12. Касания шаров в шаровых упаковках и кладках разного вида: а) простая гексагональная кладка; б) простая кубическая кладка; в) объемоцентрированная кубическая кладки; г) кубическая плотнейшая упаковка (гранецентрированная кубическая ячейка); д) фрагмент

Коэффициент плотности упаковки

Плотность заполнения пространства шарами в разных видах упаковок разная. Коэффициент плотности упаковки k определяется как отношение суммарного объема всех шаров в элементарной ячейки к объему ячейки:

k=N *4/3 π R³ / V_{яч} , где N — количество атомов на элементарную ячейку, R — радиус шара, V_{яч} — объем элементарной ячейки.

Самой плотной упаковкой является ПШУ (не зависимо от слойности), где k=74.05%, далее следует ОЦК — 68.0%, потом ПГК — 60.5% и ПКК — 52.4%.

Пустоты в шаровых упаковках и кладках

В рассмотренных выше шаровых упаковках и кладках имеются пустоты — свободное пространство между шарами. Размер каждой пустоты можно определить как радиус шара, который может поместиться в промежуток между шарами, касаясь их. Название пустоты происходит по названию полиэдра, внутри которого находится данная пустота.

В ПКК в центре ячейки — одна кубическая пустота (рис. 13, a). Коэффициент плотности упаковки в ПКК (0.52) указывает, что в ячейке примерно половина пространства заполнена шарами. По объемной диагонали кубической ячейки помещаются два радиуса шара и диаметр кубической пустоты. Из соотношений a = 2R и а $\sqrt{3} = 2R + 2r_{\text{куб}}$ можно определить радиус кубической пустоты $r_{\text{куб}} = 0.73R$.

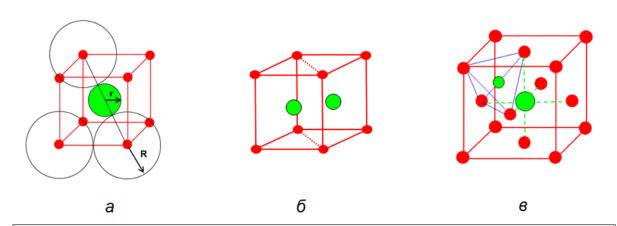


Рис. 13. Пустоты: а) одна кубическая пустота в элементарной ячейке простой кубической кладки; б) две тригонально-призматические пустоты в ячейке простой гексагональной кладки; в) октаэдрическая (в центре ячейке) и тетраэдрическая пустота (в центре октанта) в кубической гранецентрированной ячейке (показана только часть пустот в ГЦК).

В ПГК имеются две довольно большие тригонально-призматические пустоты с радиусом $r_{\text{тр.-пр.}} = 0.52 \text{R}$ (рис. 13, δ).

В ПШУ имеется 2 вида пустот: тетраэдрические и октаэдрические. (рис.14). При наложении шара в лунку между тремя шарами нижнего слоя под верхним шаром появляется тетраэдрическая пустота. Над лункой, не занятой верхним слоем, образуется октаэдрическая пустота. В любой ПШУ на 1 шар приходится 1 октаэдрическая и 2 тетраэдрические пустоты.

Размеры тетраэдрических и октаэдрических пустот в ПШУ можно определить из ГЦК-ячейки трехслойной ПШУ (рис. 13, ϵ), в ПШУ другой слойности пустоты будут такого же размера. Октаэдрические пустоты в ГЦК-ячейке находятся в центре ячейки и на серединах всех ребер (рис. 15). Радиус пустоты $r_{\text{окт}}$, находящейся в центре ячейки, можно определить из следующих соотношений: $a = 2r_{\text{окт}} + 2R$ и а $\sqrt{2} = 4R$: $r_{\text{окт}} = 0.441$ R. Это выражение справедливо для всех октаэдрических пустот в ПШУ.

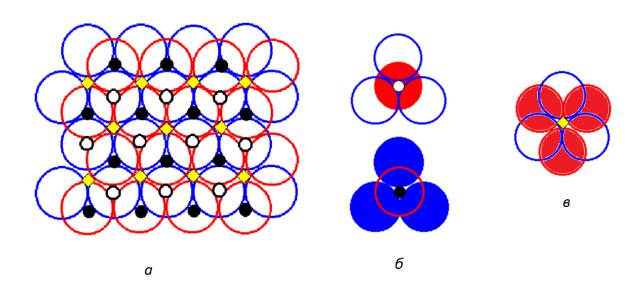


Рис. 14. Образование тетраэдрических и октаэдрических пустот в ПШУ: а) фрагмент ПШУ, малые шары обозначают пустоты; б) образование тетраэдрической пустоты; в) образование октаэдрической пустоты.

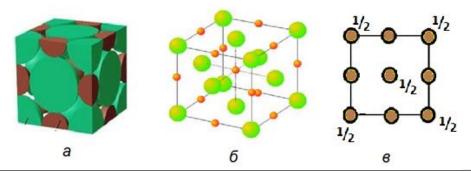


Рис. 15. Октаэдрические пустоты в гранецентрированной кубической ячейке: а) вид элементарной ячейки с заполненными октаэдрическими пустотами на серединах ребер; б) положение октаэдрических пустот в ячейке (на серединах всех ребер и в центре ячейки); в) координаты октаэдрических пустот (ВНИМАНИЕ: на рисунке в шары, образующие ГЦК-ячейку, не показаны!)

Тетраэдрические пустоты в ГЦК-ячейке находятся в серединах октантов (малых кубов, на которые делится элементарная ячейка плоскостями, проходящими через середины ребер) (рис. 16). На диагонали октанта помещаются два радиуса шара и диаметр тетраэдрической пустоты.

Из соотношений $\frac{a\sqrt{3}}{2} = 2R + 2r_{\text{тетр}}$ и $a\sqrt{2} = 4R$ радиус тетраэдрической пустоты $r_{\text{тетр}}$ составит 0.225R.

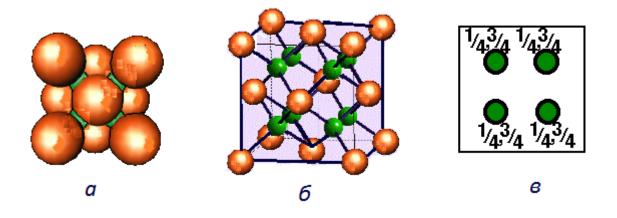


Рис. 16. Тетраэдрические пустоты в гранецентрированной кубической ячейке: а) вид элементарной ячейки с заполненными тетраэдрическими пустотами; б) положение тетраэдрических пустот в ячейке (в центрах октантов); в) координаты тетраэдрических пустот (ВНИМАНИЕ: шары, образующие ГЦК-ячейку, на рисунке в не показаны!).

Расположение пустот в гексагональной ячейке двухслойной ПШУ показано на рис. 17. Тетраэдрические пустоты находятся над и под атомом, находящимся на высоте ½ в центре одной из двух тригональных призм, составляющих гексагональную ячейку, а также по две тетраэдрических пустоты на вертикальных ребрах ячейки. Тетраэдры, образующие пустоты, сочленяются поочередно через общие вершины и общие основания.

Центр тетраэдрической пустоты смещен к основанию, поскольку находится на пересечении всех высот тетраэдра и делит высоту тетраэдра на отрезки в пропорции 3:1. Ребро c элементарной ячейки равно удвоенной высоте тетраэдра с ребром a. Два тетраэдра соединяются вершинами в атоме, находящемся внутри ячейки на высоте $\frac{1}{2}$ (в центре одной из двух тригональных призм, составляющих ячейку), тогда центры тетраэдрических пустот под и над этим атомом будут на высоте $\frac{1}{8}$ и $\frac{7}{8}$. На вертикальных ребрах ячейки два тетраэдра объединяются основаниями. Таким образом, на ребре c координаты тетраэдрических пустот будут $\frac{1}{2} \pm \frac{1}{8}$ (или $\frac{5}{8}$ и $\frac{3}{8}$), тогда расстояние между центрами тетраэдрических пустот составляет $\frac{1}{4}$ от координатной трансляции c.

При заселении тетраэдрических пустот атомами расстояние $\frac{1}{4}c$ слишком мало, чтобы в обоих тетраэдрах могли свободно разместиться атомы, и поэтому в кристаллических структурах на основе ГПУ заполняется

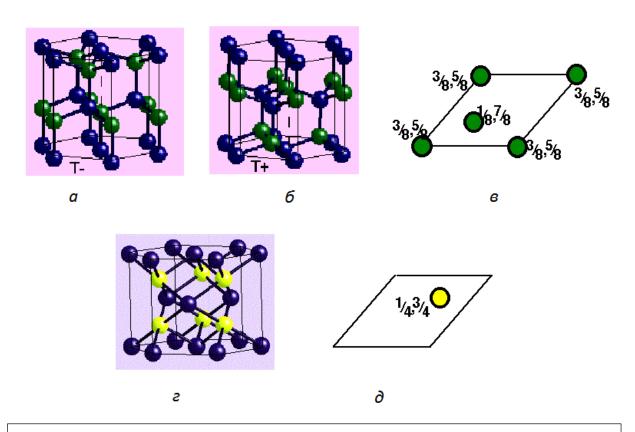


Рис. 17. Пустоты в гексагональной плотнейшей упаковке (двухслойной ПШУ). а) и б) вид элементарной ячейки с наполовину заполненными тетраэдрическими пустотами: а) «Т-» — заполненные тетраэдры направлены вершинами вниз, б) «Т+»— заполненные тетраэдры направлены вершинами вверх; в) координаты тетраэдрических пустот; г) вид элементарной ячейки с заполненными октаэдрическими пустотами; д) координаты октаэдрических пустот. ВНИМАНИЕ: шары, образующие ячейку, на рисунках в и д не показаны!.

только часть тетраэдрических пустот: либо тетраэдры обращенные вершинами вверх, либо тетраэдры, обращенные вершинами вниз (см. рис. 17, a и δ). Октаэдрические пустоты в ячейке, отвечающей двухслойной ПШУ, находятся внутри свободной тригональной призмы на высоте $\frac{1}{4}$ и $\frac{3}{4}$. (см. рис. 17, ε и δ).

В ОЦК-ячейке существуют искаженно-тетраэдрические и искаженно-октаэдрические (тетрагонально-бипирамидальные) пустоты. Искаженно-октаэдрические пустоты находятся на серединах всех граней и на серединах всех ребер. Размер октаэдрических пустот в ОЦК-ячейке меньше, чем тетраэдрических. Радиус октаэдрической пустоты в ОЦК-ячейке можно вычислить, пользуясь следующими соотношениями: $a = 2R + 2r_{\text{окт}(\text{ОЦК})}$ и а $\sqrt{3} = 4R$, $r_{\text{окт}(\text{ОЦK})} = 0.154$ R.

Тетраэдрические пустоты находятся на гранях ячейки, по четыре на каждой грани (рис. 18). Ребра тетраэдра образуются парой атомов на ребрах ячейки и парой атомов на высоте $\frac{1}{2}$ (в исходной и соседней ячейках).

Всего на ОЦК-ячейку приходится два шара, 12 тетраэдрических и шесть октаэдрических пустот, а на один шар — 6 тетраэдрических и 3 октаэдрических. Иногда в ОЦК ячейке также выделяют тригонально-бипирамидальные пустоты, образующиеся при соединении пары тетраэдров через общие грани.

Примечательным оказывается то, что все пустоты в ОЦК-ячейке имеют общие грани и образуют систему сквозных каналов. Это приводит к тому, что при заселении части пустот атомами, последние могут свободно мигрировать между всеми пустотами

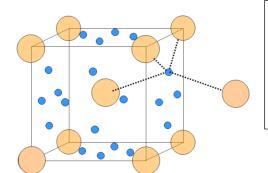


Рис. 18. Тетраэдрические пустоты в ОЦК- ячейке (по четыре на каждой грани). Для иллюстрации образования тетраэдрической пустоты показан центральный атом из соседней ячейки.

2. Кристаллические структуры металлов

Основные структурные типы

Для металлов характерны кристаллические структуры с высокими координационными числами. Большинство металлов относится к структурным типам меди, магния и а—железа (в иностранной литературе этот структурный тип называют типом а—вольфрама) (рис. 19). На рис. 20 представлено распределение металлов по структурным типам. В целом, по мере увеличения количества валентных электронов, происходит переход от ОЦК-структуры к ГПУ и, далее, к КПУ.

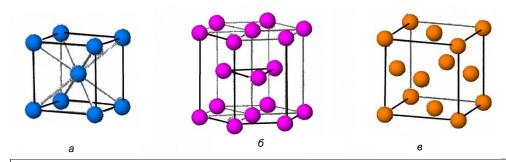
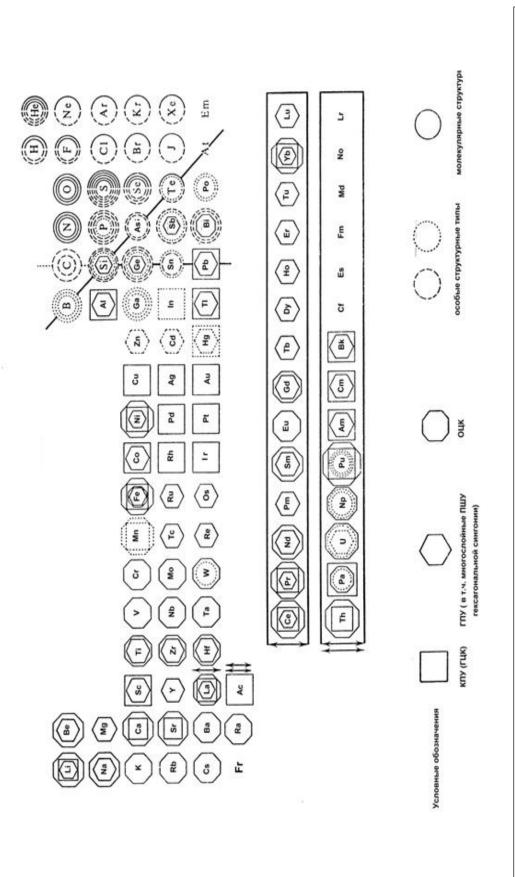



Рис. 19. Основные структурные типы металлов. ОЦК- ячейки в структурном типе α-железа (а), фрагмент кристаллической структуры структурного типа магния (б), ГЦК-ячейка в структурном типе меди (в).

Расположение атомов в структурном типе меди происходит по мотиву трехслойной ПШУ с ГЦК-ячейкой. К структурному типу меди относятся благородные металлы (серебро, золото, платина, иридий, палладий, родий), а также свинец и алюминий.

Атомы в структурном типе магния располагаются по мотиву двухслойной ПШУ (ГПУ). В идеальной ГПУ соотношение параметров гексагональной ячейки c/a равно 1.63. В реальных структурах это соотношение находится в пределах от 1.57 до 1.65. К структурному типу магния относятся бериллий, рений, рутений, осмий, технеций, титан, многие редкоземельные элементы.

К структурному типу α —железа относятся разные по своим физическим свойствам металлы: легкоплавкие щелочные металлы и тугоплавкие металлы середины больших периодов с незавершенным d-подуровнем: вольфрам, молибден, ванадий, ниобий, тантал.

высокотемпературную модификацию, вписанные многоугольники отвечают низкотемпературным модификациями и фазам Химия твердого тела, М., Мир, 1988). При наличии полиморфных модификаций наружный многоугольник характеризует Рис. 20. Распределение элементов по структурным типам в Периодической системе. (рисунок адаптирован из А. Вест, высокого давления.

Кристаллические структуры ряда металлов можно описать как искажения основных структурных типов.

у-Марганец индий И кристаллизуются В тетрагональной объемоцентрированной решетке, соотношение параметров c/a тетрагональной ячейке индия близко к 1.5, а в структуре ү-марганца составляет 1.62. Это позволяет рассматривать данные структуры как тетрагональное искажение структуры меди (рис. 21): растяжение кубической гранецентрированной ячейки вдоль оси четвертого порядка в случае индия (параметры ячейки в «ГЦК»-аспекте: a' = 4.59 Å, c = 4.94 Å, соотношение с/а' составляет 1.08) и сжатие вдоль оси четвертого порядка в случае у- марганца (a' = 3.77 Å, c = 3.53 Å, c/a' = 0.93).

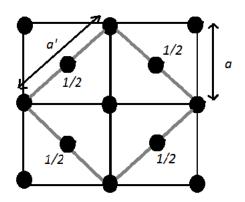


Рис. 21. Рассмотрение тетрагональной объемоцентрированной ячейки с параметрами *a* и *c* в аспекте гранецентрированной кубической ячейки с параметрами *a* 'и *c*.

При сжатии кубической гранецентрированной ячейки меди вдоль одной из объемных диагоналей структура становится ромбоэдрической (тригональное искажение). Одним из вариантов выбора элементарной ячейки в тригональной сингонии является ромбоэдр (6 граней в форме ромба). В структуре ртути угол в ромбоэдрической ячейке составляет 72^0 (в исходной ГЦК-ячейке меди данный угол равен 60^0). Структуру ртути можно рассматривать как искаженную трехслойную ПШУ, в которой расстояния между плотнейшими слоями (3.00 Å) короче, чем внутри слоя (3.47Å). Пространственная группа $R\bar{3}$ m, Z=3 (рис.22).

¹ Дальнейшее сжатие структуры до соотношения *с/а* '=0.705 приведет к ОЦК-ячейке.

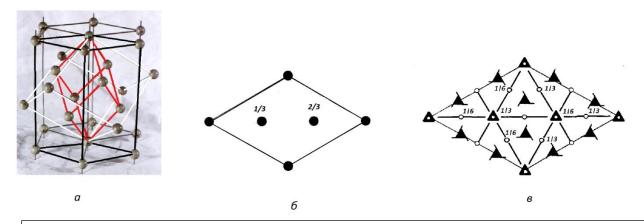


Рис. 22. Кристалличекая структура ртути: а) фрагмент структуры. Выделена элементарная ячейка: черным цветом - в гексагональной установке, красным – в форме ромбоэдра. Белым цветом показана искаженная ГЦК-ячейка; б) проекция элементарной ячейки в гексагональной установке; в) основные элементы симметрии в пространственной группе R_3 m: оси третьего порядка (поворотные и винтовые), центры инверсии, плоскости зеркального отражения.

При дальшейшем сжатии ромбоэдрической ячейки ртути до угла 90° происходит переход к ПКК (структура α -Po). Дальнейшее сжатие структуры α -Po до значения угла $\alpha = 98^{\circ}$ приведет к ромбоэдрической структуре β -Po (рис.23).

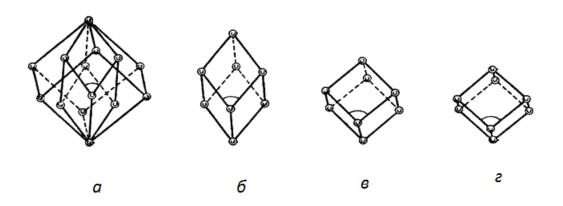


Рис. 23. Структуры, получаемые последовательным сжатием вдоль оси 3 порядка ГЦК-ячейки (тригональное искажение): а) ячейка меди, внутри ячейки выделен ромбоэдр с углом $\alpha=60^\circ$; б) ромбоэдрическая ячейка в структуре ртути $\alpha=72^\circ$; в) ячейка α -полония с углом $\alpha=90^\circ$; г) ромбоэдрическая ячейка β -полония, $\alpha=98^\circ$.

Напомним, что в идеальной двухслойной ПШУ соотношение параметров *с/а* составляет 1.63, а в реальных структурах – попадает в интервал от 1.57 до 1.65. Например, в структуре бериллия это соотношение равно 1.57, в структуре магния – 1.62, в структуре α-церия – 1.63. В кристаллических структурах цинка и кадмия соотношение *с/а* составляет 1.86 и 1.89 соответственно, то есть, расстояние в плотнейших слоях короче, чем между слоями. При увеличении расстояния между слоями в двухслойной ПШУ пространственная группа не изменяется, но в данных структурах проявляется слоистость.

Структура α —урана представляет собой пример ортогонального искажения структурного типа магния (рис. 24). Если в ПШУ каждый атом верхнего слоя попадает в лунку между тремя атомами нижнего слоя, и через каждый атом проходит ось третьего порядка, то в структуре α —урана атомы верхнего слоя смещаются из центра лунки так, что ось третьего порядка пропадает и структура становится ортогональной (базоцентрированной). Координационное число атома урана равно 12: 4 атома находятся на расстоянии 2.8-2.9 Å и 8 атомов на расстоянии 3.3-3.4 Å.

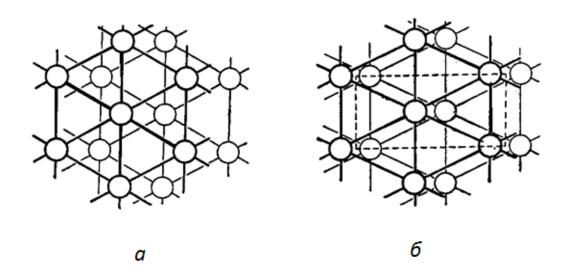


Рис. 24. Переход к базоцентрированной ортогональной решетке в структуре α-урана: а) расположения атомов в идеальной двухслойной ПШУ; б) положения атомов в ортогональной ячейке α-урана.

23

Благодаря близким энергиям разных электронных состояний атома кристаллические марганца последнего известны модификации, α-Марганец содержащие неодинаковой координации. атомы кристаллизуется В объемоцентрированной кубической ячейке (пространственная группа I $\bar{4}$ 3m) (рис. 25). Необычным является количество атомов в ячейке – их 58. Если утроить ребро обычной объемоцентрированной кубической ячейки, то в структуре было бы 54 атома, а внедрение дополнительных четырех атомов в ячейку способствует смещению ряда атомов от позиций в идеальной ОЦК-ячейке. В структуре α-марганца есть сорта атомов, которые находятся в разной координации с координационными числами 10, 11, 12 и 16.

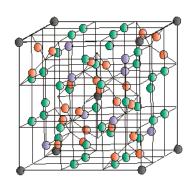


Рис. 25. Перспективный вид элементарной ячейки α-марганца. Разным цветом показаны атомы в разной координации.

 β -марганец также кристаллизуется в кубической сингонии, пространственная группа $P4_132$. В элементарной ячейке 20 атомов, два сорта атомов в разном координационном окружении. Координационное число 6+6 (6 атомов находятся на расстоянии 2.36 Å и 6 — на расстоянии 2.67 Å) указывает на некоторое сходство структуры с ПШУ..

Металлические радиусы. Твердые растворы внедрения и замещения.

Зависимость атомных радиусов от порядкового номера элемента в периодической системе представлена на рис. 26: в группах идет закономерное увеличение радиуса с увеличением электронных оболочек, в периодах с увеличением заряда ядра радиус уменьшается, для переходных металлов в начале периода имеется минимум.

Металлические радиусы определяются из параметров кристаллической решетки, в предположении, что в кристалле осуществляется касание шарообразных атомов металла. Радиусы большинства металлов существенно радиусы неметаллов¹ (рис. 27), ЧТО делает возможным нестехиометрических фаз внедрения образование (боридов, карбидов, др.) размещением атомов неметалла пустотах гидридов И c кристаллической решетки металла.

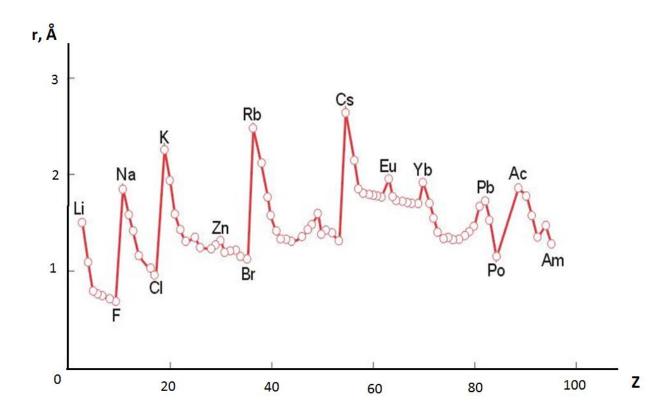


Рис. 26. Зависимость атомных радиусов от порядкового номера элемента в периодической системе.

_

¹ Атомные радиусы неметаллов определяются как половина межатомного расстояния между ковалентносвязанными атомами в кристаллах простых веществ.

(H)	R = 1.5 Å												1 H •	2 He			
3 Li	4 Be											5 B	6 C •	7 N •	8	9 F 🛑	10 Ne
11 Na	12 Mg	минимум — — — — —									13 (Al)	14 Si	15 P	16 S	17 CI	18 Ar	
19 K	20 Ca	21 Sc	22 10	23 V	24 Cr	25 Mn	26 Fe	27	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 2r	41 Nb	42 Mo	43 1c	44 Ru	45 Rb	46 Pd	47 Ag	48 Cd	4 9	50 Sn	54 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57* La	72 H£	73 Ta	74 W	75 Re	76 Os	77	78 Pt	79 Au	80 Hg	81	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89** Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									
*Lr	า	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
**/	۱n	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

Рис.27. Схематическое изображение атомных радиусов металлов и некоторых неметаллов. Отмечена область середины больших периодов, где наблюдаются минимальные значения радиусов металлов.

Фазы внедрения

При образовании твердых растворов внедрения исходная структура металла часто претерпевает изменения. Например, прецизионные рентгеновские исследования показали, что фазой внедрения кислорода в кристаллическую структуру вольфрама является так называемая структура «β –вольфрама», в которой есть атомы в разных координационных окружениях (рис. 28). Атомы вольфрама одной координации находятся в вершинах и в центре элементарной ячейки, а атомы другой – по два на каждой грани ячейки. «Гантели» из пар атомов, расположенные на гранях, ориентированы так, что оси гантелей соседних граней взаимно перпендикулярны. Для атомов вольфрама в вершинах и элементарной ячейки формируется икосаэдрическое окружение из атомов, попарно расположенных на гранях ячейки. Состав данной фазы близок к W_3O .

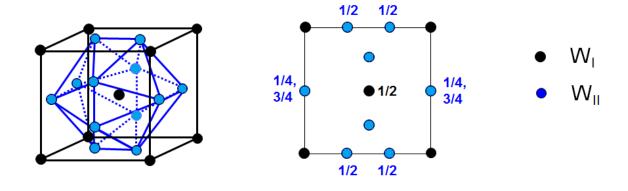


Рис. 28. Перспективный вид и проекция элементарной ячейки β–вольфрама. Разным цветом показаны атомы в разном координационном окружении.

При образовании твердых растворов внедрения вольфрама с углеродом образуются кристаллические модификации карбидов вольфрама (карбидов внедрения), в которых расположение атомов вольфрама отлично от структуры металлического α –W. Например, в β –модификации карбида вольфрама (β –W₂C) атомы вольфрама располагаются по мотиву ГПУ, а атомы углерода статистически заполняют около трети октаэдрических пустот. При увеличении содержания углерода происходит переход к кубической структуре γ –WC_x (пространственная группа F m $\overline{3}$ m), в которой атомы вольфрама расположены по мотиву трехслойной ПШУ, а углерод заполняет октаэдрические пустоты, x=0.59-0.92. При атомном соотношении вольфрама и углерода 1:1 возможен переход к упорядоченной гексагональной структуре δ –WC (пространственная группа P $\overline{6}$ m2), в котором атомы вольфрама образуют простую гексагональную кладку, а атомы углерода находятся в тригонально-призматических пустотах

Твердые растворы замещения

Если металлы имеют близкие атомные радиусы (разница не более 15%) и кристаллизуются в одинаковых структурных типах, то в кристаллической структуре металла возможен процесс изоморфного замещения позиций атомами другого сорта с образованием твердых растворов замещения.

_

 $^{^{1}}$ Данные приведены согласно работе: А.С. Курлов, А.И. Гусев. Фазовые равновесия в системе W–С и карбиды вольфрама Успехи химии , 2006, 75, № 7, с.687–708.

Например, медь и золото образуют непрерывный ряд твердых растворов, поскольку имеют близкие атомные радиусы: 1.28Å (Cu) и 1.44 Å (Au) и относятся к одному структурному типу. При быстром охлаждении (закалке) расплава состава атомы металлов статистически занимают позиции в ГЦК-ячейке. При медленном охлаждении (отжиге) атомы металлов занимают позиции упорядоченно, что сопровождается понижением симметрии структуры (так называемый фазовый переход «беспорядокпорядок»). Например, симметрия закаленного сплава состава 25% Au и 75% Cu (Cu₇₅Au₂₅) описывается пространственной группой F m $\overline{3}$ m, Z=4, а отожженный сплав Cu₃Au имеет симметрию P m $\overline{3}$ m (puc. 29).

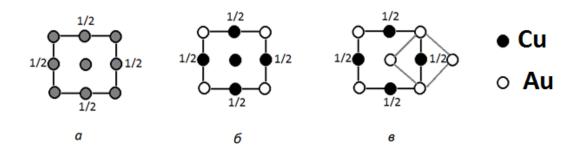


Рис. 29. Кристаллические структуры твердых растворов замещения меди и золота. Элементарные ячейки: а) закаленного сплава Cu_xAu_{1-x} со статистическим положением атомов меди и золота (пространственная группа F m $\frac{1}{3}$ m); б) отожженного сплава Cu_3Au с упорядоченным положением атомов (пространственная группа P m $\frac{1}{3}$ m);

в) отожженного сплава CuAu с упорядоченным положением атомов (пространственная группа P4/mmm).

Рассматривая координацию атомов в данных интерметаллидах, мы считаем, что атомы разного сорта образуют ПШУ совместно (даже если структура образованная структура будет тетрагональной, как в случае отожженного сплава состава СuAu (см. рис 29, в)), поэтому координационные числа будут 12, как в ПШУ.

Аналогичные явления имеют место в твердых растворах замещения магния и кадмия. Благодаря близости атомных радиусов (Cd 1.56 Å, Mg 1.60 Å) и кристаллизации в одинаковом структурном типе, атомы свободно замещают друг друга в кристаллической структуре. В данном случае магний и кадмий совместно образуют ГПУ.

Полиморфизм металлов

Как видно из рис. 20, для металлов характерен полиморфизм – существование разных кристаллических модификаций при изменении внешних условий (температуры, давления).

Например, α-железо является ферромагнетиком учетом И, направления магнитных моментов, является структурой тетрагональной сингонии. При повышении температуры происходит переход парамагнитную β-модификацию, В которой магнитные моменты разупорядочены. С дальнейшим повышением температуры железо переходит последовательно в γ-модификацию с ГЦК-ячейкой и δ-модификацию с объемоцентрированной кубической ячейкой (рис. 30). При давлениях была получена гексагональная е-форма железа (ГПУ).

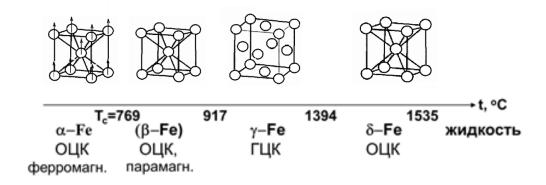


Рис. 30. Полиморфные модификации железа.