ChemNet
 
Химический факультет МГУ

Научные достижения химического факультета
18.01.2022

Химики МГУ создали сверхбыстрый молекулярный мотор

Сотрудники кафедры физической химии Химического факультета МГУ выяснили связь между скоростью первичного химического процесса, который происходит в светочувствительных мембранных транспортных белках живых клеток, и геометрией их активного центра, отвечающего за поглощение и преобразование энергии света. Открытие позволило предложить модификацию химической структуры фотоактивной молекулы, которая может так же быстро вращаться в одну сторону вне белкового окружения, что открывает путь для создания нового класса сверхбыстрых молекулярных моторов. Работа, выполненная при поддержке Российского научного фонда (РНФ), опубликована в журнале Journal of the American Chemical Society, а также в журнале Journal of Physical Chemistry Letters.

Протекающие под действием света биохимические реакции – одни из самых быстрых и эффективных из известных в природе. К таким процессам относится фотоизомеризация – изменение геометрической структуры молекулы, происходящее при действии света. В белках фотоизомеризация происходит за сотни фемтосекунд (10-13 с) и поэтому считается сложнейшим для изучения процессом.

– "В работе мы изучали фотоизомеризацию белка из семейства родопсинов, – рассказал аспирант, соавтор исследования Павел Кусочек. – Родопсины находятся в наших зрительных клетках, в колбочках и палочках в глазе. У бактерий они входят в состав клеточных мембран и выполняют разные функции, важнейшая из которых – перенос ионов через мембрану".

Начинаются "приключения" родопсина с фотоизомеризации ретиналя – небелковой органической молекулы, входящей в состав активного центра родопсина. Рядом с ретиналем находятся заряженные остатки аминокислот, создающие его белковое окружение.

– "Мы попытались дать ответ на вопрос, как белковое окружение помогает фотоизомеризации ретиналя, – пояснила руководитель лаборатории квантовой фотодинамики, соавтор работы, доцент, к.ф.-м.н. Анастасия Боченкова. – Ранее нам удалось установить, что в изолированном состоянии, без белкового окружения, изомеризация идет гораздо медленнее".

Ученым удалось подметить интересную особенность фотохимического процесса изомеризации в родопсине. Некоторые молекулы ретиналя после поглощения света не изомеризуются, а возвращаются в исходное состояние. Одной из причин этого феномена может быть разная геометрия активного центра: пространственное расположение ретиналя и расстояние до аминокислотных остатков.

– "С помощью методов квантовой химии высокого уровня точности мы увидели, что молекулы с разными структурами активного центра реагировали на действие света по-разному, – рассказала Анастасия Боченкова. – Более скрученная структура ретиналя изомеризовалась эффективнее всего".

Детальное понимание механизмов сверхбыстрых фотохимических реакций, происходящих в природе, может помочь ученым моделировать подобные процессы и использовать их в технике. Например, в новейшем исследовании авторы совместно с датскими коллегами достигли того, что химически модифицированный ретиналь в изолированном состоянии смог изомеризоваться так же быстро, как и в белковом окружении.

– "Предложенная модификация также обладает однонаправленным вращением при фотоизомеризации, – рассказал дипломник, соавтор исследования Адиль Кабылда. – Поглощение последовательно двух фотонов приводит к очень быстрому провороту молекулы по одной из двойных связей на 360 градусов, причем молекула вращается всегда в одном направлении".

Работа открывает путь к созданию нового класса сверхбыстрых молекулярных моторов – молекул, использующих энергию света для совершения механической работы на нанометровом масштабе.

– "Мы преодолели ряд существующих ограничений в дизайне и применении молекулярных моторов, что позволит создать сверхбыстрые молекулярные двигатели с большим КПД, работа которых инициируется поглощением безопасного для живых тканей и организмов красного света", – подвела итог Анастасия Боченкова.

Для квантовохимических расчетов были использованы ресурсы суперкомпьютерного комплекса Ломоносов-2.

Работа выполнена при поддержке гранта РНФ 17-13-01276

Ссылки на статьи:

Pavel A. Kusochek, Andrei V. Scherbinin, and Anastasia V. Bochenkova Insights into the Early-Time Excited-State Dynamics of Structurally Inhomogeneous Rhodopsin KR2
J. Phys. Chem. Lett. 2021, 12, 35, 8664–8671
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02312

Elisabeth Gruber, Adil M. Kabylda, Mogens Brøndsted Nielsen, Anne P. Rasmussen, Ricky Teiwes, Pavel A. Kusochek, Anastasia V. Bochenkova, and Lars H. Andersen
Light Driven Ultrafast Bioinspired Molecular Motors: Steering and Accelerating Photoisomerization Dynamics of Retinal J. Am. Chem. Soc. 2022, 144, 1, 69–73
https://pubs.acs.org/doi/10.1021/jacs.1c10752


Текст: Алина Сагитова/пресс-служба химического факультета МГУ
Фото: Юлия Чернова/ пресс-служба химического факультета МГУ


Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается  копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору