Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр. РАН, профессор

/С.Н. Калмыков/

«20» мая 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Полиэлектролиты и биополимеры

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Высокомолекулярные соединения

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Москва 2019

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 29 декабря 2018 года № 1770 (с изменениями по приказу № 1109 от 11.09.2019).

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по дисциплине (моду- лю)
СПК-1.С Владеет современны-	СПК-1.С.1 Предлагает возможные	Знать: теоретические основы методов исследования по-
ми теоретическими и экспе-	расчетно-теоретические методы	лиэлектролитов ибиополимеров
риментальными методами ис-	изучения полимерных систем при	viiovient poviii 102 nononoviim opo2
следования высокомолеку-	решении поставленной задачи	
лярных соединений и мате-	СПК-1.С.2 Предлагает возможные	Уметь: предлагать методы исследования полиэлектролитов и
риалов на их основе, способен	экспериментальные методы изуче-	биополимеров всоответствии с заданной научной задачей
использовать эти методы при	ния полимерных систем при реше-	Владеть: способностью использовать экспериментальные и
решении задач в профессио-	нии поставленной задачи	теоретические методы при исследовании полиэлектролитов и
нальной деятельности		биополимеров
СПК-2.С. Способен синтезиро-	СПК-2.С.1 проводит синтез высоко-	Знать: современные представления о полиэлектролитах и
вать высокомолекулярные со-	молекулярных соединений по суще-	биополимерах вконтексте их синтеза и модификации, а
единения и проводить их хи-	ствующим методикам	также химических свойств
мическую модификацию с ис-		Уметь: прогнозировать особенности реакций получения полиме-
пользованием современных		ров, обусловленных их свойствами как полиэлектролитов и био-
экспериментальных методов		полимеров
химии полимеров	СПК-2.С.2 проводит химическую мо-	Владеть: способностью предлагать методы синтеза и химиче-
	дификацию ВМС с использованием	ской модификацииполиэлектролитов и биополимеров
	современных экспериментальных	
	методов химии полимеров	
СПК-3.С. Способен использо-	СПК-3.С.1 Использует теоретиче-	Знать: современные представления о физической химии и рео-
вать теоретические основы	ские основы физической химии рас-	логииполиэлектролитов и биополимеров
физической химии растворов	творов высокомолекулярных со-	Уметь: прогнозировать свойства полиэлектролитов и биополи-
высокомолекулярных соеди-	единений при планировании иссле-	меров исходя изих химического строения
нений, в том числе полиэлек-	дований ВМС	Владеть: способностью использовать знания о полиэлектроли-
тролитов, в практической дея-		тах ибиополимерах при исследовании полимеров
тельности		

СПК-4.С. Владеет современ-	СПК-4.С.1 Использует корреляции	Знать: взаимосвязь между свойствами полиэлектролитов и
ными представлениями о	«структура – свойство» при получе-	биополимеров и ихструктурой и механическими свойствами
структуре и физических (в том	нии полимерных материалов с за-	Уметь: прогнозировать свойства полиэлектролитов и биополи-
числе механических) свойст-	данными свойствами	меров с учётом ихструктуры
вах полимеров, способность		Владеть: способностью применять на практике знания о взаи-
применять их на практике		мосвязи структурыи свойств полиэлектролитов и биополимеров
		(в том числе характеристиках процесса растворения)
СПК-5.С. Готов применять	СПК-5.С.1 Предлагает способы мас-	Знать: взаимосвязь между технологией получения и переработ-
знание теоретических основ	штабирования лабораторных мето-	ки полимеров и их свойствами как полиэлектролитов и биопо-
современной технологии син-	дик синтеза полимеров и перера-	лимеров
теза полимеров и переработки	ботки полимерных материалов	Уметь: прогнозировать свойства полиэлектролитов и биополи-
полимерных материалов в		меров в тех илииных технологических условиях
профессиональной деятельно-		Владеть: способностью использовать знания о свойствах поли-
сти		электролитов и биополимеров при разработке технологии по-
		лучения и переработки полимеров

3. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 2 зачетных единицы, всего 72 часа, из которых 40 часов составляет контактная работа студента с преподавателем (18 часов занятия лекционного типа, 18 часов занятия семинарского типа, 2 часа – групповые консультации, 2 часа – промежуточный контроль успеваемости), 32 часа составляет самостоятельная работа студента.

4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен

знать: основы науки о полимерах;

уметь: работать с научной литературой и лекционным материалом, анализировать графики функций, проводить элементарные математические преобразования и вычисления;

владеть: методами математической обработки экспериментальных величин, в том числе с использованием математической статистики.

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содер-	Всего	В том числе			
жание разделов и тем дисциплины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы	Самостоятельная работа обучающегося, часы		
-		из них	из них		

		Занятия лекционного типа	Занятия семинарского типа	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные за- нятия, на- правленные на проведе- ние текущего контроля ус- певаемости, промежуточ- ной аттеста- ции	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Тема 1. Общие представления о полиэлектролитах: классификация, свойства и способы получения	22	6	6				12	10		10
Тема 2. Реакции взаимодействия полиэлектролитов с противоположно заряженными полиэлектролитами и поверхностно активными веществами	22	6	6				12	10		10
Тема 3. Применение полиэлектро- литов	22	6	6				12	10		10
Промежуточная аттестация <u>зачет</u>	6			2		2	4		2	2
Итого	72	18	18	2		2	40	30	2	32

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.
- 7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю): Студентам предоставляется программа курса, план занятий и задания для самостоятельной работы, презентации к лекционным занятиям.
- 8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

- 1. Высокомолекулярные соединения (под ред. А.Б. Зезина) Учебник, М.: Юрайт, 2016.
- 2. Методические пособия по разделам науки о полимерах на сайте кафедры http://vmsmsu.ru/what.html

Дополнительная литература

- 1. J. Kotz, S. Kosmella, T. Beitz. Self-assembled polyelectrolyte systems. Prog. Polym. Sci. 26 (2001) 1199-1232.
- 2. K. Letchford, H. Burt. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics 65 (2007) 259–269.
- 3. G. M. Dykes. Dendrimers: a review of their appeal and applications. J Chem Technol Biotechnol. 76 (2001) 903-918.
- 4. V. A. Bloomfield. Hydrodynamic properties of DNA. J Polym Sci: Macromolecular Review. 3 (1) (1968) 255-316.
- 5. J. Ruhe, M. Ballauff, M. Biesalski, P. Dziezok, F. Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko,
- M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, H. Zhang. Polyelectrolyte Brushes. Adv Polym Sci, 165 (2004) 79–150.
- 6. I. Gibas and H. Janik. Review: synthetic polymer hydrogels for biomedical applications. Chemistry & chemical technology. 4 (2010) 297-304.
- 7. K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek, and R. Zboril. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev.116 (2016) 5338 5431.
- 8. G. Li, H. Ma and J. Hao. Surfactant ion-selective electrodes: A promising approach to the study of the aggregation of ionic surfactants in solution. Soft Matter. 8 (2012) 896.
- 9. M. Schonhoff. Layered polyelectrolyte complexes: physics of formation and molecular properties. J. Phys.: Condens. Matter 15 (2003) R1781–R1808.
- 10. H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze. Conjugated Polyelectrolytes: Synthesis, Photophysics, and Applications. Angew. Chem. Int. Ed. 48 (2009) 4300 4316.
- 11. D. Langevin. Complexation of oppositely charged polyelectrolytes and surfactants in aqueous solutions. A review. Advances in Colloid and Interface Science 147–148 (2009) 170–177.
- 12. H. J. Kwon, K. Yasuda, J. P. Gong, and Y. Ohmiya. Polyelectrolyte Hydrogels for Replacement and Regeneration of Biological Tissues. Macromolecular Research, 22 (2014) 227-235.
- 13. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Ed. R. A. Meyers. R. D. Blake. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (2004) chapter Denaturation of DNA.
- 14. Multilayer Thin Films. Ed. G. Decher and J. B. Schlenoff. Wiley-VCH Verlag & Co. KGaA, Weinheim (2012).
- 15. D. Schmaljohann. Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 58 (2006) 1655–1670.
- 16. V.A.Kabanov, A.B.Zezin. Soluble interpolymeric complexes as a new class of synthetic polyelectrolytes. Pure & Appi. Chem. 56 (1984) 343-354.

- 17. V.A.Kabanov, A.B.Zezin, V.A.Izumrudov, T.K.Bronich, K. N. Bakeev. Cooperative interpolyelectrolyte reactions. Makromol. Chem. 13 (1985) 137-155.
- 18. Научно-популярные статьи на сайте кафедры http://welcome.vmsmsu.ru/papers.html
- Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами)
- 9. Язык преподавания русский
- 10. Преподаватели: к.х.н. с.н.с. Пышкина О.А.

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачёта. На зачёте проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Теоретические контрольные вопросы и практические контрольные задания

- 1. Чем различаются и чем схожи способы получения ПЭ щеток и дендримеров?
- 2. Почему существует температурный интервал плавления ДНК?
- 3. Чем обусловлено самопроизвольное образование мицелл из амфифильных блок-сополимеров в полярных средах?
- 4. Какова движущая сила образования мицелл поверхностно-активными веществами (ПАВ) в водных растворах?
- 5. Сформулируйте механизм работы ПАВ-селективного электрода.
- 6. Почему реакция взаимодействия противоположно заряженных ПЭ является кооперативной?
- 7. Каково основное характеристическое свойство гидрогелей?
- 8. В чем заключается процесс плавления (денатурации) ДНК?
- 9. Почему в настоящее время в качестве полимерных средств доставки лекарственных препаратов и генетического материала в клетки используют только несколько гидрофильных полимеров и полиэлектролитов?
- 10. Рассчитайте степень набухания гидрогеля полиакрилата натрия (концентрация 0,01 М).
- 2. Рассчитайте средний заряд полиамфолита в изоионной точке (pS = 4) в отсутствии других ионов при его концентрации 0.001 М.
- 3. Рассчитайте параметр кооперативности Ки для связывания ионов додецилпиридиния хлорида макромолекулами полиметакрилата натрия, если lgCfr при а = 0,5 равен -3,6.

Вопросы к зачету

1. Основные способы классификации полиэлектролитов. Способы получения полиэлектролитов.

- 2. Осмотическое давление и эффект Доннана. Уравнение состояния полиэлектролита в водном солевом растворе. Ионизационное равновесие в бессолевых растворах полиэлектролитов. Гидродинамические свойства полиэлектролитов в растворах. Конформационные превращения ПЭ в растворах.
- 3. Особенности поведения блок-сополимеров. Свойства иономеров Свойства сопряженных ПЭ. Свойства полиэлектролитных щеток.
- 4. Общие закономерности связывания полиэлектролитов с противоположно заряженными мицеллообразующими ПАВ. Образование комплексов. Растворимые и нерастворимые комплексы. Критерий образования растворимых комплексов. Строение комплексов в растворе. Особенности мицеллообразования и комплексообразования в присутствии добавок органических веществ.
- 5. Метод ПАВ-селективного электрода.
- 6. Основные определения. Краткая историческая справка. Кинетика и механизм реакций соединения полиэлектролитов, полиэлектролитного обмена и замещения. Строение нестехиометричных и стехиометричных комплексов.
- 7. Взаимодействие полиэлектролитных гидрогелей с противоположно заряженными линейными полиэлектролитами. Взаимодействие полиэлектролитных гидрогелей с противоположно заряженными мицеллообразующими ПАВ. Применение полиэлектролитных гидрогелей и сетчатых поликомплексов на их основе.
- 8. Строение ДНК. Полиэлектролитная природа ДНК. ИПЭК на основе ДНК. Взаимодействие ДНК с ПАВ. Взаимодействие ДНК с гидрогелями. Компактизация ДНК.
- 9. Применение полиэлектролитов в качестве агентов доставки генетического материала и лекарственных средств в организм.
- 10. Интерполиэлектролитные мультислои. Способы получения, механизмы образования и строение мультислоев в различных условиях.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)							
Оценка	2	3	4	5			
Результат							
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематиче-			
	знаний		знания	ские знания			
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое уме-			
	умений	систематическое умение	отдельные пробелы умение (до-	ние			
			пускает неточности непринципи-				
			ального характера)				
Навыки (владе-	Отсутствие на-	Наличие отдельных навы-	В целом, сформированные навыки,	Сформированные навыки, приме-			
ния)	выков	ков	но не в активной форме	няемые при решении задач			

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: теоретические основы методов исследования полиэлектролитов и биополимеров	мероприятия текущего контроля ус-
Знать: современные представления о полиэлектролитах и биополимерах в контексте их синте-	певаемости, устный опрос на зачете
за и модификации, а также химических свойств	
Знать: современные представления о физической химии и реологии полиэлектролитов и био-	
полимеров	
Знать: взаимосвязь между свойствами полиэлектролитов и биополимеров и их структурой и	
механическими свойствами	
Знать: взаимосвязь между технологией получения и переработки полимеров и их свойствами	
как полиэлектролитов и биополимеров	
Уметь: предлагать методы исследования полиэлектролитов и биополимеров в соответствии с	мероприятия текущего контроля ус-
заданной научной задачей	певаемости, контрольные вопросы,
Уметь: прогнозировать особенности реакций получения полимеров, обусловленных их свойст-	устный опрос на зачёте
вами как полиэлектролитов и биополимеров	
Уметь: прогнозировать свойства полиэлектролитов и биополимеров исходя из их химического	
строения	
Уметь: прогнозировать свойства полиэлектролитов и биополимеров с учётом их структуры	
Уметь: прогнозировать свойства полиэлектролитов и биополимеров в тех или иных техноло-	
гических условиях	
Владеть: способностью использовать экспериментальные и теоретические методы при иссле-	мероприятия текущего контроля ус-
довании полиэлектролитов и биополимеров	певаемости, практические кон-
Владеть: способностью предлагать методы синтеза и химической модификации полиэлектро-	трольные задачи, устный опрос на
литов и биополимеров	зачёте
Владеть: способностью использовать знания о полиэлектролитах и биополимерах при иссле-	
довании полимеров	
Владеть: способностью применять на практике знания о взаимосвязи структуры и свойств по-	
лиэлектролитов и биополимеров (в том числе характеристиках процесса растворения)	
Владеть: способностью использовать знания о свойствах полиэлектролитов и биополимеров	
при разработке технологии получения и переработки полимеров	