УДК 541(183.12+64+128) 678.743.41:532.6

МЕЖФАЗНАЯ ЭНЕРГИЯ НА ГРАНИЦЕ РАЗДЕЛА «ПОЛИМЕР – ЖИДКОСТЬ» КАК КРИТЕРИЙ АДГЕЗИОННЫХ СВОЙСТВ ПОЛИИМИДОВ

Н.Б. Мельникова, В.И. Игнатов, В.Д. Должикова, Б.Д. Сумм

(кафедра коллоидной химии)

По значениям краевых углов смачивания в условиях натекания, оттекания и избирательного смачивания рассчитаны межфазные энергии γ_{sl} , $\gamma_{s(l)-l}$, где l – вода (w), йодистый метилен, октан (o), этиленгликоль (E), s – твердый полиимид. Показано, что максимальное значение равновесной величины $\gamma_{s(w)-w}$ и минимальное значение $\gamma_{s(w)-o}$ удобно использовать как критерий прогнозирования хороших адгезионных свойств в системах «полиимид – полярная фаза» и «полиимид – неполярная фаза» соответственно.

Адгезионные свойства полиимидных полимеров, используемых в промышленности для создания слоистых систем типа металл – полимер, диэлектрик – полимер, в значительной степени определяются энергетическими характеристиками контактирующих фаз. Выбор энергетической характеристики (межфазной энергии или поверхностной энергии полимера) как критерия удовлетворительных адгезионных свойств всегда определяется конкретным функциональным предназначением системы. Кроме того, сведения о корреляции между энергетическими характеристиками и адгезией в ряде случаев носят противоречивый характер [1–3].

В настоящей работе изучали энергетические характеристики межфазной границы раздела полиимид – полярная жидкость и полиимид – неполярная жидкость как модель межфазных взаимодействий в слоистых системах полиимид – полярная фаза (металл – полупроводник) и полиимид – неполярная фаза (графит, неполярный защитный полимер, биологические препараты, композиции и др.).

В качестве объекта исследования был выбран полимерный материал марки ПМ-1 на основе полиимида. Этот материал обладает высокой жаропрочностью, широким температурным интервалом, превосходными механическими свойствами, такими как эластичность, прочность, гибкость. Именно этими свойствами обусловлено его широкое применение в электронике при изготовлении ЧИПов, печатных плат, интегральных схем, гибких печатных кабелей, резистов, изолирующих материалов. Кроме того, модифицированный полимер, содержащий карбоксильные и амидокислотные группы, представляет собой удобную модель биосистем и может быть использован в медицинских и биологических исследованиях. Основное структурное звено полиимида составляет полиоксидифениленпиромеллитимид. Для улучшения адгезионных и адсорбционных свойств полимера проводили модификацию поверхности в водном растворе 3 М гидрооксида натрия при 313 К в течение 30 мин, в органических растворителях (диметилформамид, ацетонитрил, ацетон, пиридин) или в их смесях, а также воздействием низкотемпературной плазмой кислорода [4].

В результате модификации в поверхностном слое образуются ионизованные частицы типа карбоксилатионов, ион-радикалов, а также ионизованные ассоциаты с различной степенью переноса заряда [4]. Режимы модификации подбирали таким образом, чтобы процессы деструкции полиимидного остова были сведены к минимуму.

При анализе состояния поверхности полимеров использовали метод смачивания. Краевые углы смачивания определяли в условиях натекания, оттекания и избирательного смачивания (схема 1 *a*, *б*, *в*, *г*). Объем капли жидкости был всегда постоянным и равным 10 мкл. Равновесное значение краевого угла определяли по кинетическим кривым смачивания и растекания $\Theta = f(\tau)$ капли жидкости как участок плато с $\Theta = \text{Const}$ в течение определенного времени. В расчетах использовали среднестатистическое значение Θ , полученное на основании 20 измерений (величина дисперсии $S^2 = 1.4-4.2$).

Схема

Условия определения равновесного краевого угла:

а) Θ_a – угол натекания, образованный каплей жидкости в условиях равновесия с насыщенным паром (V) смачивающей жидкости;

б) $\Theta_{V(W)}$ – угол оттекания, образованный пузырьком воздуха (V), подведенным к погруженному в воду (W) полимеру. Полимер предварительно выдерживали в воде в течение 12 – 48 ч;

в), г) $\Theta_{II(I2)}$ – угол, образованный каплей смачивающей жидкости l_1 на поверхности полимера, погруженного в среду несмешивающейся жидкости l_2 . Полимер предварительно выдерживали в среде l_2 в течение 12 – 48 ч.

в)
$$l_1$$
 = вода (*W*), l_2 = октан (O);
г) l_1 = октан (O), l_2 = вода (*W*).

В качестве контрольных жидкостей использовали бидистиллированную воду (*W*), свежеперегнанные этиленгликоль (E), иодистый метилен (IM), октан (O), по-

верхностные характеристики которых, полученные с помощью тензиометра Дю-Нуи, приведены ниже:

γ, мДж/м ²	W	Е	IM	Ο
γ ^ι	73.3	48.3	50.8	21.8
$\mathbf{\gamma}^{d_l}$	21.8	29.3	49.0	21.8
γ^{p_l}	51.5	18.9	0.8	-

Во всех экспериментах использовали одну и ту же партию полиимида. Поверхность полимера была стандартизована термообработкой при 443 К в течение 1.5 ч и обезжириванием ультразвуком (УЗДН-2Т).

Основной методологической трудностью анализа системы полимер – среда является обеспечение условий максимально полного равновесия с вовлечением всех трех межфазных границ раздела, поскольку равновесие на твердой поверхности устанавливается достаточно медленно. В связи с этим мы использовали двухжидкостной погружной метод, где возможно более полное достижение равновесия. По этим же причинам полимер предварительно выдерживали не менее 12 ч.

Уравнения Юнга (1, 3, 5, 7) и уравнения расчета работы адгезии $W_{\rm адr}$ Юнга – Дюпре (2, 4, 6, 8) для различных методик анализа равновесных краевых углов имеют следующий вид:

а) угол натекания Θ_a

$$\cos\Theta_a = \frac{\gamma_{sV} - \gamma_{sl}}{\gamma_{lV}} \quad , \tag{1}$$

$$W_{agr} = \gamma_{lV} (1 + \cos \Theta_a); \tag{2}$$

б) угол оттекания $\Theta_{V(W)}$

$$\cos\Theta_{V(W)} = \frac{\gamma_{sW} - \gamma_{sV}}{\gamma_{WV}} \quad , \tag{3}$$

$$W_{adr} = \gamma_{OW} \cdot \cos\Theta_{O(W)} - \gamma_W \cdot \cos\Theta_{V(W)} + \gamma_O ; \quad (4)$$

в) угол смачивания, определенный по погружной двухжидкостной методике:

капля воды (W) в среде октана (O)

$$\cos\Theta_{W(O)} = \frac{\gamma_{sO} - \gamma_{sW}}{\gamma_{WO}} \quad , \tag{5}$$

$$W_{a \pi r} = \gamma_{OW} \cdot \cos \Theta_{W(O)} + \gamma_W - \gamma_O . \qquad (6)$$

капля октана (О) в среде воды (W)

$$\cos\Theta(O)W = \frac{\gamma_{sW} - \gamma_{sO}}{\gamma_{WO}} \quad , \tag{7}$$

$$W_{\rm adr} = -\gamma_{\rm OW} \cdot \cos \Theta_{\rm O(W)} + \gamma_W - \gamma_{\rm O} \ . \tag{8}$$

В уравнениях (1 – 8) величины γ_{sV} , γ_{sl} , γ_{lV} , γ_{OW} , γ_{WO} , γ_{sW} , γ_{sO} – межфазные энергии Гиббса на соответствующих границах; *s* – полиимид, *l* – жидкость, О – октан, *W* – вода, *V* – пар смачивающей жидкости.

Результаты работы

Расчет межфазной энергии γ_{sl} . В основе теоретических предпосылок расчета γ_{sl} лежат следующие допущения:

1) Общая поверхностная энергия твердых тел (S) и жидкостей (l) может быть представлена как сумма дисперсионной и полярной компонент.

$$\gamma_S = \gamma_S^P + \gamma_S^d \,, \tag{9}$$

$$\gamma_l = \gamma_l^P + \gamma_l^d \,. \tag{10}$$

2) Обратимая термодинамическая работа адгезии

$$W_{Sl} = \gamma_S + \gamma_l - \gamma_{Sl} \tag{11}$$

также определяется суммой дисперсионной и полярной компонент

$$W_{Sl} = W_{Sl}^{p} + W_{Sl}^{d}.$$
 (12)

3) Дисперсионная и полярная компоненты обратимой работы адгезии могут быть выражены как среднегеометрические величины

$$W_{Sl}^{d} = 2(\gamma_{S}^{d} \cdot \gamma_{l}^{d})^{1/2} , \qquad (13)$$

$$W_{Sl}^{p} = 2(\gamma_{S}^{p}, \gamma_{l}^{p})^{1/2}$$
(14)

Все расчеты выполняются при условии, что обратимая термодинамическая работа адгезии $W_{\rm адг}$, вычисленная по уравнениям Юнга – Дюпре (2, 4, 6, 8), равна обратимой термодинамической работе адгезии, представляемой теорией среднего геометрического.

С учетом этих допущений межфазную энергию *γ_{sl}* можно рассчитать по теории среднего геометрического

$$\gamma_{sl} = \{(\gamma_l^p)^{1/2} - (\gamma_s^p)^{1/2}\}^2 + \{(\gamma_s^d)^{1/2} - (\gamma_l^d)^{1/2}\}.$$
 (15)

Расчет полярной и дисперсионной компоненты поверхностной энергии полиимида был выполнен по методу Кабли–Дана–Фоукса

Значения γ_S^{d} и γ_S^{p} находят, решая систему уравнений

$$\begin{array}{l} & \left[\gamma_{\rm CH_2I_2} (1 + \cos\Theta_{\rm CH_2I_2}) = (\gamma_{\rm CH_2I_2}^d \cdot \gamma_S^d)^{1/2} + (\gamma_{\rm CH_2I_2}^p \cdot \gamma_S^p)^{1/2} \\ \gamma_{\rm H_2O} (1 + \cos\Theta_{\rm H_2O}) = (\gamma_{\rm H_2O}^d \cdot \gamma_S^d)^{1/2} + (\gamma_{\rm H_2O}^p \cdot \gamma_S^p)^{1/2}, \end{array} \right.$$
(16)

где $\Theta_{CH_2I_2}$ и Θ_{H_2O} – углы натекания H_2O и CH_2I_2 на поверхности полиимида, находящейся в равновесии с насыщенным паром смачивающей жидкости. Система уравнений решается при условии

$$-\Delta G_{Sl} = W_{agr} = 2 \gamma_l (1 + \cos\Theta).$$
(17)

Нами показано, что полученные энергетические характеристики γ_s , γ_s^d , γ_s^p существенно зависят от состояния поверхности раздела в процессе смачивания. Наиболее информативны кинетические кривые $\Theta = f(\tau)$ смачивания и растекания капли смачивающей жидкости, полученные для поверхности полимеров. Угол смачивания капли жидкости или пузырька, находящихся на поверхности исходного ППИ в течение 10 -30 мин ($\Theta_{\text{плато}}$ на кинетической кривой $\Theta = f(\tau)$), постепенно уменьшается, по истечении 3-5 ч происходит полное растекание. Время растекания значительно уменьшается для модифицированного полимера. На наш взгляд, такое уменьшение Θ , вероятно, обусловлено процессами, происходящими в твердой фазе полимера (гидратация полярных карбоксилатных групп, имеющихся в полимере, процессы перестройки в поверхностном слое, приводящие к минимизации энергии). Эти наблюдения подтвердили положения концепций, учитывающих влияние окружающей среды. В настоящей работе для выявления энергетических параметров, наиболее адекватно учитывающих окружение нами использована методика анализа состояния поверхности по Рукенштейну [3].

В соответствии с концепцией Рукенштейна компоненты поверхностной энергии, в особенности дисперсионные компоненты твердого тела, не зависят от природы неполярной фазы, т. е. одинаковы для всех углеводородов и для воздуха. Тогда как полярное окружение вызывает изменение состояния поверхности. Таким образом, по Рукенштейну для характеристики поверхности твердого тела приобретают существенное значение две равновесные характеристики: поверхностная энергия полимера в неполярном окружении γ'_{SO} и поверхностная энергия полимера в полярном окружении γ'_{SW}

$$\gamma_{SO} = \gamma_{SO}^{p} + \gamma_{SO}^{d} , \qquad (18)$$

$$\gamma_{SW} = \gamma_{SW}^{p} + \gamma_{SW}^{d}, \qquad (19)$$

Этапы расчета энергетических характеристик по Рукенштейну

1) Дисперсионные компоненты γ_{SO}^d на воздухе и в октане примерно равны $\gamma_{SO}^d \approx \gamma_{SW}^d$ и определяются уравнениями

$$\gamma_s^d = \gamma_{sV}^d = \Phi^2 \frac{\gamma_E^2 \left(1 + \cos \Theta_E\right)^2}{4 \gamma_E^d} \quad , \tag{20}$$

$$\frac{\gamma_{\rm CH_2I_2} \left(1 + \cos \Theta_{\rm CH_2I_2}\right)}{2\sqrt{\gamma_{\rm CH_2I_2}^d}} = \sqrt{\gamma_s^d} + \sqrt{\gamma_s^p} \left(\frac{\sqrt{\gamma_{\rm CH_2I_2}^p}}{\sqrt{\gamma_{\rm CH_2I_2}^d}}\right).$$
(21)

Данные по расчёту γ_{S}^{d} приведены в табл. 1.

2) Расчеты γ_{SO}^{P} выполнены по уравнению

$$\Gamma_{so}^{p} = \coprod^{2} \frac{\left(\Gamma \cdot \cos \ M_{W}(o) + \Gamma_{W} - \Gamma_{o}\right)^{2}}{4 \ \Gamma_{W}^{p}} \quad , \tag{22}$$

где $\Theta_{W(O)}$ – краевой угол капли воды в октане (значения $\Theta_{\text{плато}}$ на кинетической кривой $\Theta = f(\tau)$ – начальные контактные углы); $\Theta_{\text{ow}} = 51.0 \text{ мДж/м}^2$. Данные по расчету γ_s^P приведены в табл. 2.

3) Расчет равновесной полярной составляющей поверхностной энергии Гиббса в воде проводили по формуле

$$\Gamma_{s(W)}^{p} = \amalg \frac{\left(-\Gamma_{0W} \cdot \cos \operatorname{M}_{0(W)} + \Gamma_{W} - \Gamma_{0}\right)^{2}}{4 \Gamma_{W}^{p}} \quad .$$
(23)

4) Расчет равновесной дисперсионной составляющей поверхностной энергии Гиббса в воде проводили по формуле

$$\Gamma_{s(W)}^{d} = \frac{\left(\gamma_{0W} \cdot \cos H_{0(W)} - \gamma_{W} \cdot V(W) + \gamma_{0}\right)^{2}}{4 \gamma_{0}} , \qquad (24)$$

где $\Theta_{V(W)}$ – начальный контактный угол ($\Theta_{\text{плато}}$ на кинетической кривой $\Theta = f(\tau)$) в начальный период) пузырька, находящегося на поверхности и приведенного в равновесие с водой.

Таблица 1

Расчет дисперсионной составляющей поверхностной энергии полиимида γ_s^d

Состояние поверхности ППИ		Θ _Е , град	γ ^{<i>d</i>} (по Е), мДж/м ²	$\Theta_{\mathrm{CH}_2\mathrm{Cl}_2},$ град	γ _s ^d (по CH ₂ I ₂), мДж/м ²
ппи		34	43.4	31.5	45.0
	т _{мод} =5'	24	47.5	32.0	45.0
ППИ*	т _{мод} =10'	22	48.2	32.0	45.0
	т _{мод} =20'	15	50.3	32.1	45.0

*ППИ, модифицированный щелочной обработкой .

/Таблица 2

Расчет полярной составляющей поверхностной

энергии полиимида γ_S^P

Состояние поверхности ППИ		Ө _{W(O)} , град	мДж/м ²	$\Theta_W,$ град	мДж/м ²
ппи		130	4.1	72	5.2
	т _{мод} =5'	102	19.3	46	18.4
	$\tau_{\text{mod}}=10'$	101	20.3	40	21.6
ппи	т _{мод} =20'	100	21.3	28	27.5
	т _{мод} =30'	100	21.3	25	28.8
	т _{мод} =60'	100	21.3	22	29.9
ППИ	т _{мод} =5'	122	7.0	52	15.1
	т _{мод} =30'	118	8.8	56	12.9

Примечания. (а) ППИ, модифицированный щелочной обработкой; (б) ППИ, модифицированный кислотной обработкой; (в) расчет проведен по методу Кабли – Дана – Фоукса; (г) расчет проведен по методике Рукенштейна.

Таблица З

Расчет составляющих межфазной энергии

 $\boldsymbol{\gamma}_{\mathcal{S}(\mathcal{W})}^{d}$ и $\boldsymbol{\gamma}_{\mathcal{S}(\mathcal{W})}^{p}$ для полиимида, приведенного в

равновесие с водой

Состояние поверхности ППИ		$\Theta_{O(W)},$	$\Theta_{V(W)},$	$\gamma^d_{S(W)},$	$\gamma^{p}_{S(W)},$
-		град	град	мДж/м ²	мДж/м ²
ППИ		50	50	38.6	4.1
	т _{мод} =5'	25	33	85.1	0.3
ППИ ^(а)	$\tau_{\text{mod}} = 10'$	22	29	92.4	0.2
ППИ ⁽⁶⁾	$\tau_{\text{mod}}=5'$	24	38	78.5	1.2
	т _{мод} =30'	36	44	59.8	1.2

Примечания.(а) ППИ, модифицированный щелочной обработкой; (б) ППИ, модифицированный кислотной обработкой.

5) Расчет равновесной межфазной энергии на границе полиимид (S) – жидкость (l), для полиимида, приведенного в равновесие с водой $\gamma_{S(W)}$.

$$\Gamma_{S(W)-l} = \left\{ \left(\gamma_l^p \right)^{1/2} - \left(\gamma_{S(W)}^p \right)^{1/2} \right\}^2 + \left\{ \left(\gamma_l^d \right)^{1/2} - \left(\gamma_{s(W)}^d \right)^{1/2} \right\}^2,$$
(25)

$$\gamma_{S(W)-o} = \left\{ \left(\gamma_l^d \right)^{1/2} - \left(\gamma_{S(o)}^d \right)^{1/2} \right\}^2 + \gamma_{S(W)}^p.$$
(26)

Экспериментальные данные краевых углов Θ приведены в табл. 3. Общая характеристика рассчитанных энергетических параметров представлена в табл. 4.

Как следует из приведенных данных, модификация поверхности полимеров существенно влияет на энергетическое состояние поверхности. Сравнение величин адгезионной прочности и энергетических параметров в ситеме полиимид – медь позволяет предположить, что ведущим принципом прогнозирования адгезионных свойств в системе полиимид – полярная фаза является поиск условий модификации при которых:

1) равновесная межфазная энергия $\gamma_{S(W)-W}$ стремится к максимуму;

2) равновесная дисперсионная составляющая $\gamma_{S(W)}^{d}$ стремится к минимуму, равновесная полярная составляющая $\gamma_{S(W)}^{p}$ – к нулю.

Соответственно можно использовать равновесные величины $\gamma_{S(W)-O}$ для прогнозирования адгезионных свойств в системе полиимид – неполярная фаза: хорошие эксплуатационные свойства должны соответствовать минимальному значению величин $\gamma_{S(W)-O}$.

Таблица 4

Энергетические характеристики поверхности полиимида

Энергетичес- кие величины, мДж/м ²		Состояние поверхности ППИ				
			КМ		ЩМ	
		ппи	5	30	5	20
			мин	МИН	МИН	МИН
	γ^{d}	45.0	45.0	45.0	45.0	45.0
	γ^{p}	4.1	7.8	8.8	19.3	21.3
НЭВ	γ	49.1	52.0	53.8	64.3	66.3
		0.4	2.0	2.9	9.7	11.2
		46.0	24.8	21.9	11.9	10.7
		4.1	1.2	1.2	0.3	0.2
РЭВ		38.6	78.5	59.8	85.0	92.4
	$\gamma_{S(W)-W}$	29.0	54.5	46.3	64.7	69.8
	$\gamma_{S(W)-O}$	8.4	5.3	5.3	4.5	4.4
АП, кНм		-	_	0.1-0.2	0.1-0.2	0.4–0.7

Примечания. КМ – кислотная модификация; ЩМ – щелочная модификация; АП – адгезионная прочность (оценивалась методом отслаивания полоски меди, полученной химико-гальваническим способом [4]); НЭВ – неравновесные энергетические величины; РЭВ – равновесные энергетические величины.

СПИСОК ЛИТЕРАТУРЫ

- 1. Garre A., Schultz I. // I. Adhesion. 1983. 15. P. 151.
- 2. Rukenstein E. // J. Coloid and Interface Sci // 1985. 107. P. 488 .
- 3. Rukenstein E. Lee S.H. // J. Colloid and Interface Sci // 1987.

120. P. 153.

4. Мельникова Н.Б. Дис. ... докт. хим. наук, М., 1992.

Поступила в редакцию 19.12.96