ФИЗИЧЕСКАЯ ХИМИЯ

УДК 541.121:536.7

ВЗАИМОСОГЛАСОВАННЫЕ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА $AlBr_3(\kappa)$, $AlBr_3(\Gamma)$ И $Al_2Br_6(\Gamma)$

А.Д. Русин

(кафедра физической химии)

Определены энтальния испарения Al_2Br_6 и энтальния плавления $AlBr_3$, которые совместно с энтальнией реакции димер-мономер и термодинамическими функциями $AlBr_3(\kappa)$, $Al_2Br_6(r)$, $AlBr_3(r)$ образуют взаимосогласованную систему термодинамических свойств, наилучшим образом описывающую имеющиеся экспериментальные данные по давлению насыщенного и ненасыщенного пара $AlBr_3$.

В предыдущем сообщении [1] рассмотрены данные по ненасыщенному пару бромида алюминия и на основе сравнительного анализа различными методами определена энтальпия реакции димер-мономер ($\Delta H_{298} = 29000 \text{ кал/моль}$), наилучшим образом удовлетворяющая опыту и согласованная с термодинамическими функциями $Al_2Br_6(\mathbf{r})$ и $AlBr_3(\mathbf{r})$.

В настоящей работе выполнены расчеты давления насыщенного пара с учетом сложных равновесий в паре и определена система взаимосогласованных термодинамических свойств (энтальпии, термодинамические функции), наилучшим образом удовлетворяющая опытам как по ненасыщенному, так и по насыщенному пару.

На первом этапе для определения приближенных значений энтальпий испарения димера и мономера расчеты проводили в рамках общепринятой практики, основанной на минимизации остаточных сумм вида $\sum (\Delta \ln P)^2$, где $\Delta \ln P$ логарифм отношения парциального давления димера или мономера к рассчитанному по формуле

$$\ln P = a + b/T.$$

При расчетах по II закону термодинамики парциальные давления ${\rm AlBr_3}\,(P_1)$ и ${\rm Al_2Br_6}\,(P_2)$ определяли из решения системы уравнений

$$P = P_1 + P_2 , \qquad (1)$$

$$K = P_1^2 / P_2$$
, (2)

где P — экспериментальное давление пара, K — константа равновесия реакции

$$Al_2Br_6 = 2 AlBr_3. (3)$$

Константу равновесия рассчитывали по приведенному выше значению энтальпии реакции (3) из [1] и термодинамическим функциям из [2]. Методом наименьших 2-1112

квадратов (МНК) было получено

$$\ln P_1(\text{атм}) = 14.6008 - 9954.45/T,$$
 (4)

$$\ln P_2(\text{атм}) = 12.2184 - 6428.81/T,$$
откуда (5)

 $\Delta H_1(371,16) = 20450$ кал/моль,

 $\Delta S_1(457) = 29.014$ кал/моль·К,

 $\Delta H_2(371.16) = 14335 \text{ кал/моль,}$

 $\Delta S_2(457) = 24.280$ кал/ моль·К,

где индексы 1 и 2 относятся соответственно к равновесиям

$$AlBr_3(x) = AlBr_3(r), (6)$$

$$2AlBr3(xx) = Al2Br6(r), (7)$$

Энтальпии приведены к температуре плавления по термодинамическим функциям из [2]. Значения ΔS отнесены к середине температурного интервала (457 K). По значениям ΔH_1 и ΔH_2 определяли энтальпию реакции (3) ($\Delta H_{298} = 26860$ кал/моль), что существенно отличается от величины, первоначально использованной при расчетах P_1 и P_2 . По термодинамическим функциям из [2] определяли

$$\Delta S_1(457) = 29.018$$
 кал/ моль·К,

$$\Delta S_2(457) = 21.781$$
 кал/ моль·К.

Если для ΔS_1 согласие между расчетом по II и III законам прекрасное, то для ΔS_2 имеется существенное расхождение, особенно если учесть, что димер является основной составной частью пара.

При расчетах по III закону термодинамики парциальные давления P_1 и P_2 также рассчитывали по уравнениям (1), (2), где константу равновесия реакции (3) определяли по термодинамическим данным из [1, 2].

Для каждой экспериментальной точки энтальпию испарения димера определяли по уравнению

$$\Delta H_2(T_{nn}) = (\Delta \hat{G}_2 - R \ln P_2) T.$$

Здесь и далее для расчетов использовали изобарный потенциал, отсчитанный от температуры плавления $T_{nn} = 371.16 \text{ K}$ [2]

$$\hat{G}_T = -\left(G_T^0 - H_{T_{nu}}^0\right) / T$$

С ростом температуры значения ΔH_2 уменьшаются от 13355 до 12997 кал/моль. Среднее значение составляет

$$\Delta H_2(T_{av}) = 13150 + 220$$
 кал/моль.

Здесь и далее все погрешности указаны для доверительной вероятности 0,95. Используя значение ΔH_{298} равновесия (3) из [1], получали

$$\Delta H_1(T_{nn}) = 20928$$
 кал/моль.

Обычно ограничиваются определением приведенных выше термодинамических величин и не проверяют, насколько они удовлетворяют опыту. Непосредственной мерой соответствия найденных значений энтальний и энтропий опыту является дисперсия адекватности

$$S_a^2 = \sum (\Delta P)^2 / f$$

где ΔP — разность между рассчитанным и экспериментальным давлением пара при заданной температуре, f=(n-m) — число степеней свободы, n — число экспериментальных точек, m — число определяемых термодинамических параметров.

Для оценки оптимальности энтальпии испарения димера, рассчитанной выше по П и III законам термодинамики, давление насыщенного пара рассчитывали по уравнениям (4), (5), (1) и по уравнениям (8), (9) соответственно.

$$P_2 = K_2, \tag{8}$$

$$P_1 = \sqrt{K P_2} \,. \tag{9}$$

Уравнения (8) и (9) отвечают равновесиям (7) и (3). Константы равновесия K и K_2 рассчитывали с термодинамическими функциями из [2]. Было получено

$$S_a^2 = 131.4$$
 mm pt. ct.² (расчет по II закону),

$$S_a^2 = 1247$$
 мм рт. ст. 2 (расчет по III закону).

Отсюда погрешность расчета давления пара равна 23 и 70 мм рт.ст. по II и III законам соответственно. В работе [3] не указана погрешность измерения давления пара. Однако по оценкам, приведенным ниже, она составляет 2.5 – 3.0 мм рт.ст.(стандартное отклонение).

Приведенные выше результаты расчета по II закону не удовлетворяют опыту, а результаты расчета по III закону находятся в резком противоречии с опытом и с результатами расчета по II закону. Поэтому были выполнены расчеты непосредственно минимизацией $\sum (\Delta P)^2$. Эти расчеты проведены при фиксированном значении энтальпии реакции (3).

При расчетах по III закону для заданного значения $\Delta H_2(T_{\rm nn})$ парциальные давления димера и мономера рассчитывали по уравнениям (8), (9). Зависимость $\sum (\Delta P)^2$ от $\Delta H_2(T_{\rm nn})$ удовлетворительно описывалась параболой. Было получено

$$\Delta H_2(T_{nn}) = 13040 + 50 \text{ кал/моль},$$

$$S_2^2 = 216.9 \text{ MM pt. ct.}^2$$

При расчетах по II закону $\sum (\Delta P)^2$ рассматривали как функцию двух переменных (ΔH и ΔS) равновесия (7). Поверхность $\sum (\Delta P)^2$ в координатах ΔH и ΔS представляла собой узкую вытянутую ложбину с крутыми склонами. Было построено сечение этой ложбины, отвечающее доверительной вероятности 0.95. Координаты дна ложбины во всей доверительной области связаны линейным соотношением. Методом МНК было получено

$$\Delta H_2(457) = 50.046 S_2(457) + 485.6$$
.

Поскольку ΔH_2 и ΔS_2 сильно коррелированы, нельзя определить их погрешности (можно только указать размах значений ΔH и ΔS , отвечающий сторонам прямоугольника, ограничивающего доверительную область)

$$\Delta H_2(457) = 12147 \pm 255$$
 кал/моль,

$$\Delta S_2(457) = 23.00 \pm 0.5 \text{ кал/моль-К},$$

$$S_{\circ}^2 = 10.91 \text{ MM pt. ct.}^2$$

Минимизация $\sum (\Delta P)^2$ приводит к уменьшению дисперсии адекватности примерно на порядок по сравнению с обычной процедурой расчета по II и III законам. Погрешность расчета давления по второму закону при этом составляет 6.6 мм рт.ст., а по III закону — 29мм рт.ст., т.е. результаты расчета по II закону удовлетворяют опыту, а расчет по III закону противоречит ему.

Следует однако отметить, что энтропия реакции (7), найденная по II закону, отличается от величины, рассчитанной по термодинамическим функциям (21.781 кал/моль · K) на 1.22 кал/моль · K, что почти в 2 раза больше размаха значений ΔS_2 .

Таким образом, совместная обработка данных по давлению насыщенного и ненасыщенного пара AlBr₃ различными методами не приводит к взаимосогласован-

ным энтальпиям испарения димера (ΔH_2), мономера (ΔH_1) и энтальпии реакции димер-мономер (ΔH_{298}) , удовлетворяющих опыту.

Поскольку расчеты по II и III законам для ненасышенного пара хорошо согласуются друг с другом [1], предполагалось, что расхождение с опытом расчетов по насыщенному пару связано с термодинамическими функциями жидкого AlBr₂.

Были выполнены расчеты изобарного потенциала AlBr₂(ж) при различных допущениях о форме зависимости $c_{-}(\mathbf{x})$ от температуры. Однако они не оказали практически никакого влияния на величину $\sum (\Delta P)^2$. Для приближенной оценки влияния термодинамических функций $AlBr_3(x)$ на $\sum (\Delta P)^2$ для каждой экспериментальной точки было рассчитано значение $\Delta \hat{G}_{2}^{*}$ реакции (7) по **уравнению**

$$\Delta \hat{G}_2^* = R \ln P_2 + \Delta H_2(T_{nn})/T.$$

Парциальное давление димера вычисляли по уравнению (5). Полагали также $\Delta H_2(T_{nn}) = 14335$ кал/моль. Оказалось, что разность

$$\delta \Delta \hat{G}_2 = \Delta \hat{G}_2^* - \Delta \hat{G}_2$$

постоянна во всем температурном интервале и равна 2.582 ± 0.1 кал/ моль·К .

Постоянными составляющими изобарного потенциала $AlBr_3(ж)$ являются энтропия $AlBr_3(\kappa)$ при T_{nn} и энтальпия плавления $\Delta H_{\rm nn}$. Термодинамические функции $AlBr_3(\kappa)$ и ΔH_{nn} , приведенные в [2], совпадают с данными предыдущего издания [6], где погрешность в энтропии AlBr₂(к) оценивается в 0.5 кал/ моль · К, что в несколько раз меньше, чем $\delta \Delta \hat{G}_2$. Более вероятно, что величина $\delta \Delta \hat{G}_2$ связана с неопределенностью в ΔH_{nn} погрешность которой оценивается в [6] равной 200 кал/моль. Хотя в [6] принято оценивать погрешности для доверительной вероятности 0.95, величина 200 кал/моль, по-видимому, характеризует стандартное отклонение, поскольку величина 200 - 300 кал/моль приводится в качестве оценки погрешности $\Delta H_{\text{пл}}$ в [7], на основании которой принято ΔH_{m} в [6, 2]. Поэтому полагали, что величина $\delta\!\Delta\hat{G}_2$ связана только с энтальпией плавления. Согласно полученному приближенному значению $\Delta \hat{G}_2$ энтальпию плавления, принятую в [2], надо увеличить на 480 кал/моль, тогда $\Delta H_{nn} = 3170$ кал/моль. Если с этим приближенным значением $\Delta H_{\rm ns}$, энтальпией испарения димера из уравнения (5) и энтальпией реакции (3) из [1] рассчитать состав пара по уравнениям (8), (9), то дисперсия адекватности уменьшается в 14.5 раза и становится равной 15 мм рт.ст².

Таблица 1

ΔH_m	$\Delta H_2(T)$	$\sum (\Delta P)^2$,	
		мм рт. ст. ²	
3086	14120	277.16	
3116	14202	195.44	
3134	14252	161.46	
3153	14303	139.22	
3168	14344	130.99	
3175	14364	129.97	
3181	14379	130.66	
3190	14404	133.87	
3265	14608	273.84	

Из (4), (5) следовало ожидать, что поверхность $\sum (\Delta P)^2$ в координатах ΔH_2 , $\Delta H_{\rm пл}$ представляет собой узкую вытянутую ложбину. Для определения координат дна ложбины задавали $\Delta H_{\rm пл}$ с определенным шагом. Для заданного $\Delta H_{\text{пл}}$ находили минимум $\sum (\Delta P)^2$ варьированием $\Delta H_2(T_{nn})$. Координаты границ доверительной области находили из условия

макс
$$\sum (\Delta P)^2 = F_{21,21}(0.05) \cdot \text{мин} \sum (\Delta P)^2$$

где $F_{21,21}$ (0.05) – критерий Фишера для уровня значимости 0.05 при числе степеней свободы n-2=21: мин $\sum (\Delta P)^2$ – значение $\sum (\Delta P)^2$ в глобальном минимуме.

В табл.1 приведены координаты дна ложбины в доверительной области и соответствующие значения $\sum (\Delta P)^2$. Здесь и далее в табл. 2, 3 энтальпии выражены в кал/моль, а давление - в мм рт. ст.

Было показано, что ложбина имеет очень крутые склоны. Доверительные пределы для ΔH , в точке глобального минимума составляли всего ± 8 кал/моль. Для координат дна ложбины методом МНК получено

$$\Delta H_{\rm nn} = 0.3672 \ \Delta H_{2} - 2099 \ . \tag{10}$$

В минимуме $S_a^2 = 6.2$ мм рт. ст., что незначимо отличается от $S_a^2 = 10.9$ мм рт.ст.², полученной выше по II закону. Погрешность расчета давления пара составляет 5 мм рт.ст. для доверительной вероятности 0.95. При расчетах давления ненасыщенного пара [1] эта погрещность составляла 4.5 мм рт.ст. Можно предположить, что эти погрешности близки к реальной погрешности измерения давления в [3]. На это, в частности, указывают повторные измерения давления насыщенного пара при одной и той же температуре, а также результаты расчета состава насыщенного пара, приведенные в табл. 2, где ΔP – разность между рассчитанным и экспериментальным давлением пара.

Таблица 2

T, K	P ₁ (AlBr ₃)	$P_2(Al_2Br_6)$	ΔΡ	
391.5	0.010	10.4	0.21	
400.5	0.018	15.5	-0.30	
401.0	0.019	15.8	-1.07	
404.0	0.023	18.0	-1.61	
413.7	0.042	26.7	-0.63	
414.4	0.044	27.5	-0.98	
422.0	0.070	36.9	-0.44	
430.2	0.110	50.0	-0.70	
436.2	0.160	61.9	-2.96	
437.6	0.170	65.0	-0.66	
461.8	0.590	142.2	-2.19	
462.0	0.590	143.1	-2.43	
465.5	0.700	158.8	-1.97	
483.1	1.570	260.4	0.44	
493.0	2.400	336.5	4.95	
493.1	2.410	337.4	3.81	
493.5	2.450	340.8	-0.74	
493.5	2.450	340.8	-2.74	
495.2	2.630	355.6	2.23	
500.0	3.190	400.0	3.69	
518.0	6.420	604.3	-1.80	
519.3	6.730	621.5	-5.26	
522.7	7.630	668.2	1.86	

Таким образом, в результате совместной обработки экспериментальных данных по насыщенному и ненасыщенному пару бромида алюминия могут быть рекомендованы следующие значения

$$\Delta H_{298} = 29000$$
 кал/моль,
$$\Delta H_2(T_{\text{пл}}) = 14364$$
 кал/моль,
$$\Delta H_1(T_{\text{пл}}) = 21535$$
 кал/моль,
$$\Delta H_{\text{пл}} = 3175$$
 кал/моль,

а также

$$\Delta H_f \text{ (Al}_2 \text{Br}_6(\text{r}), 298.15) = -233056 \text{ кал/моль,}$$

$$\Delta H_f(AlBr_3(r), 298.15) = -97028$$
 кал/моль.

Энтальпия образования кристаллического $AlBr_3$, энтальпия плавления $AlBr_3$, энтальпии образования $Al_2Br_6(r)$, $AlBr_3(r)$ и термодинамические функции всех бромидов алюминия из [2] образуют взаимосогласованную систему термодинамических свойств, наилучшим образом описывающую экспериментальные данные по давлению пара.

Ввиду сильной корреляции между $\Delta H_{\rm nn}$ и $\Delta H_{\rm 2}$, что следует из (1), нельзя определить их выборочные дисперсии. Из табл.1 можно оценить только размах значений

этих величин: ± 90 кал/моль для $\Delta H_{\rm nn}$ и ± 244 кал/моль для ΔH_2 . В силу указанных выше особенностей поверхности $\sum (\Delta P)^2$ (узкий овраг с крутыми склонами) величины $\Delta H_{\rm nn}$ и ΔH_2 , а также другие связанные с ними термохимические величины приведены выше с достаточно большим числом значащих цифр, чтобы результаты термодинамических расчетов не выходили за пределы доверительной области для $\Delta H_{\rm nn}$ и ΔH_2 .

В общем случае функцию $F = \sum (\Delta P)^2$ можно рассматривать зависящей от трех переменных — $\Delta H_{\text{пл}}$, ΔH_{1} , ΔH_{2} , либо как функцию ΔH , ΔH_{1} , ΔH_{2} , поскольку H, ΔH_{1} , ΔH_{2} связаны линейным соотношением

$$\Delta H = 2 \Delta H_1 - \Delta H_2$$

Выше построено сечение F в координатах $\Delta H_{\rm nn}$, ΔH_2 при ΔH = const. Представляет интерес построить сечение F в координатах ΔH_1 , ΔH_2 при $\Delta H_{\rm nn}$ = const. С одной стороны, такое построение моделирует условия определения энтальпий испарения различных молекуляр-

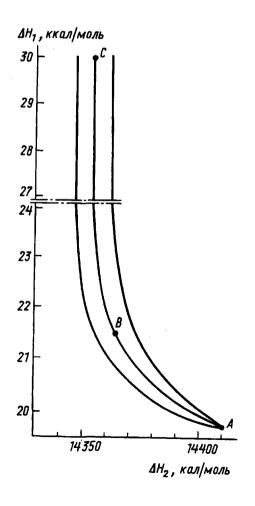


Рис.1. Линии уровня функции F

Таблица 3

<i>T</i> , K	ΔH_1		30000			19770		
İ	ΔH_2		14354.5		14408.2			
	P	P_1	P ₂	ΔΡ	P_1	P ₂	ΔP	
391.5	10.2	1.8 <i>E</i> -07	10.53	0.33	0.09	9.83	-0.28	
400.5	15.8	4. <i>E</i> -07	15.66	-0.14	0.16	14.64	-0.99	
401.0	16.9	4.5 <i>E</i> -07	16.00	-0.90	0.17	14.96	-1.77	
404.0	19.6	5.9 <i>E</i> 07	18.18	-1.42	0.20	17.00	-2.40	
413.7	27.4	1.4 <i>E</i> -06	27.03	-0.37	0.36	25.32	-1.72	
414.4	28.5	1.5 <i>E</i> -06	27.79	-0.71	0.37	26.04	-2.09	
422.0	37.4	2.8 <i>E</i> 06	37.31	-0.09	0.57	35.00	-1.83	
430.2	50.8	5.6 <i>E</i> 06	50.55	-0.25	0.88	47.47	-2.45	
436.2	65.0	8.9 <i>E-</i> 06	62.56	-2.44	1.19	58.80	-5.00	
437.6	65.8	1.0 <i>E-</i> 05	65.69	-0.11	1.28	61.75	-2.78	
461.8	145.0	5.8 <i>E</i> -05	143.70	-1.30	4.01	135.53	-5.46	
462.0	146.1	5.9 <i>E</i> -05	144.57	-1.53	4.05	136.35	-5.70	
465.5	161.5	7.4 <i>E</i> -05	160.47	-1.03	4.72	151.42	-5.36	
483.1	261.5	2.3 <i>E</i> -04	262.96	1.46	9.85	248.66	-2.99	
493.0	334.0	4.2 <i>E</i> -04	339.83	5.83	14.49	321.71	2.20	
493.1	336.0	4.2 <i>E-</i> -04	340.69	4.69	14.55	322.52	1.07	
493.5	344.0	4.3 <i>E</i> -04	344.13	0.13	14.77	325.79	-3.43	
493.5	346.0	4.3 <i>E</i> -04	344.13	-1.87	14.77	325.79	-5.43	
495.2	356.0	4.8 <i>E</i> -04	359.05	3.05	15.75	339.98	-0.26	
500.0	399.5	6.4 <i>E</i> -04	403.84	4.34	18.84	382.59	1.94	
518.0	612.5	1.7 <i>E-</i> -03	609.88	-2.62	35.58	578.88	1.96	
519.3	633.5	1.8 <i>E</i> -03	627.25	-6.24	37.18	595.45	-0.87	
522.7	674.0	2.2 <i>E-</i> -03	674.37	0.37	41.64	640.39	8.03	
1								

ных форм при сложном составе насыщенного пара, когда ΔH_{nn} заведомо известна. С другой стороны, как видно из табл.2, концентрация мономера в паре весьма мала, и построение сечения поверхности F может помочь оценить минимальную концентрацию молекулярной формы, достаточную для более или менее надежного определения ее энтальпии испарения.

На рис.1 приведены линии уровня функции F в координатах $\Delta H_{\rm I}, \ \Delta H_{\rm 2}$ при $\Delta H_{\rm nn} = 3175$ кал/моль, ограничивающие доверительную область. Поверхность F представляет собой узкую изогнутую лощину с крутыми склонами. Дно ложбины расположено вдоль линии АВС. На рис.2 представлена проекция дна ложбины на координатную плоскость ΔH_1 . Горизонтальная линия отвечает границе доверительной области. Характерной особенностью поверхности F является асимптотическое стремление F к пределу по каждой из координат как при ее увеличении, так и при ее уменьшении. На это общее свойство F указывалось ранее [4]. Как видно из рис.1, размах

значений ΔH_2 в пределах доверительной области несимметричен. Сверху ΔH_2 , ограничена границей доверительной области (точка A), где $\Delta H_2(T_{\rm пл}) = 14408$ кал/моль. Снизу ΔH_2 ограничена асимптотой (точка C), вблизи которой $\Delta H_2(T_{\text{пп}}) = 14354$ кал/моль. Из рис.2 следует, что с ростом ΔH_1 функция F сначала резко уменьшается, проходит через слабый минимум при F = 129,02 мм рт.ст.² (точка В на рис. 1), а затем выходит на асимптоту, которая расположена значительно ниже границы доверительной области (горизонтальная линия), т.е. доверительная область не замкнута со стороны высоких значений ΔH_1 . При $\Delta H_1 = 24$; 27 и 30 ккал/моль значения F равны 147.36 · 150.50 и 150.58 мм рт.ст.² соответственно. Поэтому для ΔH_1 можно определить только нжнюю границу (точка А на рис.1), которая соответствует 16787 кал/моль. В минимуме значение $\Delta H_2(T_{nn}) =$ 14369 кал/моль, $\Delta H_1(T_{\rm пл}) = 21100$ кал/моль. Следовательно, энтальпия реакции (3) имеет значение ΔH_{298} = 27831 кал/моль. Последняя величина отличается от ре-

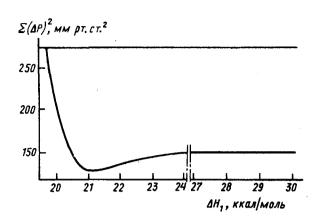


Рис. 2. Проекция дна ложбины на координатную плоскость ΔH_1

комендуемой по результатам измерения давления ненасыщенного пара на 876 кал/моль.

Ранее показано [5], что производная F по энтальпии образования зависимой составной части из независимых компонентов (в данном случае ΔH_1 и ΔH_2) приближенно пропорциональна концентрации этой зависимой составной части. Отсюда следует, что глубина минимума сечения F по этой координате тем больше, чем выше концентрация соответствующей зависимой составной части. Можно показать, что с увеличением энтальпии образования любой составной части ее концентрация стремится к нулю. Это подтверждается изменением состава пара вдоль дна ложбины (кривая АВС на рис. 1). В табл. 3 приведены результаты расчета состава насыщенного пара в точках А и С (рис. 1). Состав пара в точке В приведен в табл. 2. С увеличением ΔH_1 парциальное давление мономера уменьшается при всех температурах и становится практически равным нулю при $\Delta H_1(T_{ns}) = 30000$ кал/моль, т.е. пар содержит только димер, что приводит к постоянству Г. Фактически с увеличением ΔH_1 происходит переход от модели равновесия, описываемой уравнениями (6), (7) (точка В). к модели равновесия, описываемой уравнением (7). Соответственно с увеличением ΔH_2 происходит переход к модели равновесия (6). Однако если модель равновесия (7) не противоречит опыту, то модель равновесия (6) не совместима с опытом, поскольку для нее F ле жит за пределами доверительной области. Если бы имелись только измерения давления насыщенного пара, то на оснований статистических критериев нельзя отдать предпочтение одной из моделей - (6), (7) или (7). Независимая информация по давлению ненасыщенного пара позволяет дискриминировать обе модели и отдать предпочтение более полной модели (6). (7).

В точке В (рис.1) максимальное содержание мономера составляет около 1.2% (табл.2), что слегка превышает оценку доверительного интервала для давления пара. И хотя доверительная область для ΔH_1 оказывается незамкнутой, удивительным является то, что в данном случае вообще наблюдается минимум по ΔH_1 при такой малой концентрации мономера, и энтальпия реакции димер-мономер имеет разумное значение и не сильно отличается от рекомендуемого значения. Это свидетельствует о высокой чувствительности статического метода измерения давления пара к наличию сложных равновесий в паре.

В заключение следует отметить, что хотя результаты расчетов по II и III законам термодинамики при $\Delta H_{\rm nn} = 3175$ кал/моль удовлетворяют опыту, энтропии и энтальпии испарения существенно различны. По II закону получено $\Delta H_2(T_{nn}) = 13707$ кал/моль и $\Delta S(457) = 23,0$ кал/моль K,а по III закону найдено $\Delta H_2(T_{nn}) = 14364$ кал/моль и вычислено по термодинамическим функциям $\Delta S(457) = 19.16$ кал/моль К. Расчет по II закону может приводить к удовлетворительному согласию с опытом и за счет того, что число варьируемых параметров (ΔH , ΔS) в два раза больше, чем при расчетах по III закону (ΔH). Однако при этом возможны смещенные оценки ΔH и ΔS . Поэтому имеется настоятельная необходимость в более точных измерениях давления пара AlBr₃. Кроме того, увеличение точности измерения температуры и давления может приводить к существенному сокращению доверительной области и к смещению ее по осям координат.

СПИСОК ЛИТЕРАТУРЫ

- 1. Русин А Д.// Вестн. Моск. ун-та. Сер. 2, Химия.1998. 39. С.
- 2. Gurvich L. V. Veyts I. V., Medvedev V.A. at al. Thermodynamic Properties of Individual Substances.4th Ed. V. 3. 1993.
- 3. Fischer W., Rahlfs O.B.// Z. anorg. allg. Chemie. 1932. 205. S. 1.
- $4. Pycuh\ A\ {\it Д}\ /$ Математические методы в химической термодинамике. Новосибирск, 1982.
- 5. Русин А.Д., Яковлев О.П.// Вестн. Моск. ун-та. Сер. 2. Химия, 1973. 14. С. 541.
- 6. Гурвич Л.В.. Вейц И.В.. Медведев В.А. Термодинамические свойства индивидуальных веществ. М., 1981. С. 151.
- 7. Fischer W.// Z. anorg. allg. Chemie. 1931. Bd.200. S. 332