УДК 541.14

ФОТОХИМИЯ КАТИОН-РАДИКАЛОВ 2,2-ДИМЕТИЛ-И 2,2,3-ТРИМЕТИЛОКСИРАНА ВО ФРЕОНОВЫХ МАТРИЦАХ ПРИ 77 К

И.Д. Сорокин¹*, О.И. Громов¹, В.И. Пергушов¹, Д.А. Помогайло^{1,2}, М.Я. Мельников¹

(¹Московский государственный университет имени М.В. Ломоносова, химический факультет, кафедра химической кинетики; ²ФГБУН ВИНИТИ РАН; *e-mail: ivan.d.sorokin@gmail.com)

Методами ЭПР, оптической спектроскопии и квантовой химии установлена природа катион-радикалов (КР), стабилизирующихся в облученных замороженных растворах 2,2-диметил- и 2,2,3-триметилоксирана во фреонах (CFCl₃, CF₃CCl₃). Установлено, что образующиеся при этом «открытые» по связи С–С в оксирановом цикле КР при действии света вступают в реакцию внутримолекулярного фотопереноса атома водорода с образованием дистонических КР.

Ключевые слова: катион-радикалы, ЭПР-спектроскопия, фотохимия, 2,2-диметилоксиран, 2,2,3-триметилоксиран, матричная стабилизация, перенос атома водорода, метод функционала плотности.

При установлении путей превращения ионрадикальных продуктов радиолиза, в частности катион-радикалов (КР), в условиях матричной стабилизации встречаются существенные трудности в интерпретации экспериментальных спектроскопических данных, что осложняет выявление общих закономерностей этих реакций. Для такого рода систем успешно используются квантово-химические методы, что повышает надежность интерпретации экспериментальных данных. Чтобы установить влияние структуры КР на направление и эффективность их превращений в условиях матричной стабилизации, следует рассмотреть КР малых циклов, в частности алкилзамещенных оксиранов, по причине их высокой лабильности и разнообразия возможных каналов превращения.

В [1] была сделана попытка обобщения имеющихся экспериментальных и расчетных данных, которые указывают на близкую природу КР, первично образующихся при косвенной ионизации различных оксиранов. Однако наблюдаются существенные различия в механизме фотохимических реакций этих частиц – в зависимости от строения КР алкилзамещенных оксиранов реализуются разные каналы превращения. В свою очередь, интерпретация данных, характеризующих структуру и свойства КР 2,2-диметил- и 2,2,3-триметилоксирана, полученная ранее [2– 4], была неполной и наделяла их свойствами, не характерными для других представителей этого класса интермедиатов. Цель настоящей работы – устранение имеющихся противоречий между данными о предполагаемом строении КР, стабилизирующихся в облученных при 77 К растворах 2,2-диметилоксирана (2,2-ДМО) и 2,2,3-триметилоксирана (ЗМО) во фреонах, и механизмом их термических и фотохимических превращений, а также установление влияния строения КР на направление и эффективность этих процессов.

Методическая часть

В настоящей работе использовали фреоны СFCl₃ (фреон-11) и CF₃CCl₃ (фреон-113а), а также субстраты 2,2-ДМО и ЗМО, которые по своим характеристикам были идентичны использованным в [2-4]. Применяли стандартные методики приготовления образцов, их облучения, регистрации спектров ЭПР и оптического поглощения, а также осуществления фотохимического эксперимента [1]. Регистрацию спектров ЭПР проводили на приборах X-диапазона «Varian E-3» и «Bruker EMX 500 Plus». Спектры ЭПР моделировали с помощью программного пакета ESRCom. Для выполнения квантово-химических расчетов использовали неограниченный метод функционала плотности (DFT) и программный пакет «ORCA 4.2.1» [5]. Геометрию КР в минимумах поверхностей потенциальной энергии (ППЭ) рассчитывали с помощью функционала B3LYP [6] и полноэлектронного базисного набора def2-TZVP [7]. Проводили проверку на наличие мнимых частот колебаний. Для вычисления параметров спин-гамильтониана использовали функционал B3LYP и полноэлектронный базисный набор N07D [8]. Учет влияния растворителя проводили с помощью модели COSMO [9]. Для оценки распределения спиновой и зарядовой плотности применяли расчетные значения зарядов и спиновых заселенностей по Малликену. Расчет энергии электронных переходов и силы осциллятора осуществляли в рамках времязависимой теории функционала плотности (TD DFT) с использованием функционала ω B97X и полноэлектронного базисного набора def2-QZVPP.

Экспериментальные результаты

В настоящей работе экспериментальными методами исследования КР и парамагнитных продуктов их превращения служили ЭПРспектроскопия и низкотемпературная спектроскопия поглощения в области длин волн $\lambda \ge 400$ нм. В условиях разнообразия форм парамагнитных интермедиатов, образующихся при матричной стабилизации, ключевую роль приобретает надежное отнесение наблюдаемых спектров ЭПР и поглощения, опирающееся на использование результатов квантово-химических расчетов для определения величин констант сверхтонкого взаимодействия (СТВ) с ядрами ¹Н и параметров электронных переходов (энергия, сила осциллятора).

Квантово-химические расчеты показали, что на ППЭ для КР 2,2-ДМО можно обнаружить три минимума, соответствующие структурам с расстояниями между атомами углерода в оксирановом цикле ~2,37 Å (I, «открытая» по связи С-С в оксирановом цикле форма КР), 1,86 Å (II, аналогичная найденной в [2] форме, где

соответствующее расстояние составляло 1,79 Å) и 1,47 Å (III) (рис. 1). Относительная полная энергия форм (табл. 1) согласуется с выводами об энергетической предпочтительности форм с максимальной длиной связи С–С [1] в оксирановом цикле для КР алкилзамещенных оксиранов. Из приведенных в табл. 1 расчетных значений констант СТВ видно, что все формы КР обладают разными наборами этих величин, что приводит к существенным различиям в спектрах ЭПР частиц (рис. 2). Квантово-химические расчеты энергии электронных переходов для форм I, II и III КР 2,2-ДМО показали, что наиболее интенсивные переходы лежат при значениях λ , равных 362, 265 и 401 нм соответственно. В последнем случае (для формы КР III) электронный переход характеризуется силой осциллятора, почти на порядок меньшей, чем в случае форм I и II. Помимо этого, расчетное распределение спиновой (ρ) и зарядовой (Q) плотности во фрагменте

Рис. 2. Модельные спектры ЭПР расчетных форм КР 2,2-ДМО (I–III) и ЗМО (IV–VI) в условиях заторможенного (*a*) и свободного (*б*) вращения метильных групп ($\Delta H_{pp} \approx 0,5$ мТл)

Расчетные величины изотропных констант СТВ (мТл) с ядрами ¹Н и относительные значения полной энергии для различных форм КР 2,2-ДМО и КР 3МО [B3LYP/def2-svp//B3LYP/N07D]

KP	2,2-ДМО										<i>Е</i> , кДж/ моль	
	Магнитно-резонансные параметры											
	a _{iso} (H	a_{iso}	(H ²)	$a_{iso}(\text{H}^3)$	$a_{iso}(\text{H}^4)$	a _{iso} (H ²	a_{iso}	(H ⁶)	$a_{iso}(\mathrm{H}^7)$	$a_{iso}(H^8)$		
Ι	2.12	2	25	<0,1	1,93	1,93	<(),1	1,17	1,15		
	(2,23) (2	,23)	1,30 (1,05)				0,78 (0,62)				
II	0.30	1.65		0,45	1,01	2,87	2,:	58	0,73	<0,1	3577	
	0,39		,05	1,44				1,10				
ш	4.00			0,10	0,93	<0,1	<(),1	0,92	0,10	121.7	
	4,00		,00	0,37				0,37				
	ЗМО											
KP	Магнитно-резонансные параметры										<i>Е</i> , кДж/	
	$a_{iso}(H^1)$	$a_{iso}(\text{H}^2)$	$a_{iso}(\mathrm{H}^3)$	$a_{iso}(\mathrm{H}^4)$	$a_{iso}(\text{H}^5)$	$a_{iso}(\text{H}^6)$	$a_{iso}(H^7)$	$a_{iso}(\mathrm{H}^8)$	$a_{iso}(\mathrm{H}^9)$	$a_{iso}(\mathrm{H}^{10})$	моль	
IV	1,78 (1,22) (*1,48)	<0,1	2,32	2,32	<0,1	1,52	1,55	3,07	3,26	<0,1		
		1,56 (1,37) (*1,36)			1,03 (0,95) (*0,79)			2,13 (2,26) (*1,63)			24,8	
V	2,02	<0,1	1,83	2,33	0,23	2,32	0,94	0,44	1,67	4,01	0	
		1,41			1,16 2,04					v		
VI	<0,1	0,49	,49 0,92 3,04		2,84 0,74		<0,1	(0,1 3,29 1,34		0,42	101.5	
		1,48			1,22			1,68			101,5	

П р и м е ч а н и е. В скобках указаны параметры моделирования экспериментальных спектров, зарегистрированных при 77 К, звездочкой (*) обозначены параметры моделирования для спектров, зарегистрированных при 111 К.

С–О–С «открытой» формы I не позволяет нам считать эту частицу псевдоаллильной в силу заметного нарушения симметричности распределения: $\rho = 0.82$ и $\rho = 0.33$; Q = 0.17 и Q = 0.45. Эти характеристики указывают на особый характер формы I КР 2.2-ДМО, выделяющий ее среди прочих «открытых» форм КР метилзамещенных оксиранов, имеющих псевдоаллильную природу.

Для КР ЗМО квантово-химические расчеты также показали наличие трех минимумов на ППЭ. Расстояние между атомами углерода в оксирановых циклах этих трех форм составляет соответственно ~2,45 Å (IV, *цис*-изомер «открытой» по связи С–С формы КР ЗМО при отсутствии свободного вращения вокруг связей С–О); 2,38 Å (V, *транс*-изомер «открытой» формы КР 3МО) и 1,86 Å (VI) (рис. 1). Полученные в настоящей работе результаты расчетов геометрических и магнитно-резонансных параметров (табл. 1) незначительно расходятся с ранее опубликованными в [3, 4], они указывают на заметно различающийся вид спектров ЭПР двух изомеров «открытой» формы КР ЗМО, а также на энергетическую предпочтительность этих двух форм КР относительно циклической формы VI. В соответствии с результатами, полученными для КР большинства других алкилзамещенных оксиранов, расчет положений основных электронных переходов для форм IV-VI показывает, что максимумы полос поглощения «открытых» форм (IV, V) лежат в одной области $(\lambda_{\text{макс}} \approx 400 \text{ нм для IV и V}),$ в то время как максимум, относящийся к наиболее интенсивному переходу для формы VI, лежит при ~270 нм. Расчетные распределения спиновой и зарядовой плотности во фрагментах С–О–С в КР IV и V в целом указывают на псевдоаллильную природу этих частиц: $\rho = 0,68$ и $\rho = 0,41$, Q = 0,28 и Q = 0,41 для IV; $\rho = 0,65$ и $\rho = 0,44$; Q = 0,27 и Q = 0,42 для V.

Несмотря на заметные различия в спектрах ЭПР КР 2,2-ДМО, зарегистрированных после радиолиза в матрицах CFCl₂ и CF₂CCl₂ при 77 К (в CFCl₃ это мультиплетный сигнал с узкими линиями, в CF₃CCl₃ – плохо разрешенный мультиплетный сигнал) в [2-4] показана идентичность этих сигналов, обнаруживаемая при последующем разогреве образцов до ~135 К. Учитывая, что спектр оптического поглощения не подвергается изменениям при обратимых температурных переходах, а характер изменений в спектре ЭПР, протекающих при фотолизе в CF₃CCl₃ и CFCl₃, аналогичен, можно говорить об идентичности интермедиатов, стабилизирующихся в двух фреоновых матрицах в результате как радиолиза, так и фотолиза.

Из рис. 2 однозначно следует, что использование для расчетной формы КР 2,2-ДМО I констант СТВ, претерпевших незначительное изменение в результате оптимизации, подходит для описания экспериментального спектра ЭПР КР в матрице CFCl₃ при 111 К. Величины констант СТВ $(a_1(4H) = 1,63 \text{ мTл}, a_2(3H) = 1,13 \text{ мTл},$ $a_3(1H) = 0,67$ мТл), найденные при моделировании экспериментального спектра ЭПР на основании параметров структуры, близкой к расчетной форме II [2], не только хуже описывают его по сравнению с полученными в настоящей работе величинами, но и требуют введения дополнительных допущений, не имеющих под собой надежных литературных, спектроскопических или квантово-химических оснований. Таким образом, проведенные нами в настоящей работе расчеты позволяют отнести наблюдаемые после облучения во фреоновых матрицах спектры ЭПР КР 2,2-ДМО к форме КР I с максимальным расстоянием между углеродными атомами в оксирановом цикле, а не к форме КР II, как это предполагалось в [2-4].

Спектр ЭПР, зарегистрированный в [3, 4] после радиолиза 3MO в CF₃CCl₃¹, на основании квантовохимических расчетов был отнесен к цис-изомеру «открытой» формы КР ЗМО, аналогичному найденной в настоящей работе форме КР IV, при температуре как 77, так и 111 К (разогрев заметно меняет вид спектра). Хотя квантово-химические расчеты, проведенные в рамках настоящей работы, по-прежнему свидетельствуют в пользу того, что в данной системе стабилизируется КР ЗМО в «открытой» форме, мы не можем сделать однозначный вывод о принадлежности экспериментального спектра КР к формам IV или V. Моделирование экспериментальных спектров продукта радиолиза (77 К, 111 К) приводит к одним и тем же наборам констант СТВ вне зависимости от того, какой из двух расчетных наборов констант выбран в качестве исходного, при этом результирующий набор (табл. 2) нельзя однозначно соотнести с расчетными величинами констант СТВ для форм IV или V (рис. 1, 2). На основании вышесказанного мы сделали предположение о том, что в результате радиолиза в растворах 3МО в CF₃CCl₃ может стабилизироваться смесь «открытых» форм КР IV или V.

Спектры оптического поглощения КР 2,2-ДМО во фреоновых матрицах, зарегистрированные в [2], характеризуются широкой полосой с максимумом при $\lambda = 425$ нм (CF₃CCl₃) и при $\lambda = 435-440$ нм (CFCl₂). Учитывая, что эта спектральная область характерна для максимумов полос поглощения КР простых эфиров, в том числе циклических $(\lambda_{\text{макс}} \approx 430-450 \text{ нм [10, 11]}), и опираясь на интер$ претацию полос поглощения КР 2,3-диметилоксирана при их взаимных фотоиндуцированных переходах [12], мы отнесли в работе [2] наблюдаемые после облучения спектры поглощения к циклической форме КР 2,2-ДМО, близкой по строению к II. Вместе с тем приведенные в данной работе результаты моделирования экспериментальных спектров ЭПР КР 2,2-ДМО, позволившие отнести их к «открытой» форме КР I, требуют иного отнесения и для экспериментально наблюдаемых спектров оптического поглощения. Перечисленные выше расчетные данные, свидетельствующие об отсутствии псевдоаллильной природы у КР I, а также об относительно коротковолновом поглощении этой формы, с нашей точки зрения, под-

¹ Поскольку узкие мультиплетные спектры ЭПР КР 3МО, стабилизированных в низкотемпературной матрице $CFCl_3$, обладают заметной угловой зависимостью, затрудняется достоверное отнесение исходного сигнала, зарегистрированного в облученных растворах $3MO/CFCl_3$. Однако положение максимума поглощения КР 3MO в оптических спектрах в $CFCl_3$, а также характер изменения спектров ЭПР при фотолизе указывают на то, что и радиолиз, и фотолиз КР 3MO, стабилизированных в матрице $CFCl_3$, приводит к тем же продуктам, что и в матрице CF_3CCl_3 . Ниже для КР 3MO обсуждаются только результаты, полученные в низкотемпературной матрице CF_3CCl_3 .

Таблица 2

КР	2,2-ДМО											
	Магнитно-резонансные параметры											
	$a_{iso}(\mathrm{H}^{1})$) a_{iso}	(H ²) a	$u_{iso}(H^3)$	$a_{iso}(\text{H}^4)$	$a_{iso}(\mathrm{H}^5)$	$a_{iso}(1)$	H^{6}) a	iso(H ⁷)	$a_{iso}(H^8)$		
VII	0,59 (0,60)) <(),1 60)	<0,1 (0,60)	1,01 (0,60)	1,00 (0,60)	1,9 (1,7	⁵ 3) (1,89 (2,01)	0,57 (0,60)		
VIII	/III 1,22),1	1,86	1,84	<0,1	0,9	5	0,96	1,21		
3MO												
КР		Магнитно-резонансные параметры										
	$a_{iso}(\mathrm{H}^{1})$	$a_{iso}(\text{H}^2)$	$a_{iso}(\mathrm{H}^3)$	$a_{iso}(\text{H}^4)$	$a_{iso}(\text{H}^5)$	$a_{iso}(\text{H}^6)$	$a_{iso}(\mathrm{H}^7)$	$a_{iso}(\mathrm{H}^8)$	$a_{iso}(\mathrm{H}^9)$	$a_{iso}(\mathrm{H}^{10})$		
IX	<0,1	0,97 (0,49)	0,76 (0,68)	1,96 (2,62)	1,93 (1,76)	<0,1	0,11	<0,1	0,43 (0,42)	<0,1		
X	0,75	1,87	1,85	<0,1	0,89	0,63	0,16	<0,1	<0,1	<0,1		
XI	0,50	0,91	0,94	1,96	1,95	<0,1	<0,1	<0,1	0,50	<0,1		
XII	1,26	1,87	1,85	<0,1	0,90	0,86	<0,1	<0,1	<0,1	1,20		
XIII	0,22	<0,1	<0,1	0,26	0,20	<0,1	<0,1	1,83	1,78	<0,1		
XIV	0,25	<0,1	0,19	<0,1	<0,1	<0,1	0,10	1,79	1,75	1,37		

Расчетные величины изотропных констант СТВ (мТл) с ядрами ¹Н для различных дистонических катионрадикальных продуктов переноса атома водорода в КР 2,2-ДМО и КР 3МО [B3LYP/def2-svp//B3LYP/N07D]

тверждают правильность отнесения наблюдаемых после облучения растворов 2,2-ДМО во фреонах экспериментальных спектров ЭПР и оптического поглощения к КР I.

В спектрах оптического поглощения, зарегистрированных в облученных растворах ЗМО в CF₂CCl₂ при 77 К [3, 4], наблюдается появление интенсивной полосы с максимумом при ~500 нм. По аналогии с другими «открытыми» формами КР метилзамещенных оксиранов, а также на основании сопоставления с результатами, полученными методом ЭПР, полоса с максимумом при ~500 нм была отнесена в [3, 4] к цис-изомеру «открытой» формы КР, аналогичному форме КР IV. Поскольку мы не можем сделать однозначный выбор между иис-изомером IV и транс-изомером V при отнесении спектров ЭПР продуктов радиолиза в матрице CF₃CCl₃, в настоящей работе широкую симметричную полосу поглощения с $\lambda_{\text{макс}} \approx 500$ нм, предположительно, следует отнести к поглощению форм КР ІV и V.

Действие света с $\lambda = 436$ нм на КР 2,2-ДМО в форме I во фреоновых матрицах при 77 К приводит к необратимому исчезновению полосы оптического поглощения при $\lambda = 425-435$ нм и превращению КР в парамагнитные частицы, которым в спектре ЭПР принадлежит сигнал (рис. 4, г) с экспериментально определяемыми константами СТВ, близкими к $a_1(6H) \approx 0.6$ мТл и $a_2(2H) \approx 1.9$ мТл. В качестве фотостабильного в видимой области предполагаемого продукта фотопревращения в [2-4] рассматривался дистонический катион-радикальный продукт диссоциации связи С-О при четвертичном атоме углерода с локализацией спиновой плотности на атоме углерода, а зарядовой плотности на атоме кислорода. Это предположение не было подкреплено квантово-химическими расчетами и не находило аналогов ни среди фотопревращений КР алкилзамещенных оксиранов [1], ни среди фотопревращений КР других малых гетероциклов. Для отнесения продукта фотопревращения КР I в настоящей работе был проведен расчет возможных дистонических КР (рис. 5, табл. 2). Результаты квантово-химических расчетов позволяют рассматривать в качестве предполагаемого продукта фотопревращения дистонический КР, образующийся при внутримолекулярном переносе атома

Рис. 3. Спектры ЭПР, зарегистрированные после рентгеновского облучения в растворах 2,2-ДМО в CFCl₃ при 77 К – экспериментальный (*a*) и модельный (*б*); в растворах ЗМО в CF₃CCl₃ при 77 К – экспериментальный (*в*) и модельный (*г*), а также при 111 К – экспериментальный (*д*) и модельный (*е*). Параметры моделирования см. в табл. 1 ($\Delta H_{nn} \approx 0,5$ мТл)

водорода от одной из метильных групп на метиленовую группу с квантовым выходом, близким к 0,001 (рис. 5, интермедиаты VII, VIII; модельные спектры, представленные на рис. 4, *г* получены на основании оптимизированных магнитно-резонансных параметров формы VII). Расчеты электронных переходов для подобных частиц пока-

зывают, что для них в видимой области спектра отсутствуют полосы со значением $f_{\rm osc} > 0,1$. Вне зависимости от того, из какой метильной группы происходит перенос атома водорода (схема), продукт фотопревращения характеризуется спиновой плотностью, преимущественно локализованной на углеродном атоме метиленовой группы, и

Рис. 4. Спектры ЭПР, зарегистрированные после рентгеновского облучения при 77 К и действия света с $\lambda = 436$ нм в растворах 2,2-ДМО в CF₃CCl₃– экспериментальный (*a*) и модельный (*б*, $\Delta H_{pp} \approx 0,5$ мТл); в растворах ЗМО в CF₃CCl₃– экспериментальный (*в*) и модельный (*г*, $\Delta H_{pp} \approx 1,1$ мТл). Параметры моделирования см. в табл. 2

зарядовой плотностью, преимущественно локализованной на третичном атоме углерода.

Аналогично фотопревращению КР 2,2-ДМО действие света с $\lambda = 436$ нм на КР 3МО (формы IV и V) во фреоновых матрицах при 77 К приводит к исчезновению полосы в спектре поглощения, имеющей максимум при ~500 нм, с эффективно-

стью, близкой к 0,004 (использование фильтров с высокой пропускающей способностью и более длительного времени фотолиза позволило исключить из рассмотрения пороговый эффект действия более высокоэнергетических фотонов, предлагавшийся в [3, 4]). При этом в спектрах ЭПР наблюдается переход мультиплетного сигнала в триплет-

Рис. 5. Расчетные структуры дистонических катион-радикальных продуктов переноса атома водорода в КР 2,2-ДМО (VII и VIII), 3МО (IX–XIV), образование которых возможно в облученных растворах субстратов во фреонах

ный, компоненты которого являются результатом наложения нескольких линий. В [3, 4] возникновение этого сигнала связывали с переносом H⁺ на матрицу от одной из метильных групп с образованием терминального С-центрированного радикала 3MO. Однако квантово-химические расчеты, проведенные в настоящей работе, показывают, что ни одному из подобных продуктов не может принадлежать триплетный сигнал в спектре ЭПР. По аналогии с КР 2,2-ДМО (а также с учетом близких значений эффективностей фотолиза для этих интермедиатов) был рассмотрен альтернативный механизм – внутримолекулярный перенос атома водорода от одной из метильных групп на углеродный атом метиновой группы. Квантово-химические расчеты показали наличие шести возможных структур, соответствующих дистоническим КР, образующимся при внутримолекулярном переносе атома водорода (рис. 5, табл. 3). Отметим, что как и в случае КР 2,2-ДМО, для каждой из этих структур (**IX–XIV**) характерна максимальная спиновая плотность, локализованная на углеродном атоме метиленовой группы, и максимальная зарядовая плотность, локализованная на соседнем

Рис. 6. Механизмы фотопревращения КР алкилзамещенных оксиранов в замороженных фреонах в зависимости от строения субстрата

вторичном или третичном атоме углерода, а также отсутствие значимого поглощения в видимой области спектра. При выборе структуры, принадлежащей продукту фотолиза КР ЗМО IV и V, сделать однозначный выбор между найденными шестью изомерами не представляется возможным; однако следует отметить, что при моделировании экспериментального спектра продукта фотолиза мы ориентировались на магнитно-резонансные параметры КР IX (схема).

Итак, на основании полученных для КР 2,2-ДМО и КР 3МО новых экспериментальных и расчетных данных предложенная для КР алкилзамещенных оксиранов общая схема возможных путей их фотопревращений [1] может быть дополнена

СПИСОК ЛИТЕРАТУРЫ

- 1. Melnikov M.Ya, Sorokin I.D., Gromov O.I., Pergushov V.I., Pomogailo D.A. // Moscow University Chemistry Bulletin. 2021. Vol. 76. N 1. P. 1.
- Sorokin I.D., Feldman V.I., Mel'nikova O.L., Pergushov V.I., Tyurin D.A., Mel'nikov M.Y. // Mendeleev Communications. 2011. Vol. 21. N 3. P. 155.
- 3. Sorokin I.D., Melnikova O.L., Pergushov V.I., Tyurin D.A., Feldman V.I., Melnikov M.Ya. // High Energy Chemistry. 2012. Vol. 46. N 3. P. 183.
- 4. Sorokin I.D., Melnikova O.L., Pergushov V.I., Ty-

еще одним механизмом – внутримолекулярным переносом атома водорода с образованием соответствующих дистонических КР (рис. 6).

Работа выполнена в рамках бюджетной темы «Кинетика и механизм фотохимических, криохимических и каталитических процессов и создание новых материалов и технологий на базе молекулярно-организованных систем» АААА-А21-121011590090-7 при финансовой поддержке Российского фонда фундаментальных исследований (проект 19-03-00015) с использованием оборудования, приобретенного за счет средств Программы развития Московского университета. Конфликта интересов нет.

urin D.A., Feldman V.I., Melnikov M.Ya. // Moscow University Chemistry Bulletin. 2012. Vol. 67. N 2. P. 59.

- Neese F. // Wiley Interdiscip. Rev., Comput. Mol. Sci. 2018. Vol. 8. N 1. P. e1327.
- 6. Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. // J. Phys. Chem. 1994. Vol. 98. P. 11623.
- 7. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297.
- 8. Barone V., Cimino P., Stendardo E. // J. Chem. Theory Comput. 2008. Vol. 4. P. 751.

- Sinnecker S., Rajendran A., Klamt A., Diedenhofen M., Neese F. // J. Phys. Chem. A. 2006. Vol. 110. P. 2235.
- Melnikov M.Ya., Baskakov D.V., Baranova I.A., Belevskii V.N., Melnikova O.L. // Mendeleev Commun. 1998. Vol. 8. N 1. P. 2.
- 11. Мельников М.Я., Мельникова О.Л., Белевский Вл.Н., Белопушкин С.И. // Химия высоких энергий. 1998. Vol. 32. N 1. P. 39.
- 12. Sorokin I.D., Feldman V.I., Mel'nikova O.L., Pergushov V.I., Tyurin D.A., Mel'nikov M.Y. // Mendeleev Communications. 2011. Vol. 21. N 3. P. 153.

Поступила в редакцию 21.05.2021 Получена после доработки 24.05.2021 Принята к публикации 26.05.2021

PHOTOCHEMISTRY OF 2,2-DIMETHYL AND 2,2,3-TRIMETHYLOXIRANE RADICAL CATIONS IN FREON MATRICES AT 77 K

I.D. Sorokin¹*, O.I. Gromov¹, V.I. Pergushov¹, D.A. Pomogailo^{1,2}, M.Ya. Melnikov¹

(¹Lomonosov Moscow State University, Chemistry Department; ²Russian Institute for Scientific and Technical Information (VINITI); *e-mail: ivan.d.sorokin@gmail.com)

The nature of radical cations (RCs) stabilized in irradiated frozen solutions of 2,2-dimethyl- and 2,2,3-trimethyloxirane in Freons (CFCl₃, CF₃CCl₃) was determined by means of EPR and UV/Vis spectroscopy as well as quantum chemistry. It was established that the afforded ring-open RCs, formed upon C–C bond cleavage in the oxirane ring, undergo intramolecular hydrogen atom transfer upon the action of light, resulting in the formation of distonic RCs.

Key words: radical cations, EPR spectroscopy, photochemistry, 2,2-dimethyloxirane, 2,2,3-trimethyloxirane, matrix stabilization, hydrogen atom transfer, density functional theory.

Сведения об авторах: Сорокин Иван Дмитриевич – науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (ivan.d.sorokin@gmail.com); Громов Олег Игоревич – науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (aalchm@gmail.com); Пергушов Владимир Иванович – ст. науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (aalchm@gmail.com); Пергушов Владимир Иванович – ст. науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (pergushov@yandex.ru); Помогайло Дарья Анатольевна – науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (texafirin@yandex.ru); Мельников Михаил Яковлевич – зав. кафедрой химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (texafirin@yandex.ru); Мельников Михаил Яковлевич – зав. кафедрой химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (texafirin@yandex.ru); Мельников Михаил Яковлевич – зав. кафедрой химической кинетики химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук. профессор (melnikov46@mail.ru).