УДК 543.51; 669.1

### ОПРЕДЕЛЕНИЕ Si, B, Ca, Mg, Ba И Zr В СЛОЖНОЛЕГИРОВАННЫХ НИКЕЛЕВЫХ СПЛАВАХ МЕТОДОМ ИСП-МС

А.В. Алексеев<sup>1</sup>\*, П.В. Якимович<sup>1</sup>, Е.В. Проскурнина<sup>2</sup>

(<sup>1</sup> Всероссийский научно-исследовательский институт авиационных материалов; <sup>2</sup> ФБГНУ «Медико-генетический центр имени академика Н.П. Бочкова»; \*e-mail: kvark-87@mail.ru)

Показана возможность использования реакционно-столкновительной ячейки и подобраны оптимальные параметры ее настройки для определения Si, B, Ca, Mg, Ba и Zr в сложнолегированном никелевом сплаве методом масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС). Приведена методика растворения пробы и подготовки ее к анализу. Правильность полученных результатов подтверждена анализом сертифицированного стандартного образца никелевого сплава.

**Ключевые слова:** масс-спектрометрия с индуктивно-связанной плазмой, ИСП-МС, никелевые сплавы, микроволновая пробоподготовка.

В настоящее время жаропрочные никелевые сплавы нашли широкое применение в производстве современных авиационных и газотурбинных двигателей. Материалы на их основе используют при изготовлении узлов и деталей [1], подвергающихся воздействию высоких температурных и механических нагрузок, поэтому качество этих материалов должно быть очень высоким [2]. Необходимые свойства современных никелевых сплавов достигаются путем введения множества легирующих добавок (Hf, Re, Al, Ta, Cr, Ti, W, Mo, Nb, Co) [3]. Для повышения качества материалов необходимо осуществлять контроль содержания элементов, в частности кремния, присутствие которых ухудшает механические и жаропрочные свойства сплавов. Необходимо также определять микроколичество (<0,01 мас.%) щелочноземельных элементов (Mg, Ca и Ba), используемых как раскислители, а также микролегирующих добавок (В и Zr) [4, 5].

Кремний в никелевых сплавах можно определять методами гравиметрии и спектрофотометрии [6]. Бор и магний также можно определять спектрофотометрически [7, 8]. Для определения кальция можно использовать атомно-абсорбционный метод [9]. Данные методики включают в себя трудоемкую и длительную пробоподготовку, а кроме того, с их помощью можно определять только один элемент. Атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой (АЭС-ИСП) представляет собой многоэлементный метод, позволяющий определять примеси в

различных материалах, однако использование данного метода для анализа никелевых сплавов сложного состава не всегда возможно из-за интенсивных спектральных наложений [10, 11].

Для определения примесей в материалах разного состава широко используется массспектрометрия с индуктивно связанной плазмой (ИСП-МС) [12, 13]. Метод позволяет одновременно определять большое число элементов и отличается низкими пределами обнаружения, однако прямое определение кремния и кальция данным методом ограничено высоким фоновым сигналом. Решить данную проблему можно с помощью реакционно-столкновительной ячейки (составной части современных массспектрометров) в режиме работы дискриминации по кинетической энергии (KED), пропуская через ячейку инертный газ [14]. Важной задачей при этом становится подбор параметров настройки работы ячейки с учетом фонового и аналитического сигналов [15].

Цель данной работы – исследование возможности определения кремния, кальция, магния, бария, бора и циркония в сложнолегированных никелевых сплавах методом ИСП-МС с использованием реакционно-столкновительной ячейки.

#### Экспериментальная часть

*Аппаратура.* В работе использовали массспектрометр с индуктивно-связанной плазмой «iCAP Q» («Thermo Fisher Scientific», Германия). Для достижения максимальных аналитических

| Г | a ( | бл | И | Ц | а | 1 |
|---|-----|----|---|---|---|---|
|---|-----|----|---|---|---|---|

| Параметр прибора                                 | Значение параметра                                     |  |
|--------------------------------------------------|--------------------------------------------------------|--|
| Плазмообразующий газ, л/мин                      | 14,0                                                   |  |
| Вспомогательный газ, л/мин                       | 0,8                                                    |  |
| Распылительный газ, л/мин                        | 0,99                                                   |  |
| Скорость перистальтического насоса, об./мин      | 40                                                     |  |
| Глубина плазмоотбора, мм                         | 5                                                      |  |
| Мощность RF генератора, Вт                       | 1400                                                   |  |
| Число каналов на массу                           | 1                                                      |  |
| Число сканов в реплике                           | 50                                                     |  |
| Число реплик для образца                         | 3                                                      |  |
| Время интегрирования (Dwell time), с             | 0,01                                                   |  |
| Напряжение на экстракторе (Extraction Lens 2), В | 164                                                    |  |
| Напряжение на фокусной линзе (ССТ Focus Lens), В | 3,6                                                    |  |
| Разрешение, а.е.м.                               | 0,7                                                    |  |
| Распылитель                                      | микропоточный, концентрический PFA-ST<br>(400 мкл/мин) |  |
| Распылительная камера                            | кварцевая, циклонная с термоэлектрическим охлаждением  |  |
| Температура распылительной камеры, °С            | 2,7                                                    |  |
| Самплер                                          | стандартный никелевый                                  |  |
| Скиммер                                          | стандартный никелевый со вставкой 3,5 мм               |  |

Параметры настройки прибора

сигналов определяемых элементов выполняли автоматическую настройку параметров работы прибора в соответствии со стандартной процедурой подготовки прибора, заданной производителем (табл. 1). При этом для настроечного раствора, содержащего Li, In, Ba, Ce и U с концентрацией 1 мкг/дм<sup>3</sup>, чувствительность (имп/с/(мкг/дм<sup>3</sup>)) составляла не менее 60 000 для <sup>7</sup>Li, 250 000 для <sup>115</sup>In, 400 000 для <sup>238</sup>U. Уровень оксидных ионов (<sup>156</sup>CeO/<sup>140</sup>Ce) составлял 2,0%, уровень двухзарядных ионов (<sup>137</sup>Ba<sup>2+/137</sup>Ba) – 2,5%.

Работа реакционно-столкновительной ячейки с гелием в режиме дискриминации по кинетической энергии (KED) позволяет избежать возникновения новых интерференций, которые имеют место при использовании реакционноспособных газов, что позволяет анализировать образцы со сложной матрицей и переменным составом [14]. Была проведена настройка работы реакционно-столкновительной ячейки в режиме КЕD с гелием, при этом напряжение на входе в квадруполь Pole Bias составило –18 В, напряжение на выходе из ячейки ССТ Bias Bias было равно –21 В. Расход гелия через ячейку был подобран вручную и составил 6 мл/мин, при этом был достигнут минимальный уровень оксидных ионов <sup>156</sup>CeO/<sup>140</sup>Ce, равный 0,5%. Дальнейшие настройки ячейки требовали использования ионов определяемых элементов в растворе с матрицей никелевого сплава.

Для растворения проб использовали систему микроволновой пробоподготовки «MARS 6» («СЕМ», США) с тефлоновыми автоклавами «MARS Xpress Plus» («СЕМ», США) объемом 100 см<sup>3</sup>.

Реагенты и объекты исследования. Для растворения проб использовали азотную и соляную кислоты марки «ос.ч.», очищенные с помощью системы перегонки без кипения «BSB-939-IR» («Berghof», Германия). В качестве растворителя применяли деионизованную воду (сопротивление не менее 18,2 мОм). В качестве внутреннего стандарта, введенного вручную, использовали растворы In и Eu с концентрацией 2 мкг/л, приготовленные из стандартных растворов с концентрацией этих элементов 1 г/л («High-Purity Standards», США). При построении градуировки для аналитического определения использовали стандартные растворы Si, B, Ca, Mg, Ba и Zr с концентрацией 1 г/л («High-Purity Standards», США). Для приготовления модельных растворов никелевых сплавов использовали также стандартные растворы Со, Ті, Сг, Аl, W, Мо, Та и Nb с концентрацией 10 г/л («High-Purity Standards», CIIIA).

Исследованы два образца жаропрочного никелевого сплава, легированного Со, Ті, Сr, Al, W, Mo, Та и Nb, а также сертифицированный стандартный образец (СО) никелевого сплава ВЖМП (ФГУП «ВИАМ», Россия).

В качестве плазмообразующего, распылительного и вспомогательного газа использовали аргон с чистотой 99,998%, а в качестве газа реакционно-столкновительной ячейки – гелий с чистотой 99,999%.

Пробоподготовка образцов. Образцы никелевых сплавов массой по 0,5 г (4 параллельные пробы) растворяли в 20 мл воды, 8 мл HCl и 2 мл HNO<sub>3</sub>. Вода была необходима для лучшего растворения получаемых в процессе разложения солей, а также для равномерного распределения микроволновой мощности. Вначале к образцу добавляли воду, далее соляную кислоту, а затем азотную кислоту. Автоклав нагревали в микроволновой системе до 120 °С в течение 20 мин, затем температуру 120 °С поддерживали еще 20 мин. Максимальная мощность нагрева была задана из расчета 150 Вт на автоклав, предельное давление не более 20 ат. Полученный раствор доводили до объема 100 мл и разбавляли до концентрации 0,5 г/л по матрице, а затем использовали для проведения измерений.

Для построения градуировочной зависимости интенсивности сигналов от концентрации (в диапазоне от 2 до 200 мкг/г) использовали метод добавок, при котором известное количество определяемых элементов вводят как добавки непосредственно в анализируемый образец. Внутренние стандарты применяли для коррекции дрейфа сигнала и матричного влияния компонентов основы сплава на интенсивность сигналов определяемых элементов. Были получены результаты как с использованием двух внутренних стандартов (In, Eu), так и без них.

Для сбора и обработки данных применяли программное обеспечение масс-спектрометра «Qtegra». За окончательный результат измерений принимали среднее арифметическое результатов измерений четырех параллельных проб (включая все стадии пробоподготовки). При этом должно было выполняться условие приемлемости повторяемости:

$$\frac{4 \left| X_{\max} - X_{\min} \right| \cdot 100}{\left( X_1 + X_2 + X_3 + X_4 \right)} \le r,$$

где  $X_1$ ,  $X_2$ ,  $X_3$ ,  $X_4$  – результаты параллельных определений массовой доли компонента, %; r – предел повторяемости, % (значении для каждого элемента взято из методик описанных в работе [12]).

### Результаты и обсуждение

Для достижения максимального аналитического сигнала и минимального числа возможных интерференций перед началом анализа было необходимо выбрать изотопы определяемых элементов с учетом их максимальной распространенности (табл. 2) [16].

Для кальция был выбран не самый распространенный изотоп <sup>44</sup>Са из-за наложения <sup>40</sup>Ar<sup>+</sup> на <sup>40</sup>Са (распространенность 96,9%). Определению бария <sup>138</sup>Ва (распространенность 71,7%) мешает <sup>138</sup>La. Как видно из табл. 2, труднее всего определять кремний и кальций. Следует заметить, что основные мешающие интерференты (углерод и азот) присутствуют в окружающей среде, что приводит к сильным фоновым сигналам, устранить которые можно, используя реакционно-столкновительную ячейку.

Настройка параметров работы реакционно-столкновительной ячейки. Для правильной настройки работы ячейки и для учета вклада всех компонентов в фоновый сигнал использовали модельные растворы сложнолегированного никелевого сплава, приготовленные в отдельных колбах с использованием стандартных растворов Ni, Co, Ti, Cr, Al, W, Mo, Ta и Nb в концентрациях, соответствующих исходному сплаву (значения содержаний легиру-

| Г | а | б | Л | И | Ш | а | 2 |
|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|

| Определяемый<br>элемент | Изотоп            | Распространенность изотопа, % | Мешающие<br>ионы                                  | Распространенность иона интерферента, % |
|-------------------------|-------------------|-------------------------------|---------------------------------------------------|-----------------------------------------|
| В                       | <sup>11</sup> B   | 80,2                          | _                                                 | _                                       |
| Mg                      | <sup>24</sup> Mg  | 79                            | ${}^{12}C_{2}^{+}$                                | 98,9                                    |
| Si                      | <sup>28</sup> Si  | 92,2                          | ${{}^{14}}N{{}^{14}}N^+$ ${{}^{12}}C{{}^{16}}O^+$ | 99,6<br>98,9                            |
| Са                      | <sup>44</sup> Ca  | 2,1                           | ${}^{12}C^{16}O_2^{+}$<br>${}^{28}Si^{16}O^{+}$   | 98,9<br>92,0                            |
| Zr                      | <sup>90</sup> Zr  | 51,5                          | _                                                 | _                                       |
| Ba                      | <sup>137</sup> Ba | 11,2                          | _                                                 | _                                       |

Изотопы определяемых элементов и их основные интерференции

ющих элементов предоставлены изготовителем сплава – «ФГУП» ВИАМ). Эксперименты проводили с имеющими высокие фоновые сигналы проблемными элементами (кремний и кальций), которые добавляли (100 ppb Ca и 500 ppb Si) в модельный раствор. Анализ данного раствора, а также раствора без добавок проводили в режиме измерения KED, изменяя поток газа через ячейку, а также меняя значения CCT Bias и Pole Bias. В качестве оценки соотношения сигнал/ фон была выбрана величина

$$L = (I_{\rm th} - I)/I,$$

где  $I_{\phi}$  – фоновый сигнал, I – сигнал от аналита [13].

Полученные результаты представлены на рис. 1, 2, где показано, что наилучшее соотношение сигнал/фон для кальция достигается при ССТ Bias = -21,5 B, Pole Bias = -17,5 B и расходе газа через ячейку 5 мл/мин, для кремния наилучшее соотношение сигнал/фон достигается при ССТ Bias = -21 B, Pole Bias = -18 B и расходе газа через ячейку 4 мл/мин. Таким образом, все последующие эксперименты по определению кальция и кремния проводили в режиме измерения KED с соответствующими настройками для каждого элемента. Для ускорения измерения можно использовать одно значение расхода газа через ячейку – 4,5 мл/мин. Для остальных элементов,



Рис. 1. Зависимость соотношения сигнал/фон кальция от скорости потока гелия через ячейку при разных значениях ССТ Віаs и Pole Bias: *I* – (-21,5; -17,5), *2* – (-20,5; -18,5), *3* – (-20; -19), *4* – (-21; -18), *5* – (-22; -17) (первое значение в скобках – ССТ Віаs, второе – Pole Bias)



Рис. 2. Зависимость соотношения сигнал/фон кремния от скорости потока гелия через ячейку при разных значениях ССТ Bias и Pole Bias: *1* – (-22; -17), *2* – (-21; -18), *3* – (-21,5; -17,5), *4* – (-20,5; -18,5), *5* – (-20; -19) (первое значение в скобках – ССТ Bias, второе – Pole Bias)

имеющих низкие фоновые сигналы, использовали режим работы без ячейки.

Определение Si, B, Ca, Mg, Ba, и Zr в стандартном образце никелевого сплава. Для проверки правильности было проведено определение Si, B, Ca, Mg, Ba и Zr в стандартном образце никелевого сплава с подобранными выше настройками прибора, а также с использованием In и Eu в качестве внутреннего стандарта. Полученные результаты анализа приведены в табл. 3, 4.

Наиболее точные результаты определения кремния (аттестованное значение попадает в доверительный интервал полученного значения) получены без использования внутреннего стандарта, что можно объяснить большим различием значений первых потенциалов ионизации кремния и внутренних стандартов. Для В, Са и Zr наилучшие результаты достигнуты при использовании In или Eu, для Mg наилучшие результаты достигнуты при использовании только In. Содержание Ва не было аттестовано в стандартном образце. Далее проводили анализ реальных образцов неизвестного состава с использованием подобранных внутренних стандартов.

Определение Si, B, Ca, Mg, Ba и Zr в образце сложнолегированного никелевого сплава. В табл. 5, 6 приведены результаты определения Si, B, Ca, Mg, Ba и Zr в двух образцах сложнолегированного никелевого сплава. Нижние границы определяемых значений содержания были рассчитаны по 3s-критерию для 10 параллельных проб. В пересчете на твердую пробу получены следующие значения, мкг/г: 68 (Si), 10 (Ca), 1 (B), 0,08 (Zr), 0,8 (Mg), 0,2 (Ba).

Таким образом, подобранные в ходе работы параметры настройки прибора и реакционностолкновительной ячейки, а также внутренние стандарты позволяют проводить определение примесей Si, B, Ca, Mg, Ba и Zr в сложнолегированных никелевых сплавах.

Таблица З

Результаты определения Si, B и Ca в стандартном образце никелевого сплава (n = 4, P = 0,95)

|                      | D                   | Массовая доля элементов, мг/кг |        |        |
|----------------------|---------------------|--------------------------------|--------|--------|
| Наименование образца | Внутренний стандарт | Si                             | В      | Ca     |
|                      | Нет                 | 380±30                         | 450±80 | 120±40 |
| ВЖМП-3               | In                  | 420±30                         | 400±40 | 85±5   |
|                      | Eu                  | 430±50                         | 410±50 | 82±4   |
| Аттестовання         | 370±30              | 410±40                         | 83±4   |        |

#### Таблица 4

| How concerns of poors | Duumpauuui amau yang | Массовая доля элементов, мг/кг |        |        |  |
|-----------------------|----------------------|--------------------------------|--------|--------|--|
| паименование образца  | внутреннии стандарт  | Mg                             | Ba     | Zr     |  |
|                       | Нет                  | 89±8                           | 8±2    | 210±30 |  |
| ВЖМП-3                | In                   | 78±6                           | 6±2    | 150±20 |  |
|                       | Eu                   | 65±6                           | 5±1    | 150±30 |  |
| Аттестовання          | 74±5                 | _                              | 160±30 |        |  |

# Результаты определения Mg, Ba и Zr в стандартном образце никелевого сплава (n = 4, P = 0,95)

Таблица 5

### Результаты определения Si, B и Ca в образце сложнолегированного никелевого сплава (n = 4, P = 0,95)

| Howen of normal | Массовая доля элементов, мг/кг |        |      |  |
|-----------------|--------------------------------|--------|------|--|
| Номер ооразца   | Si                             | В      | Са   |  |
| 1               | 320±30                         | 150±20 | 35±4 |  |
| 2               | 780±50                         | 140±20 | 71±5 |  |

Таблица б

# Результаты определения Mg, Ba и Zr в образце сложнолегированного никелевого сплава (n = 4, P = 0,95)

| Howen opposite | Массовая доля элементов, мг/кг |     |        |  |
|----------------|--------------------------------|-----|--------|--|
| помер образца  | Mg                             | Ва  | Zr     |  |
| 1              | 52±4                           | 4±2 | 520±40 |  |
| 2              | 47±6                           | 7±2 | 620±40 |  |

### Выводы

1. Подобраны параметры настройки работы прибора для определения Si, B, Ca, Mg, Ba и Zr в сложнолегированных никелевых сплавах.

2. Выбраны режимы работы реакционно-столкновительной ячейки для уменьшения фонового сигнала при определении Са и Si.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Каблов Е.Н., Петрушин Н.В., Светлов И.Л., Демонис И.М. // Авиационные материалы и технологии. 2012. № 8. С. 36.
- 2. Каблов Е.Н., Петрушин Н.В., Светлов И.Л., Демонис И.М. // Технология легких сплавов. 2007. № 2. С. 6.
- 3. Шеин Е.А. // Тр. ВИАМ. 2016. № 3. (39) Ст. 02. URL: http://www.viam-works.ru (дата обращения 18.12.2018). DOI 10.18557/2307-6046-2016-0-3-2-2.
- 4. *Мин П.Г., Сидоров В.В., Вадеев В.Е //* Тр. ВИАМ. 2017. № 4. Ст. 03. URL: http://www.viam-works.ru (дата

3. Осуществлена проверка правильности и подобраны соответствующие внутренние стандарты для каждого определяемого элемента.

Работа выполнена при финансовой поддержке ФГУП «ВИАМ».

Конфликта интересов нет.

Публикация в открытой печати с лицензией «Open Access»

обращения 18.12.2018). DOI 10.18557/2307-6046-2017-0-4-3-3.

- 5. Мин П.Г., Сидоров В.В., Каблов Д.Е., Вадеев В.Е. // Тр. ВИАМ. 2017. №4. Ст. 04. URL: http://www.viam-works. ru (дата обращения 18.12.2018). DOI 10.18557/2307-6046-2017-0-4-4-4.
- 6. ГОСТ 6689.7–92. Никель, сплавы никелевые и медно-никелевые. Методы определения кремния. Госстандарт России. М., 1992. С. 2.
- 7. ГОСТ 51928-2002. Сплавы и порошки жаропрочные

на никелевой основе. Методы определения бора. Госстандарт России. М., 1992. С. 1.

- FOCT 6689.12–92. Никель, сплавы никелевые и медноникелевые. Методы определения магния. Госстандарт России. М., 1992. С. 2.
- ГОСТ 6689.24–92. Никель, сплавы никелевые и медно-никелевые. Методы определения кальция. Госстандарт России. М., 1992. С. 2.
- Карачевцев Ф.Н., Загвоздкина Т.Н., Дворецков Р.М.
  // Тр. ВИАМ. 2015. № 12. Ст. 07. URL: http://www.viam-works.ru (дата обращения 18.12.2018). DOI 10.18557/2307-6046-2015-0-12-7-7.
- 11. Титов В.И. // Тр. ВИАМ. 2017. №9. Ст. 12. URL: http://www.viam-works.ru (дата обращения

- 12. Летов А.Ф., Карачевцев Ф.Н., Загвоздкина Т.Н. // Тр. ВИАМ. 2018. № 8. Ст. 09. URL: http://www.viam-works. ru (дата обращения 18.12.2018). DOI 10.18557/2307-6046-2018-0-8-89-97.
- Hu J., Wang H. // Mikrochim. Acta. 2001. Vol. 137. P. 149.
- Лейкин А.Ю., Карандашев В.К., Лисовский С.В., Волков И.А. // Заводская лаборатория. Диагностика материалов. 2014. Т. 80. № 5. С. 6.
- 15. Zhang P., Fu L., Ma J., Tang Y. // J. Cent. Sourh. Univ. 2015. № 22. P. 37.
- 16. *Пупышев А.А., Эпова Е.Н.* // Аналитика и контроль. 2001. Т. 5. № 4. С. 335.

Поступила в редакцию 10.05.2019 Получена после доработки 12.05.2019 Принята к публикации 14.06.2019

### QUANTITATION OF Si, B, Ca, Mg, Ba AND Zr IN COMPLEX-ALLOYED NICKEL ALLOYS BY ICP-MS

### A.V. Alekseev<sup>1</sup>\*, P.V. Yakimovich<sup>1</sup>, E.V. Proskurnina<sup>2</sup>

(<sup>1</sup> All-Russian scientific research Institute of aviation materials; <sup>2</sup> Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics" (RCMG); \*e-mail: kvark-87@mail.ru)

The determination of Si, B, Ca, Mg, Ba, and Zr in a complex nickel alloy by inductively coupled plasma mass spectrometry (ICP-MS) was carried out. The method of sample dissolution and preparation for analysis is presented. To reduce the background signal, a reaction-collision cell was used and the optimal parameters for its adjustment were selected. The correctness of the results obtained is confirmed by an analysis of a certified standard sample of nickel alloy.

**Key words:** inductively coupled plasma mass spectrometry, ICP-MS, nickel alloys, microwave sample preparation.

Сведения об авторах: Алексеев Андрей Владимирович – науч. сотр. Всероссийского научно-исследовательского института авиационных материалов, канд. биол. наук (kvark-87@mail.ru); Якимович Павел Витальевич – вед. инженер Всероссийского научно-исследовательского института авиационных материалов (yakimovichpv@mail.ru); Проскурнина Елена Васильевна – глав. науч. сотр. ФБГНУ «Медико-генетический центр имени академика Н.П. Бочкова», докт. мед. наук (proskurnina@gmail.com).