УДК 661.863/.868

РАЗДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В СИСТЕМЕ ТРИБУТИЛФОСФАТ – $Ln(NO_3)_3$ – $Ca(NO_3)_2$ В ПРОТИВОТОЧНОМ ПРОЦЕССЕ

С.Н. Игумнов*, А.В. Вальков1

(кафедра физической химии; *e-mail: igumnovs@gmail.com)

Реализован 40-ступенчатый экстракционный процесс разделения редкоземельных элементов по линии празеодим — церий с использованием экстракторов типа смеситель-отстойник в системе 100%-й трибутилфосфат — $Ln(NO_3)_3$ — $Ca(NO_3)_2$. Получен лантан-цериевый концентрат, содержащий менее 0,03 мас.% остальных редкоземельных элементов. Рассмотрена принципиальная технологическая схема разделения редкоземельного концентрата, выделенного из фосфогипса.

Ключевые слова: экстракция, фосфогипс, редкоземельные элементы, трибутилфосфат, нитрат кальция, экстракционный каскад, коэфффициент разделения.

Одним из источников редкоземельных (РЗЭ) концентратов может стать отход переработки апатита по сернокислотной технологии - фосфогипс. Фосфогипс содержит 0,3-0,6% РЗЭ (на оксиды), примеси фторид- и фосфат-ионов, а также катионов железа, алюминия, титана и тория. Для выделения РЗЭ из фосфогипса предложены различные технические решения [1-4], основанные в большинстве случаев на выщелачивании РЗЭ минеральной кислотой с сохранением основной массы фосфогипса в твердой фазе. Достаточно высокая степень извлечения достигнута при выщелачивании РЗЭ раствором, содержащим 300 г/дм³ нитрата кальция и 1 моль/дм³ азотной кислоты [5]. После выделения РЗЭ из фосфогипса предполагается разделение всей суммы РЗЭ на концентраты. Представляется целесообразным вести дальнейшее разделение РЗЭ с использованием в качестве высаливателя нитрата кальция или плава нитрата кальция - отхода переработки апатита по азотнокислой технологии. В данном сообщении приведены результаты исследований по разделению редкоземельного концентрата на 40-ступенчатом противоточном экстракторе в режиме противотока экстракцией 100%-м трибутилфосфатом (ТБФ).

Методика эксперимента

Процесс экстракции проводили по обычной методике встряхиванием водных и органических фаз в делительной воронке при температуре 22±2 °C. Противоточный процесс реализован на 40-ступенчатом экстракторе типа смеситель-от-

стойник с объемом одной ступени 0,6 дм³. В качестве экстрагента использовали технический ТБФ (ТУ 2435-305-05763458-2001). Реагенты: азотная кислота, нитрат кальция, карбонат натрия, гидроксид аммония, нитрат бария, серная кислота, щавелевая кислота (все квалификации «х.ч.»). Общее содержание РЗЭ определяли осаждением оксалатов РЗЭ с последующим прокаливанием при 800-850 °C до оксидов, а содержание индивидуальных элементов определяли на оптическом эмиссионном спектрометре с индуктивно связанной плазмой iCAP 6300 Duo. Для исследования использовали карбонаты редкоземельного концентрата, выделенного из фосфогипса производства АО «Воскресенские минеральные удобрения» (табл. 1).

При переработке апатита по сернокислотной технологии до 20% тория и основная масса радия остаются в фосфогипсе [6]. Фосфогипс более радиоактивен, чем экстракционная фосфорная кислота. В процессе перекристаллизации радиоактивные примеси распределяются между очищенным фосфогипсом и раствором нитрата кальция. Выделенный из выщелачивающего раствора редкоземельный концентрат содержит примеси железа, алюминия, титана и частично радиоактивные продукты распада ториевого ряда. Суммарная активность выделенных карбонатов РЗЭ составила 700—1500 Бк/кг.

Концентрат растворяли в азотной кислоте с получением растворов, содержащих $150-200 \text{ г/дм}^3$ РЗЭ (оксиды) и $0.05-0.1 \text{ моль/дм}^3$ азотной кислоты. Торий вместе с продуктами распада выде-

¹ Национальный исследовательский ядерный университет (МИФИ), кафедра общей химии (ale11534@yandex.ru).

ляли по известной методике [7]. К раствору добавляли сульфат аммония (до 2,1–2,5 г/дм³), вводили нитрат бария (до концентрации 2 г/дм³) и гидроксид аммония до достижения рН 3,3–3,6. Осадок гидроксосульфатов тория и соосажденных РЗЭ отделяли фильтрацией. Содержание редкоземельных элементов в очищенном растворе и осадке приведено в табл. 2. Как видно из полученных результатов, содержание тория в дезактивированных растворах уменьшается до 3,10⁻⁴ мас.%. Согласно требованиям НРБ [8], с такими растворами можно работать без особых

мер защиты от активности. Следует отметить, что РЗЭ перераспределяются между осадком и раствором в соответствии с величиной рН осаждения соответствующих элементов, т.е. осадок закономерно обогащается элементами иттриевой группы. Отношение содержания индивидуальных РЗЭ в осадке к содержанию в очищенном растворе ($K = [Ln]_p/[Ln]_{oc.}$) уменьшается от лантана до лютеция, что соответствует возрастанию основности и уменьшению рН осаждения в ряду лантаноидов. Поскольку для выщелачивания РЗЭ из фосфогипса используют нитрат каль-

Таблица 1 Состав редкоземельного концентрата, выделенного из фосфогипса (мас.%)

Соединение	Содержание, мас.%	Соединение	Содержание, мас.%	
CeO ₂	46,4	Ho ₂ O ₃	0,17	
La ₂ O ₃	22,7	Tb ₂ O ₃	0,24	
Nd ₂ O ₃	15,4	Yb ₂ O ₃	0,13	
Pr ₆ O ₁₁	4,4	Er ₂ O ₃	0,32	
$\mathrm{Sm_2O_3}$	2,37	Tm_2O_3	0,03	
$\mathrm{Gd_2O_3}$	1,79	Lu ₂ O ₃	0,012	
Dy ₂ O ₃	1,04	Y_2O_3	4,40	
Eu ₂ O ₃	0,67	_	_	

Таблица 2 Перераспределение РЗЭ при очистке от радиоактивных примесей

Элемент	Содержание	Отношение		
	осадок	раствор	Ln _{p.} /Ln _{oc.}	
La	14,55	28,77	1,97	
Се	53,34	50,80	0,93	
Pr	5,89	5,56	0,94	
Nd	19,31	19,09	0,98	
Sm	3,39	2,84	0,83	
Eu	0,97	0,83	0,85	
Tb	0,33	0,26	0,78	
Dy	1,79	1,26	0,70	
Но	0,27	0,20	0,74	
Er	0,60	0,40	0,66	
Tm	0,07	0,036	0,51	
Yb	0,39	0,15	0,38	
Th	3,47	3.10 ⁻⁴	_	

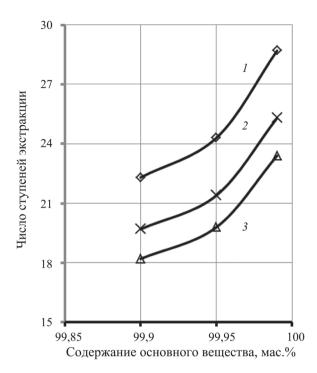


Рис. 1. Число ступеней, требующихся для получения продукта заданного качества (X_n) в зависимости от коэффициента разделения празеодима и церия: $\beta = 1,7$ (I); $\beta = 1,8$ (2); $\beta = 1,9$ (3)

ция, дальнейшее разделение РЗЭ целесообразно вести с использованием в качестве высаливателя нитрата кальция. Следует подчеркнуть, что при замене высаливателя эффективность разделения соседних РЗЭ возрастает в ряду

$$Me^{+1} \le Me^{+2} \le Me^{+3} \le Me^{+4}$$

при уменьшении размера катиона [9]. Нитрат кальция в этом ряду эффективнее нитрата аммония, но уступает по высаливающей способности нитрату алюминия. Число ступеней на стадии экстракции рассчитывали по формуле [9]:

$$n = \frac{\lg\left[q\left(\beta(1 - X_0\Gamma) - 1\right) / \beta(1 - X_0\Gamma)\right]}{\lg\left[\beta(1 - X_0\Gamma)\right]},$$
 (1)

где X_0 — относительное общее содержание церия и лантана в исходной смеси; q — коэффициент обогащения ($q=X_n(1-X_0)/X_0(1-X_n)$, где X_n — относительное содержание церия и лантана в водной фазе рафината); Γ — отбор, т.е. доля чистого компонента от первоначального вводимого в систему количества, остающаяся в рафинате или экстракте; β — коэффициент разделения празеодима и церия.

На рис. 1 показано число ступеней, которое необходимо установить в рафинатной части каскада в зависимости от требуемой чистоты рафината и коэффициента разделения празеодима и церия. Материальный баланс распределения РЗЭ по потокам разделительного каскада при коэффициенте разделения $\beta_{Pr/Ce} = 1,7$ и отборе $\Gamma = 0,33$ приведен на рис. 2.

Разделение РЗЭ проводили на 40-ступенчатом экстракционном каскаде типа смеситель-отстойник с механическим перемешиванием фаз. Объем камер смешения и отстоя составлял соответственно 100 и 500 см³. В качестве экстрагента использовали 100%-й ТБФ. Исходный раствор содержал 300 г/дм³ РЗЭ (в расчете на оксиды), $280-300 \text{ г/дм}^3$ нитрата кальция и $0.05-0.1 \text{ моль/дм}^3$ азотной кислоты. Разделение проводили по линии празеодим - церий в целях получения лантана и церия с содержанием остальных редкоземельных примесей менее 0,05 мас.%. Последнее требование объясняется необходимостью выделить в дальнейшем чистый оксид церия с содержанием основного вещества не менее 99,9%. В табл. 3 приведено рапределение РЗЭ в водной фазе по ячейкам каскада. Соотношение органической и водной фаз $(V_{\circ}:V_{\triangleright})$ поддерживали равным 1,64:1. Расчетное содержание РЗЭ в рафинате составляло 56-60 г/дм³. В органической фазе сконцентрирована сумма РЗЭ, включающая празеодим, неодим и иттриевые элементы. Кальций и стронций извлекаются незначитель-

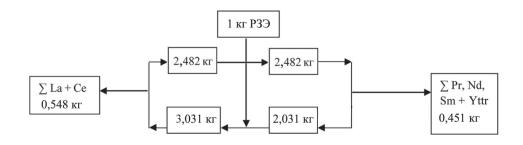


Рис. 2. Распределение РЗЭ по потокам разделительного каскада

Таблица 3 Распределение элементов по ступеням противоточного каскада (органическую фазу вводили в 1-ю ступень, водную – в 40-ю)

Элемент	Номер камеры									
	1	7	10	14	21	25	30	40		
	Содержание РЗЭ в водной фазе (г/дм ³)									
Лантан	24,78	53,01	51,28	53,28	50,3	52,14	49,76	50,22		
Церий	18,05	134,8	137,9	143,3	132,7	139,2	130,1	112,8		
Празеодим	<0,1	<0,1	<0,1	0,2	0,242	0,957	2,836	11,88		
Неодим	1.10^{-4}	1.10 ⁻⁴	1.10^{-4}	1.10^{-4}	1.10^{-4}	0,02	0,047	17,14		
Самарий	1.10^{-4}	1.10-4	1.10^{-4}	1.10^{-4}	1.10^{-4}	0,01	0,56	1,291		
Европий	1.10^{-4}	1.10 ⁻⁴	1.10^{-4}	1.10^{-4}	1.10^{-4}	1.10^{-4}	0,14	0,351		
Гадолиний	2.10-4	2.10-4	2.10 ⁻⁴	2.10-4	2.10 ⁻⁴	0,02	0,49	1,189		
Иттрий	2.10-4	2.10-4	2.10 ⁻⁴	2.10-4	2.10 ⁻⁴	0,09	0,75	1,969		
Кальций	92,1	68,180	68,27	70,41	67,69	69,92	66,89	71,8		
Стронций	1,519	1,195	1,206	1,237	1,206	1,237	1,183	1,258		

Таблица 4 Распределение элементов (мас.%) по ступеням противоточного каскада, рассчитанное для режима полного внутреннего орошения

Число ступеней (n)	$eta_{ ext{Pr/Ce}}$							
	1,9		1,8		1,7		1,5	
	A	В	A	В	A	В	A	В
2	60,9	39,1	59,72	40.28	58,3	41,7	11,0	89,0
4	84,9	15,1	82,73	17.27	80,1	19,9	75,0	26,5
6	_	_	93,94	6.06	92,0	8,0	86,2	13,8
8	98,6	1,4	98,05	1,95	97,1	2,9	93,36	6,64
10	99,62	0,38	99,39	0,61	98,97	1,03	96,93	3,07
12	99,894	0,106	99,81	0,19	99,64	0,36	98,61	1,39
14	99,992	0,008	99,94	0,06	99,87	0,13	99,30	0,70
16	99,998	0,002	99,98	0,02	99,978	0,03	99,72	0,28
18	99,999	0,001	99,994	0,006	99,985	0,015	99,87	0,13
20	_	_	99,998	0,002	99,995	0,005	99,94	0,06

 Π р и м е ч а н и е. А – содержание церия и лантана (мас.%); В – содержание празеодима, неодима и иттриевых РЗЭ (мас.%).

но с коэффициентами распределения 0,005—0,008. В рафинате получен лантан-цериевый концентрат, содержащий менее 0,03% остальных редкоземельных элементов. В результате опытов, проведенных в статических условиях, установлено, что коэффициент разделения празеодима и церия изменяется в пределах 1,7—1,9.

В табл. 4 приведены результаты расчета распределения РЗЭ по ячейкам каскада в режиме с полным внутренним орошением, отборе $\Gamma=0$ и при разных значениях коэффициента разделения $\beta_{Pr/Ce}$. Общее содержание церия и лантана в исходном растворе 45,17% (A), а общее содержание празеодима, неодима и иттриевых РЗЭ – 54,83% (B).

Коэффициент	Ступени каскада							
разделения	1	7	10	14	21	25	30	
$\beta_{\text{Ce/La}}$	2,15	2,65	2,77	2,71	2,7	2,62	2,59	
$\beta_{Pr/Ce}$	1,82	1,80	1,92	1,70	1,65	1,63	1,63	
Содержание Pr (мас. %) в водной фазе	8.10 ⁻³	0,039	0,081	0,23	1,31	3,17	7,08	

Таблица 5 Изменение селективности разделения по ступеням каскада

Видно, что для формирования зоны разделения празеодима и церия при $\beta_{Pr/Ce} = 1,9$ достаточно 14-15 ступеней, а при уменьшении коэффициента разделения до 1,5 число ступеней возрастает до 20-24. В режиме полного противотока с реальной величиной отбора число ступеней возрастает в соответствии с формулой (1), но характер формирования зоны разделения сохраняется. При сравнении табл. 3 и 4 видно. что рассчитанное распределение РЗЭ в наилучшей степени совпадает с экспериментальным при $\beta_{Pr/Ce} = 1,7$, что подтверждает ранее сделанные предположения. Обнаружено, что селективность разделения празеодима и церия возрастает при уменьшении содержания празеодима от макро- до микроконцентраций (табл. 5), что объясняется высаливающим эффектом нитратов лантана и церия.

Рафинатный раствор содержит 50–60 г/дм³ лантана и церия, 300 г/дм³ нитрата кальция. Нитраты РЗЭ можно извлечь на пяти ступенях экстракцией 100%-м ТБФ, затем их реэкстрагировать на пяти ступенях подкисленной водой (0,1-0,3) моль/дм³ HNO₃). В присутствии высаливателя коэффициенты распределения резко возрастают при уменьшении концентрации

РЗЭ (рис. 3), что способствует полному извлечению на пяти ступенях. В рафинате раствор нитрата кальция содержит менее 0,1 г/дм³ РЗЭ и может быть возвращен на стадию приготовления исходного раствора для получения новых порций РЗ-концентрата.

В процессе разделения получен концентрат лантана и церия, содержащий менее 0,03 мас.% остальных РЗЭ. На последующей стадии из полученного продукта планируется получение методом экстракции оксида церия с содержанием

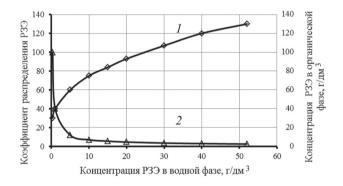


Рис. 3. Изотерма экстракции (1) и изменение коэффициента распределения (2) при экстракции нитратов РЗЭ 100%-м ТБФ из раствора нитрата кальция (300 г/дм³)

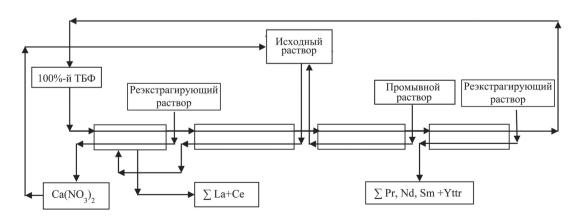


Рис. 4. Принципиальная технологическая схема разделения редкоземельного концентрата, выделенного из фосфогипса

основного вещества 99,9%. Принципиальная технологическая схема разделительного каскада приведена на рис. 4. Полный противоточный каскад содержит экстракционную и промывную части. Насыщенный до 150–160 г/дм³ по оксидам РЗЭ экстракт планируется промыть в режиме противотока частью упаренного реэкстракта для получения фракции празеодим + неодим + иттриевые РЗЭ, содержащей менее 0,01 мас.% лантана и церия с последующим выделением дидима чистотой 99,95%.

Выводы

1. Реализован 40-ступенчатый экстракционный процесс разделения нитратов РЗЭ, выделенных из фосфогипса в системе 100%-й трибутилфосфат – $Ln(NO_3)_3$ – $Ca(NO_3)_2$ в режиме

противотока с использованием экстракторов типа смеситель-отстойник.

- 2. Обнаружено, что селективность разделения празеодима и церия возрастает (коэффициент разделения увеличивается от 1,6 до 1,8) при уменьшении содержания празеодима от макродо микроконцентраций, что можно объяснить высаливающим эффектом нитратов лантана и церия.
- 3. Установлено, что при селективном осаждении тория, осадок гидроксидов обогащается элементами иттриевой группы.
- 4. Получен лантан-цериевый концентрат, содержащий менее 0,03% остальных примесей РЗЭ, который пригоден для выделения на следующем каскаде оксида церия с содержанием 99,9% основного вещества.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Локшин Э.П., Тареева О.А., Калинников В. Т.* // Цветные металлы. 2012. № 3. С. 75.
- 2. *Milanova M., Minkova N., Todorovsky D. //* Hydrometallurgy. 1991. Vol. 26. Iss. 3. P. 369.
- 3. *Koopman C., Witkamp G.J.* // Hydrometallurgy. 2002. Vol. 63. Iss. 2. P. 137.
- Зоц Н.В., Глущенко Ю.Г., Шестаков С.В., Козырев А.Б., Нечаев А.В. Способ извлечения редкоземельных металлов из фосфогипса. Пат. РФ. 2416654, 10.11.2009 по кл. С22 В 59/00.
- 5. Генкин М.В., Евтушенко А.В., Комков А.А., Сафиулина А.М., Спиридонов В.С., Швецов С.В. Способ извлечения редкоземельных металлов и получения строительного

- гипса из фосфогипса полугидрата. Пат. РФ № 2528 573, 05.03.2013 по кл. C22B 59/00.
- 6. *Мещеряков Ю.Г., Федоров С.В.* Промышленная переработка фосфогипса. СПб., 2007.
- 7. Локшин Э.П., Тареева О.А. Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты. Пат. РФ № 2465207 от 11.07.2011 по кл. C01F17/00.
- СанПиН 2.6.1.2523-09. Нормы радиационной безопасности (НРБ-99/2009). Минздрав России. М., 2009.
- 9. *Михлин Е.Б., Корпусов Г.В.* // Журн. неорг. химии. 1965. Т. 10. № 12. С. 2787.

Поступила в редакцию 09.09.16

SEPARATION OF RARE EARTH ELEMENTS IN THE SYSTEM: TRIBUTYL PHOSPHATE – $LN(NO_3)_3$ – $CA(NO_3)_2$ IN THE COUNTER CURRENT PROCESS

S.N. Igumnov*, A.V. Valkov

(Division of Physical Chemistry; *e-mail: igumnovs@gmail.com)

The 40th step extraction process of separation of REE according to the line praseodymium-cerium with use of mixer – settler extractors in the system of 100% TBP – $Ln(NO_3)_3$ – $Ca(NO_3)_2$ is realized. Lanthanum – cerium concentrate containing less than 0,03% of other rare-earth elements is received. The process flow diagram of separation of the rare-earth concentrate proceeded from phosphogypsum is considered.

Key words: extraction, phosphogypsum, rare-earth elements, tributyl phosphate, calcium nitrate, extraction cascade, separation coefficient.

Сведения об авторах: Игумнов Сергей Николаевич — науч. сотр. кафедры физической химии химического факультета Московского государственного университета имени М.В. Ломоносова (igumnovs@gmail.com); Вальков Александр Васильевич — профессор Национального исследовательского ядерного университета (МИФИ), кафедра общей химии, докт. техн. наук (ale11534@yandex.ru).