УДК 535 .338+621.373.826

ЭЛЕКТРОННЫЕ СПЕКТРЫ МОЛЕКУЛЫ WO. НОВОЕ ЭЛЕКТРОННОЕ СОСТОЯНИЕ ³П

Е.Н. Москвитина, Ю.Я. Кузяков*

(кафедра лазерной химии; *e-mail: kuzyakov@laser.chem.msu.ru)

Исследован электронный спектр поглощения молекулы монооксида вольфрама в области 550–800 нм методом внутрирезонаторной лазерной спектроскопии. Молекулы WO получены в импульсном электрическом разряде в парах гексакарбонила вольфрама. Регистрацию спектра проводили с помощью дифракционного спектрометра (разрешающая сила 240 000). Полосы в области 16400– 15500 см⁻¹ отнесены к компоненте ${}^{3}\Pi_{0}$ -Х ${}^{3}\Sigma^{+}$ электронного перехода ${}^{3}\Pi$ -Х ${}^{3}\Sigma^{+}$. Проведен анализ вращательной структуры полос 0-0 и 1-0, а также определены вращательные постоянные для основного Х ${}^{''3}\Sigma$ и возбужденного ${}^{3}\Pi_{0}$ электронных состояний: В' = 0,385738 см ${}^{-1}$, В'' = 0.415538 см ${}^{-1}$.

Ключевые слова: WO, монооксид вольфрама, внутрирезонаторная лазерная спектроскопия, вращательный анализ, молекулярные постоянные.

Эмиссионные спектры WO были впервые получены в 50-е годы XX в. [1-3]. Авторы работ [1, 2] выделили в спектре шесть систем полос в области 12900-24400 см⁻¹, однако вследствие низкой разрешающей силы спектрального прибора их структура не была проанализирована. В 1965 г. Вельтнер и Мак-Леод [4] наблюдали спектр WO изолированного в матрицах из Ar и Ne. Авторы [4] выделили семь систем полос, которые обозначили А, В, С,...., G. Спектр поглощения WO был исследован в работах [5-7]. В 1981 г. Самойлова и Ефремов [7] получили спектры WO в области 16000-31000 см⁻¹ при фотолизе смеси паров гексакарбонила вольфрама с кислородом и аргоном. Наблюдаемые авторами электронные состояния были классифицированы аналогично работе [4]. Наблюдая ряд новых полос WO, они впервые провели вращательный анализ и получили молекулярные постоянные для основного X0⁺ и возбужденных электронных состояний: D1, D0⁺, $E0^+$, $F0^+$, $H0^+$. Электронные переходы A-X, B-X и С-Х не анализировались из-за их малой интенсивности. Также были определены колебательные постоянные для основного состояния X0⁺ (1068,2 см⁻¹) и значения $\Delta G'_{1/2}$ для состояний: D0⁺, D1, $E0^+$, $F0^+$, $H0^+$. В работе Грина [8] был изучен инфракрасный спектр WO в матрицах из Ar и Kr и получена колебательная частота для основного состояния, которая согласовывалась со значением для газовой фазы [6].

В работах [9, 10] исследовались эмиссионные спектры WO в области 4000–35000 см⁻¹ с использованием Фурье-спектрометра высокого разрешения. Молекулы WO образовывались при возбуждении смеси паров WCl₆ и гелия в микроволновом разряде. Был проведен вращательный анализ интенсивных полос систем A1-X0⁺, B1-X0⁺, C1-X0⁺, D1-X0⁺, E0⁺-X0⁺, F0⁺-X0⁺, которые также наблюдались в работах [4, 7, 9], и полос в области 4900, 7500 и 1100 см⁻¹. На основе вращательного анализа полос и расчетов *ab initio* сделано заключение, что состояние ${}^{3}\Sigma^{+}$ является основным. Полосы были отнесены к трем группам с разными нижними состояниями. Два нижних состояния были интерпретированы как спиновые компоненты с $\Omega = 0^{+}$ и $\Omega = 1$ основного состояния X³Σ⁺.

В работе Кузякова с сотр. [11] исследовали спектр поглощения WO в области 15000-18000 см⁻¹ методом внутрирезонаторной лазерной спектроскопии. Молекулы WO получали в разряде паров карбонила вольфрама W(CO)₆ с аргоном. В спектре WO зарегистрировано 27 кантов полос (из них 21 впервые), большинство из которых отнесено к системам А и В. Получены колебательные постоянные ω_ρ и ω_ρx_ρ для состояний А, В и С. Впервые был проведен вращательный анализ полос 0-0 и 0-1 систем А-Х и В-Х. Анализ системы А-Х показал, что отнесение полос 17172,32 и 16114,91 см⁻¹ к переходам 3-0 и 3-1, сделанное в работах [4, 7], было ошибочным из-за аномальных изотопических эффектов. Эти полосы были интерпретированы как 0-0 и 0-1. Наряду с системами А-Х, В -Х и С-Х в [11] впервые наблюдали полосу 15499,38 см⁻¹ с хорошо разрешенной вращательной структурой, предварительный анализ которой был проведен, но тип перехода не был установлен.

В настоящей работе мы представляем исследование электронного спектра WO в области 15000–17000 см⁻¹ с использованием метода внутрирезонаторной лазерной спектроскопии (ВРЛС), в результате которого было обнаружено новое электронное состояние ³П.

Экспериментальная часть

Электронный спектр поглощения WO исследован в области 550-800 нм с помощью внутрирезонаторного лазерного метода. Экспериментальная установка, используемая в настоящей работе, была подробно описана в наших предыдущих публикациях [12, 13]. В данной статье приведено только краткое описание экспериментальных условий получения спектра WO. Порошок гексакарбонила вольфрама (W(CO)₄) с естественным содержанием изотопов вольфрама (¹⁸⁰W(0,135%), ¹⁸²W(26,4%), ¹⁸³W(14,4%), ¹⁸⁴W(30,64%) и ¹⁸⁶W(28,41%)) в лодочке из кварца помещали в нагреваемую разрядную трубку. Молекулы WO образовывались в парах гексакарбонила с аргоном в плазме импульсного высоковольтного электрического разряда (0,5 мкФ, 10 кВ). Оптимальное давление газовой смеси составляло 1-2 мм рт. ст. Для регистрации спектра использовали дифракционный спектрограф с разрешающей способностью 240 000 и обратной линейной дисперсией 0,1 нм/мм. В качестве стандартов длин волн использовали лампу с Fe-полым катодом. Положение линий спектра железа аппроксимировали полиномом третьей степени со стандартным отклонением не более 0,01 Å. Точность определения положения изолированных линий вращательной структуры 0,02 см⁻¹. Для получения спектра молекулы WO, пригодного для проведения колебательного и вращательного анализа полос, была изучена зависимость интенсивности спектра WO от концентрации и задержки между высоковольтным разрядом в реакторе и импульсом лазерной генерации. Оптимальные задержки, которые давали возможность регистрировать мало интенсивные линии вращательной структуры в молекулярном спектре WO, составляли ~50-60 мкс.

Длительность импульса генерации составляла 10 мкс, что соответствовало длине поглощающего слоя 1 км. Задержку начала импульса генерации относительно начала импульса тока через разрядную трубку варьировали в пределах 0–400 мкс.

Весь исследуемый диапазон длин волн перекрывался набором красителей: родамины, крезил-виолет, оксазин-17, ЛК-678 и их смесей в изопропиловом спирте. Ширина генерации одного красителя составляла 10–20 нм.

Результаты и их обсуждение

Спектр поглощения молекулы WO исследован в области 15000-18000 см⁻¹. Наряду с интенсивными полосами систем А-Х и В-Х в этой области были получены полосы 15499 и 16410 см⁻¹, которые авторы [10] отнесли к переходам 0-0 и 1-0 с возбужденной компоненты основного состояния с $\Omega = 1$. Эта интерпретация представляется нам не достаточно обоснованной, поскольку основным аргументом в пользу такого отнесения являлось отсутствие этих полос в спектрах криогенной матричной изоляции [8]. Однако следует отметить, что полоса 16410 см⁻¹ наблюдалась авторами [7] в спектрах поглощения при фотолизе паров гексакарбонила вольфрама, а полоса 15499 см⁻¹ наряду с системами А-Х, В-Х и С-Х получена нами [11] в спектре поглощении в газовой фазе, что авторы [10] не приняли во внимание. Вращательные постоянные, полученные в [10] для компоненты основного состояния $\Omega = 1$, совпадают в пределах точности с величиной для нижнего значения ($\Omega = 0$). Утверждение авторов, что при расположении уровней энергии в компонентах $\Omega = 0$ и $\Omega = 1$ состояния $X^{3}\Sigma$ различаются, не выдерживает критики, так как при расчетах они не учитывали точности положения вращательных линий.

Новый вращательный анализ полос 15499 и 16410 см⁻¹ мы провели по спектрам поглощения, полученным с использованием гексакарбонила вольфрама, обогащенного на 97% по ¹⁸⁶ Ŵ. Полосы имеют красное оттенение и хорошо разрешенную вращательную структуру. Выделение линий вращательной структуры к *R*-, *P*- и *Q*-ветвям проведено с помощью метода Лумиса-Вуда [12]. В полосе 15499 см⁻¹, как и авторы [10], мы наблюдали локальное возмущение в области квантового числа $J \approx 30$, связанное, вероятно, с уровнем $\upsilon' = 0$ возбужденного состояния. Наиболее интенсивной ветвью в спектре является *Q*-ветвь. С увеличением значения вращательного квантового числа Ј в спектрах наблюдали восстановление регулярного хода ветвей вплоть до значений J > 60. На рисунке приведены микрофотограммы части 0-0-полосы спектра молекулы WO в области 15499-15370 см⁻¹. Наличие *Q*-ветви в наблюдаемых полосах можно объяснить весьма малым расщеплением между компонентами с $\Omega = 0$ и $\Omega = 1$ состояния Х³ Σ . Это подтверждается присутствием в спектрах поглощения

Микрофотограмма части 0-0 полосы спектра молекулы WO в области: $a - 15499,00-15440,00 \text{ см}^{-1}$, $\delta - 15434,90-15370,00 \text{ см}^{-1}$. Показано λ -удвоение в ветви Q

переходов как с *Q*-, *P*- и *R*- ветвями, так и с *R*- и *P*-ветвями [7, 11].

Следует отметить, что авторы [10] смогли измерить в полосе 15499 см⁻¹ 9 линий *R*-ветви, 30 линий *Q*-ветви и не наблюдали линий *P*-ветви из-за их малой интенсивности. Во вращательной структуре полосы 16410 см⁻¹ отсутствуют возмущения, в ветвях *R*, *Q* и *P* наблюдаются вращательные линии со значениями J > 60. Полученные в нашей работе значения волновых чисел линий совпадают с величинами, полученными в работе [10].

При проведении анализа вращательной структуры предполагалось, что для молекулы WO имеет место случай связи «с» по Гунду с достаточно большим мультиплетным расщеплением. Мы предположили, что полосы 15499 и 16410 см⁻¹ на основе практически постоянного λ-удвоения можно интерпретировать как полосы перехода ${}^{3}\Pi_{0} - {}^{3}\Sigma^{+}$. Согласно теории [14], компонента ${}^{3}\Pi_{0}$ состояния ³П имеет большое λ-удвоение в противоположность компонентам ³П₁ и ³П₂, в которых оно отсутствует. Возможно, состояния А и В являются переходами на эти компоненты. В этом случае мультиплетное расщепление между компонентами ${}^{3}\Pi_{1}$ и ${}^{3}\Pi_{2}$ составляет 77 см⁻¹, а компонента ${}^{3}\Pi_{0}$ отстоит на 1665 см⁻¹. Несимметричное расщепление между компонентами мультиплетных полос характерно для молекул, содержащих в своем составе переходные металлы с открытыми d-оболочками [15]. При проведении вращательного анализа полос 0-0 и 1-0

Таблица 1

Наблюдаемое положение вращательных линий (см⁻¹) в полосе 0-0-перехода ³П₀-Х³Σ₀ молекулы WO

J''	<i>R</i> -ветвь (наблюдение)	Наблюдение– расчет	J''	<i>R</i> -ветвь (наблюдение)	Наблюдение– расчет
1	2	3	4	5	6
		<i>R</i> -ве	ствь		
1	15494,75	1	38	15481,51	6
2	15495,43	1	39	15480,02	6
3	15496,07	0	40	15478,47	4
4	15496,67	1	41	15476,86	4
5	15497,23	-1	42	15475,17	1
6	15497,69	0	43	15473,45	0
7	15498,14	0	44	15471,68	1
8	15498,48	1	45	15469,83	0
9	15498,76	-1	46	15467,92	-1
10	15499,03	3	47	15465,96	-2
11	15499,18	1	48	15463,93	-3
12	15499,34	4	49	15461,85	-1
13	15499,40	-1	50	15459,72	-2
16	15499,22	3	51	15457,52	-4
17	15499,04	3	52	15455,24	-1
18	15498,76	3	53	15452,93	-3
19	15498,48	-1	54	15450,52	-2
20	15498,12	-4	55	15448,08	-1
21	15497,71	3	56	15445,53	10
22	15497,25	1	57	15442,86	1
23	15496,71	4	58	15440,29	3
24	15496,11	-4	59	_	_
25	15495,46	6	60	15434,83	0
26	15494,75	-5	61	15432,14	10
27	15493,97	8	62	15429,26	8
28	15493,14	5	63	15426,28	2
29	15492,26	3	64	15423,21	7
30	15491,29	6	65	-	
31	15490,27	6	66	15417,18	3

1	2	3	4	5	6
32	15489,22	7	67	15413,95	4
33	15488,07	3	68	_	_
34	15486,87	7	69	15407,56	4
35	15485,62	-1	70	15400,73	-3
36	15484,31	5	71	15397,34	2
37	15482,94	6	_	_	_

Продолжение табл. 1

J''	<i>Р</i> -ветвь (наблюдение)	Наблюдение– расчет	J''	<i>Р</i> -ветвь (наблюдение)	Наблюдение– расчет
3	15492,25	1	36	15429,35	-8
4	15491,29	1	37	15426,63	9
5	15490,27	1	38	15423,59	5
6	15489,22	2	39	15420,66	15
7	15488,09	2	40	15417,49	7
8	15486,86	-3	41	15414,36	10
9	15485,64	0	42	15411,18	13
10	15484,34	2	43	15407,86	8
11	15482,95	0	44	15404,52	7
12	15481,52	-2	45	15401,15	9
13	15480,04	-1	46	15397,64	3
14	15478,49	-1	47	15394,13	2
15	15476,90	0	48	15390,53	4
16	15475,21	-2	49	15386,89	-3
17	15473,43	-7	50	15383,21	-2
18	15471,72	0	51	15379,43	3
19	15469,84	-4	52	15375,63	4
20	15467,95	-2	53	15371,68	-4
21	15466,02	1	54	15367,80	1
22	15463,98	-1	55	15363,79	0
23	15461,88	-3	56	15359,79	4
24	15459,74	-2	57	15353,64	0

Р-ветвь

				Про	должение табл. 1
1	2	3	4	5	6
25	15457,52	-3	58	15351,48	1
26	15455,27	-3	59	15347,25	1
28	15450,56	0	61	15338,58	-3
29	15448,19	3	62	15334,20	0
30	15445,77	-3	63	15329,71	-3
31	15443,13	3	64	15325,11	10
32	15440,42	-6	_	_	_
33	15437,76	_4	_	_	_
34	15435,17	-9	_	_	_

Q-ветвь

J''	<i>Q</i> -ветвь (наблюдение)	Наблюдение– расчет	J''	<i>Q</i> -ветвь (наблюдение)	Наблюдение– расчет
3	15493,81	2	40	15447,47	-1
4	15493,62	2	41	15445,06	-4
5	15493,38	2	42	15442,64	-2
6	15493,09	2	43	15440,15	1
7	15492,73	1	44	15437,60	0
8	15492,31	2	45	15434,93	-5
9	15491,84	2	46	15432,30	1
10	15491,26	-2	47	15429,55	-1
11	15490,67	-1	48	15426,76	1
12	15490,04	1	49	15424,07	6
13	15489,31	0	50	15420,99	0
14	15488,55	1	51	15418,02	1
15	15487,70	-1	52	15415,03	6
16	15486,83	2	53	15412,03	14
17	15485,88	2	54	15408,75	3
18	15484,84	3	55	15405,57	6
19	15483,77	0	56	15402,29	5
20	15482,64	1	57	15399,03	10
21	15481,45	0	58	15395,51	0
22	15480,21	2	59	15392,09	3

1	2	3	4	5	6
23	15478,91	3	60	15388,57	2
24	15477,53	2	61	15385,02	4
25	15476,12	4	62	15381,32	3
26	15474,66	7	63	15377,64	-2
27	15473,08	4	64	15373,94	4
28	15471,46	3	65	15370,13	3
29	15469,81	4	66	15366,25	2
30	15468,06	2	67	15362,34	3
31	15466,34	9	68	15358,33	1
32	15464,49	8	69	15354,31	4
33	15462,52	2	70	15350,22	5
34	15460,45	-8	71	15346,09	8
35	15458,41	-10	72	15341,87	10
36	15456,50	8	73	15337,58	8
37	15454,42	14	74	15333,23	5
38	15452,01	-7	75	15328,77	1
39	15449,81	0	76	15324,37	7

Окончание табл. 1

П р и м е ч а н и е: ошибки между наблюдаемыми и рассчитанными значениями в 10⁻² см⁻¹.

использовались известные из [14] комбинационные разности для верхнего и нижнего электронных состояний:

$$\begin{array}{l} \Delta_2 F'(J) = R(J) - P(J) \\ \text{is } \Delta_2 F'' = R(J-1) - P(J+1), \\ \Delta F'(J) = R(J) - Q(J) \\ \text{is } \Delta F'' = Q(J) - P(J+1). \end{array}$$

Учитывая условие равенства комбинационных соотношений для полос, относящихся к одинаковым колебательным состояниям, была установлена правильная нумерация по квантовому числу *J*. Молекулярные постоянные WO были рассчитаны методом наименьших квадратов из набора комбинационных разностей $\Delta_2 F'(J)$ и $\Delta_2 F''(J)$ по соотношению:

$$\Delta_{2}F(J) = 4B(J+1/2) - 8D(J+1/2)^{3},$$

справедливому для электронного состояния, относящегося к случаю связи «а–с» по Гунду [14]:

$$F_{v}(J) = T_{v} + B_{v}J(J+1) - D_{v}[J(J+1)]^{2} \pm 1/2qJ(J+1)$$

Молекулярные постоянные (см $^{-1}$) для состояний $X^{3}\Sigma_{0}$ и $^{3}\Pi_{0}$ молекулы WO

Таблица 2

Постоянная	$X^{3}\Sigma$	$^{3}\Pi_{0}$	
T_0	0	15499,34(2)	
B_0	0,415537(12)	0,38573(12)	
$D_e \times 10^8$	2,48(15)	2,42(15)	
r_e Å	1,6563(12)	1,7189(12)	
$\Delta G_{1/2}$	1068,2(0,15)	911,2(0,15)	
$q \times 10^3$	—	0,167(7)	

П р и м е ч а н и е: цифры, приведенные в скобках, являются среднеквадратичными ошибками определения молекулярных постоянных, приведенных в таблице.

В табл. 1 приведены значения волновых чисел вращательных линий *R*-, *P*- и *Q*-ветвей перехода ${}^{3}\Pi_{0}$ -Х ${}^{3}\Sigma^{+}$. В табл. 2 приведены полученные молекулярные постоянные WO.

Таким образом, электронный спектр WO исследован в области 15000–18000 см⁻¹ методом внутрирезонаторной лазерной спектроскопии. Благодаря высокой чувствительности используемого метода получены ЭКВ-спектры полос 15499 и 16410 см⁻¹ с высокими значениями

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gatterer A., Krishnamurthy S.G.* // Nature, 1952. Vol. 169. P. 543.
- Vittalacher V., Krishnamurthy S.G. // Current Sci. 1954. (India). Vol. 23. P. 357.
- Gatterer A., Junkes J., Salpeter E.V, Rosen B. // Molecular Spectra of Metallic Oxides. Vatican, 1957. P. 80
- Weltner W., McLeod D. // J. Mol. Spectroscopy. 1965. Vol. 17. P. 276.
- 5. Самойлова А.Н., Ефремов Ю.М., Журавлев Д.А., Гурвич Л.В. // Химия высоких энергий. 1974. Т. 8. С. 229.
- Efremov Yu.M., Gurvich L.V., Savchenko A.N., Sviridenkov E.A. // Chem. Phys. Lett. 1979. Vol. 61. P. 179.
- Samoilova A.N., Efremov Yu.M., Gurvich L.V. // J. Mol. Spectroscopy, 1981. Vol. 86. P. 1.
- Green D.W., Ervin K.M. // J. Mol. Spectroscopy.1981. Vol. 89. P. 145.

вращательного квантового числа *J*. Определены вращательные постоянные основного и возбужденного электронных состояний. Наблюдаемые полосы отнесены к переходу ${}^{3}\Pi_{0}$ -X ${}^{3}\Sigma_{0}$.

- 9. Ram R.S., Lievin J., Hirao G. Li, T., Bernath P.F. // Chem. Phys. Lett. 2001. Vol. 343. P. 437.
- Ram R. S., Lievin J., Bernath P. F. // J. Mol. Spectroscopy. 2009. Vol. 256. P. 216.
- 11. Kuzyakov Yu.Ya., Moskvitina E.N., Filippova E.N. // Spectroscopy Lett. 1997. Vol. 30. N 6. P. 1057.
- 12. Москвитина Е.Н., Кузяков Ю.Я. // Вестн. Моск. ун-та. Сер. 2. Химия. 2014. Т. 55. С. 43.
- Kuzyakov Yu. Ya., Moskvitina E.N. // Intracavity spectroscopy of simple molecules. SPIE-1001-119. The International Society for Optical Engeniering. 1997. P. 71.
- 14. *Herzberg, G.* // The spectra and structures of simple free radicals. Ithaca, London, 1977.
- 15. *Cao J., Balfour W.J., Qian C.X.W.* // J. Phys. Chem. 1997. A101. P. 6741.

Поступила в редакцию 10.10.15.

ELECTRONIC SPECTRA OF MOLECULE WO. NEW ELECTRONIC STATE ³Π

E.N. Moskvitina, Yu.Ya. Kuzyakov*

(Division of Laser Chemistry; *e-mail: kuzyakov@laser.chem.msu.ru)

The electron absorption spectrum of the molecule WO in the 550–800 nm regions by intracavity laser spectroscopy. WO molecules were prepared by impact of a pulsed electric discharge through a mixture of vapor hexacarbonyl of tungsten. These spectra were recorded with a diffraction spectrograph (resolved power 240000). Bands in the 550–800 nm region were assigned to the component of ${}^{3}\Pi_{0}-{}^{3}\Sigma_{0}$ electronic transition ${}^{3}\Pi-\Sigma^{+}$. The rotational analyses of these bans 0-0 and 1-0 were performed and the molecular constants of there ground X0⁺ and exited states ${}^{3}\Pi_{0}$ were determined.

Key words: WO, intracavity laser spectroscopy, rotational analysis, molecular constants.

Сведения об авторах: Москвитина Евгения Николаевна – ст. науч. сотр. кафедры лазерной химии химического факультета МГУ, канд. хим. наук (moskvitina@laser.chem.msu.ru); Кузяков Юрий Яковлевич – профессор кафедры лазерной химии химического факультета МГУ, докт. хим. наук (kyzyakov@laser.chem.msu.ru).