УДК 548.737

СТРУКТУРА И КРИСТАЛЛОХИМИЧЕСКИЙ АНАЛИЗ (4*E*)-И (4*Z*)-6,6',7,7'-ТЕТРАГИДРО-5Н,5'Н-4,4'-*бис*-1-БЕНЗОТИОФЕНОВ

А.М. Банару

(кафедра физической химии; e-mail: banaru@mail.ru)

Методом РСА исследованы (4*E*)-6,6',7,7'-тетрагидро-5H,5'H-4,4'-бис-1-бензотиофен и (4*Z*)-6,6',7,7'-тетрагидро-5H,5'H-4,4'-бис-1-бензотиофен. Проведен расчет энергии межмолекулярного взаимодействия и выведен структурный подкласс каждого соединения. Установлено, что полные энергии кристалла и эффективности упаковки указанных соединений близки. Описаны наблюдаемые эффекты псевдосимметрии.

Ключевые слова: рентгеноструктурный анализ, энергия межмолекулярного взаимодействия, структурный подкласс, псевдосимметрия.

Полисистемный кристалл образуется вследствие индивидуального и неповторимого многообразия контактов (в основном специфических) между наиближайшими симметрически не связанными молекулами. Часто в полисистемных кристаллах (в том числе в бисистемных как наиболее распространенных) обнаруживаются эффекты псевдосимметрии [1]. Признано мнение, что псевдосимметрия сопутствует мотивам, играющим структурообразующую роль в формировании кристалла. Например, в триклинном бисистемном гиганте (ТБГ) [2] встречаются структуры [3], содержащие псевдомоноклинные слои, элементы псевдосимметрии которых локальны (действуют в пределах слоя) и энергия которых вносит существенный вклад в полную энергию кристалла.

Между тем псевдосимметрия иногда присуща и моносистемным кристаллам, где возможны следующие варианты: а) элемент псевдосимметрии связывает несколько молекул или их части, и возникает тотальная псевдосимметрия; б) элемент псевдосимметрии связывает части одной молекулы, и возникает в общем случае локальная псевдосимметрия. Повидимому, в этих случаях псевдосимметрия также играет определенную структурообразующую роль, указывая на симметрически искаженные контакты как на наиболее формирующие.

В некоторых случаях кристаллы, не являясь псевдосимметричными в полном смысле, демонстрируют уподобление распространенным псевдосимметричным мотивам. Это относится, в частности, к бисистемным гомохиральным кристаллам, в которых части двух независимых энантиомеров могут быть настолько зеркально похожими, что кристалл структурно аналогичен гетерохиральному крипторацемату. Иным примером могут служить структуры, в которых молекулы соединяются в мотив высокой псевдосимметрии, если только пренебречь формой молекулы.

Для интерпретации псевдосимметрии кристаллических структур наиболее удобной видится концепция структурных подклассов П.М. Зоркого [1]. Поскольку она апеллирует к теории плотной упаковки, структурное исследование геометрических изомеров, в которых сокращенные специфические контакты *a priori* не очевидны, позволяет минимизировать влияние последних на кристаллическую структуру и рассмотреть ее топологию в зависимости от формы молекулы, что и проделано в настоящей работе.

Экспериментальная часть

Рентгеноструктурный анализ (4*E*)-6,6',7,7'-тетрагидро-5H,5'H-4,4'-*бис*-1-бензотиофена **1** и (4*Z*)-6,6',7,7'тетрагидро-5H,5'H-4,4'-*бис*-1-бензотиофена **2** (рис. 1) выполнен на автоматическом четырехкружном дифрактометре Syntex P2₁ (Мо K_{α} , графитовый монохроматор, $\theta/2\theta$ -сканирование). Структуры расшифрованы прямым методом по комплексу программ SHELXTL [4]. Положения атомов водорода выявле-

Рис. 1. Структурные формулы соединений 1 и 2

ны из разностного синтеза электронной плотности. Структуры уточнены по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов и изотропно для атомов водорода. Кристаллографические данные и параметры эксперимента приведены в табл. 1, координаты атомов и тепловые параметры – в табл. 2 и 3, некоторые геометрические характеристики – в табл. 4 и 5. Структуры 1 и 2 предепо-

Г	а	б	Л	И	Ц	а	1
---	---	---	---	---	---	---	---

Кристаллографические данные и параметры рентгенодифракционного эксперимента для соединений 1 и 2

Соединение	1	2
M _r	272,41	272,41
Сингония	Ортогональная	Триклинная
<i>a</i> , Å	22,066(4)	7,531(2)
<i>b</i> , Å	8,7967(18)	7,539(3)
<i>c</i> , Å	6,9476(14)	13,771(5)
α, град	90	81,94(3)
β, град	90	88,71(3)
ү, град	90	61,40(2)
Пространственная группа	Pcca	<i>P</i> -1
Ζ	4	2
<i>V</i> , Å ³	1348,6(5)	678,8(4)
<i>F</i> (000)	576	288
$\rho_{\rm выч}, r/cm^3$	1,342	1,333
$\mu(MoK_{lpha}),$ мм $^{-1}$	0,373	0,371
20 _{макс} , град	52	60
Число независимых отражений	1330	3979
Число отражений с F > 4σ(F)	665	3169
Число параметров	114	227
wR ₂	0,132	0,120
$R_1(F > 4\sigma(F))$	0,068	0,043
S	1,024	1,050

нированы в Кембриджский банк структурных данных, им присвоены рефкоды CCDC 639395 и CCDC 639647 соответственно.

Методика расчета

С помощью программы ССА, разработанной в лаборатории кристаллохимии химического факультета МГУ, по полученной ранее схеме [5] в атом-атомном приближении были вычислены величины энергии межмолекулярного взаимодействия:

$$U_{\rm MM} = \Sigma(\varphi_{ij} + \psi_{ij}),$$

где *i* и *j* – индексы атомов, относящихся к разным молекулам. В расчете использовали атом-атомные потенциалы 6-ехр с параметрами Филиппини и Гавецотти [6], чья методика заключается в отказе от эффективных атомных зарядов и соответствующего им члена ψ_{ii} :

$$\varphi_{ij} = -Cr_{ij}^{-6} + A_{\exp}(-Br_{ij}).$$

Величину полной энергии U_{Σ} находили суммированием энергии парных взаимодействий $U_{\rm MM}$ как энергию выхода исходной молекулы из кристалла в расчете на 1 моль вещества. В расчет включались молекулы, отстоящие от геометрического центра исходной молекулы не более чем на 30 Å, что обеспечивало пренебрежимо малую ошибку обрыва ряда при суммировании (не более 1%). Для характеристики молекулярных агломератов (ансамблей наиболее прочно связанных молекул) рассчитывалась эффективность агломерата, которая выражается отношением

Таблица 2

Координаты атомов (×10⁴) соединения 1

Атом	x	у	Z	$U_{ m eq}$
S1	2992(1)	2744(1)	1458(2)	79(1)
C2	3418(2)	3661(5)	-232(7)	69(1)
C3	4005(2)	3639(4)	205(5)	51(1)
C3A	4140(2)	2859(4)	1964(5)	42(1)
C4	4731(1)	2738(3)	2952(4)	38(1)
C5	4657(2)	2478(4)	5094(5)	46(1)
C6	4211(2)	1194(5)	5468(6)	56(1)
C7	3585(2)	1540(7)	4720(7)	72(1)
C7A	3622(2)	2324(4)	2796(5)	53(1)

 U_{azn}/U_{Σ} , где U_{azn} – суммарная энергия взаимодействия некоторой молекулы, входящей в агломерат, со всеми иными молекулами агломерата.

Сравнение геометрии симметрически независимых частей элементарной ячейки (рассматривались только неводородные атомы) осуществляли посредством программы SUSY [7]. Степень геометрической близости характеризовали числовыми параметрами $\overline{\sigma}$ и $\sigma_{\text{макс}}$, первый из которых рассчитывали как среднеквадратичную сумму отклонений σ_i соответственных атомов при наиболее тесном совмещении молекул:

$$\overline{\sigma} = \sqrt{\sum_{i=1}^{N} \frac{{\sigma_i}^2}{N}},$$

	Таблица	3
4		

Координаты атомов	(×10 [•])	соединения	2
-------------------	---------------------	------------	---

Атом	x	у	Ζ	$U_{ m eq}$
S1	4654(1)	9445(1)	3803(1)	49(1)
C2	3991(3)	9506(2)	2617(1)	47(1)
C3	4809(2)	7621(2)	2357(1)	41(1)
C3A	5993(2)	6029(2)	3145(1)	34(1)
C4	7246(2)	3836(2)	3094(1)	36(1)
C5	9036(2)	2857(2)	3836(1)	44(1)
C6	8294(2)	3340(3)	4859(1)	49(1)
C7	7211(3)	5616(3)	4919(1)	49(1)
C7A	6055(2)	6822(2)	3975(1)	38(1)
S1'	2576(1)	3798(1)	522(1)	55(1)
C2'	1520(3)	5072(3)	1497(1)	50(1)
C3'	2955(2)	4844(2)	2154(1)	41(1)
C3A'	4982(2)	3586(2)	1877(1)	36(1)
C4'	6879(2)	2808(2)	2474(1)	36(1)
C5'	8434(2)	718(2)	2255(1)	45(1)
C6'	8743(3)	845(3)	1153(1)	54(1)
C7'	6832(3)	1408(4)	555(2)	61(1)
C7A'	4993(2)	2896(2)	1007(1)	43(1)

где N – число атомов в молекуле. Второй параметр представлял собой максимальную "невязку" σ_i . На практике [8, 9] независимые части ячейки считаются близкими по строению при 0,1 Å < $\overline{\sigma}$ < 0,2 Å и практически одинаковыми при $\overline{\sigma}$ < 0,1 Å. Точность операции сверхсимметрии, при наличии таковой, характеризуется набором

$$\delta_i = \left| r_{i(\mathsf{эксп})} - r_{i(\mathsf{выч})} \right|,$$

где $r_{i(выч)}$ – координаты атомов одной из сравниваемых частей молекулы, полученные из координат другой части путем оптимального сверхсимметрического преобразования, а $r_{i(эксп)}$ – экспериментальные координаты. На наличие сверхсимметрии в кристалле указывают малые значения параметров $\overline{\delta}$ и $\delta_{\text{макс}}$, (на практике меньше 0,1 и 0,3 Å соответственно [10]), а также близкое к 360°/*n* значение угла вращения χ , для которого рассчитан набор σ_i (δ_i рассчитываются для $\chi = 360°/n$).

Обсуждение результатов

Молекулярные структуры соединений 1 и 2 представлены на рис. 2 и 3. Координация C_{sp2} в обоих случаях искажена вследствие трансаннулярных взаимодействий атомов водорода. Торсионные углы C3A–C4–C4'–C3A' составляют 170° и –12°, а углы между средними плоскостями тиофеновых колец равны 62° и 54° в 1 и 2 соответственно.

В обоих кристаллических структурах отсутствуют короткие взаимодействия S...S по Бонди [11], однако если использовать ван-дер-ваальсовы радиусы, уточненные Зефировым и Зорким [12], в структуре 2 можно обнаружить слегка укороченные взаимодействия S1...S1 3,62 Å и S1'...S1' 3,63 Å, которые, разумеется, нельзя отнести к сокращенным [13].

Рис. 2. Молекулярная структура соединения 1 с вероятностными (50%) эллипсоидами анизотропных смещений

Таблина	4
---------	---

Связь	d	Связь	d	Связь	d
S1-C2	1,707(5)	C3A–C4	1,478(4)	С7А–СЗА	1,364(4)
S1C7A	1,713(3)	C4–C5	1,514(4)	C7A–C7	1,507(6)
C3–C2	1,329(5)	C5–C6	1,521(5)	C4–C4'	1,345(6)
C3A–C3	1,433(5)	C6–C7	1,506(6)	-	-
Угол	ω	Угол	ω	Угол	ω
C2-S1-C7A	91,57(19)	С7А-С3А-С4	121,2(3)	C4–C5–C6	110,5(3)
C3A-C7A-C7	125,4(3)	C3–C3A–C4	127,9(3)	C7–C6–C5	112,6(4)
C3A-C7A-S1	112,0(3)	C4'-C4-C3A	124,3(4)	C2–C3–C3A	113,8(4)
C7-C7A-S1	122,5(3)	C4'C4C5	123,6(4)	C3–C2–S1	111,9(3)
C7A–C3A–C3	110,7(3)	C3A-C4-C5	111,9(3)	C6–C7–C7A	110,4(3)

Длины связей (Å) и валентные углы (град) в соединении 1

Кристаллическая структура 1, структурный класс *Рсса, Z* = 4(2), в котором молекулы занимают частную позицию на осях 2, коллинеарных *Y*, ортогональные слои $P_{I(YZ)}2/c$, *Z* = 2(2) налагаются параллельно без сдвига (рис. 4). Асимметричные части молекулы формируют в одном слое два двумерных паркетных мотива, совмещаемых поворотной осью, при этом центры масс молекул расположены по псевдоцентрированному мотиву. Диагональные сдвиги $d_1 = 5,28$ Å и $d_2 = 5,94$ Å соответствуют двум прочным, неэквива-

Рис. 3. Молекулярная структура соединения 2 с вероятностными (50%) эллипсоидами анизотропных смещений

Рис. 4. Ортогональный слой $P_{l(YZ)}2/c, Z = 2(2)$ в кристаллической структуре 1. Шаровая модель в радиусах Бонди. Белыми линиями показаны псевдоцентрированная ячейка слоя и диагональные сдвиги

лентным между собой межмолекулярным контактам с энергиями 18,5 и 18,7 кДж/моль. Первому контакту отвечают взаимодействия атомов в основном ароматических колец, а также обнаружена слабая связь C3...H–C5 2,80 Å, 147°. Второму контакту отвечают множественные аттрактивные ван-дер-ваальсовы взаимодействия атомов в основном неароматических циклов – гибких и более объемных – что и обусловливает небольшое различие контактов по энергии и расстоянию между центрами масс. Энергия слоя составляет 105,2 кДж/моль, а полная энергия кристалла равна 142,8 кДж/моль. Таким образом, эффективность слоев равна примерно 74%, а это, несомнен-

2	1	
L	I	

Таблица 5

Связь	d	Связь	d	Связь	d	
S1-C2	1,7068(18)	C4'-C4	1,344(2)	C3'–C2'	1,355(2)	
S1–C7A	1,7210(16)	C4'-C3A'	1,4748(19)	С3–С2	1,350(2)	
S1'-C2'	1,715(2)	C4'–C5'	1,515(2)	C7A'C7'	1,495(3)	
S1'-C7A'	1,7221(17)	C4–C5	1,5179(19)	C6–C7	1,521(3)	
C3A–C7A	1,3730(19)	C3A'C7A'	1,370(2)	C6–C5	1,531(2)	
C3A–C3	1,438(2)	C3A'-C3'	1,437(2)	C5'–C6'	1,527(2)	
C3A-C4	1,4721(19)	C7A–C7	1,495(2)	C6'–C7'	1,517(3)	
Угол	ω	Угол	ω	Угол	ω	
C2-S1-C7A	91,88(8)	C3AC4C5	111,21(12)	C3A'C7A'S1'	111,66(12)	
C2'-S1'-C7A'	91,98(8)	C7A'-C3A'-C3'	111,61(13)	C7'-C7A'-S1'	122,66(13)	
С7А-С3А-С3	111,25(13)	C7A'-C3A'-C4'	120,47(13)	C7–C6–C5	113,03(14)	
C7A-C3A-C4	120,97(13)	C3'-C3A'-C4'	127,35(13)	C4–C5–C6	109,79(12)	
C3-C3A-C4	127,30(13)	C3A-C7A-C7	125,69(14)	C3–C2–S1	112,16(12)	
C4–C4'–C3A'	125,31(12)	C3A-C7A-S1	111,70(11)	С7А-С7-С6	110,95(13)	
C4–C4'–C5'	123,64(13)	C7–C7A–S1	122,59(12)	C4'-C5'-C6'	108,83(13)	
C3A'-C4'-C5'	110,97(12)	C2'-C3'-C3A'	113,05(15)	C3'-C2'-S1'	111,68(13)	
C4'-C4-C3A	125,12(12)	С2-С3-С3А	112,99(14)	C7'–C6'–C5'	112,37(15)	
C4'-C4-C5	123,66(13)	C3A'-C7A'-C7'	125,49(15)	C7A'C7'C6'	111,07(15)	

Длины связей (Å) и валентные углы (град) в соединении 2

но, большая величина [14]. Таким образом, структуру 1 можно отнести к подклассу:

$$2 - P_{l(YZ)} 2/c, Z = 2(2) - Pcca, Z = 4(2).$$

В кристаллической структуре 2 (рис. 5), структурный класс $P\overline{1}$, Z = 2(1) наличествуют межмолекулярные взаимодействия S1'...H–C2 2,92 Å (148°), связывающие трансляционно зависимые вдоль оси *Y* молекулы, и C7A...H–C6 2,83 Å (149°), действующие через центр инверсии. В структуре обнаружена локальная ось псевдосимметрии {2}, ориентированная приблизительно вдоль направления [110] и соединяющая химически эквивалентные части молекулы, с параметрами $\overline{\sigma} = 0,02$ Å, $\sigma_{\text{макс}} = 0,04$ Å, $\overline{\delta} = 0,10$ Å, $\delta_{\text{макс}} = 0,13$ Å. Первые две величины говорят об одинаковой конформации неароматических циклов, другие две свидетельствуют о наличии оси $\{2\}$, которая, однако, всецело обусловлена строением молекулы. Но важным обстоятельством является то, что указанные части молекулы имеют похожее кристаллическое окружение. Как следует из рис. 5, наибольшего расхождения в энергиях межмолекулярных контактов для этих частей следует ожидать вдоль оси Z, и согласно результатам расчета энергия взаимодействия молекулярного слоя z со слоем –z равна 34,8 кДж/моль, а со слоем –z+1 36,5 кДж/моль (z – координата исходной молекулы). Эти величины сопоставимы, следовательно, симметрическая неэквивалетность частей молекулы не является заведомо невыгодной. Полная энергия кристалла составляет 140,0 кДж/моль, при

Рис. 5. Шаровая модель кристаллической структуры **2** в радиусах Бонди. Проекция вдоль оси *У*

СПИСОК ЛИТЕРАТУРЫ

- 1. Zorky P.M. // J. Mol. Struct. 1996. 374. P. 9.
- 2. Зоркий П.М., Ободовская А.Е., Муйдинов Р.Ю. // Вест. Моск. ун-та. Сер. 2. Химия. 2000. **41**. С. 166.
- Obodovskaya A.E., Banaru A.M. // Struct. Chem. 2007. 18. P. 471.
- 4. *Sheldrick G.M.* // SHELXTL. 1998. **5.10**. Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA.
- 5. Зоркий П.М., Ободовская А.Е., Панина Н.Г. // Кристаллография. 2003. **48**. С. 395.
- 6. Gavezzotti A., Filippini G. // J. Phys. Chem. 1994. 98. P. 4831.
- 7. *Зоркий П.М., Кукина Т.Н.* // Вест. Моск. ун-та. Сер. 2. Химия. 1981. **22**. С. 248.

этом выраженные молекулярные агломераты в структуре отсутствуют, поэтому она относится к подклассу $1 - P\bar{1}$, Z = 2(1).

Коэффициенты плотности упаковки, рассчитанные для радиусов Бонди в программе PLATON [15] (0,69 и 0,68 для соединений 1 и 2), близки так же, как и полные энергии кристалла. Эти правила, как нам кажется, могут распространяться на любые пары геометрических изомеров молекул сравнительно малого объема в отсутствие сильно сокращенных межмолекулярных контактов.

Автор выражает признательность А.И. Сыромолотову (химический факультет МГУ) за предоставленные объекты исследования.

- 8. *Черникова Н.Ю., Лавут Е.Э., Зоркий П.М. //* Координационная химия. 1979. **5**. С. 1265.
- Лавут Е.Э., Зоркий П.М., Черникова Н.Ю. // Журн. структ. химии. 1981. 22. С. 89.
- 10. *Зоркий П.М.* // Проблемы кристаллохимии 1984. М., 1984. С. 102.
- 11. Bondi A. // J. Phys. Chem. 1964. 68. P. 441.
- 12. Зефиров Ю.В., Зоркий П.М. // Вест. Моск. ун-та. Сер. 2. Химия. 1978. **19**. С. 554.
- 13. Зефиров Ю.В. // Кристаллография. 1997. 42. С. 936.
- 14. Банару А.М., Зоркий П.М., Ободовская А.Е. // Кристаллография. 2007. **52**. С. 661.
- 15. *Spek A.L.* // PLATON. 2007. A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

Поступила в редакцию 25.01.08

STRUCTURE AND CRYSTAL CHEMISTRY ANALYSIS OF (4*E*)- AND (4*Z*)-6,6',7,7'-TETRAHYDRO-5H,5'H-4,4'-BI-1-BENZOTHIOPHENE

A.M. Banaru

(Division of Physical Chemistry)

By means of X-ray crystallography the structures of (4*E*)-6,6',7,7'-tetrahydro-5H,5'H-4,4'-bi-1benzothiophene and (4*Z*)-6,6',7,7'-tetrahydro-5H,5'H-4,4'-bi-1-benzothiophene were determined. For each compound the calculation of intermolecular interaction energy was performed. The total energies of crystal, as well as the packing indices, prove to be similar. The perspectives of pseudosymmetry effects were disclosed.

Key words: *X-ray diffraction, intermolecular interaction energy, structural subclass, pseudosymmetry.*

Сведения об авторах: Банару Александр Михайлович – мл. науч. сотр. кафедры физической химии химического факультета МГУ (banaru@mail.ru).