УДК 530.612:661.185.1

ОЦЕНКА АДГЕЗИОННОЙ ПРОЧНОСТИ НА РАЗРЫВ И ИСТИРАНИЕ ПО РАБОТЕ АДГЕЗИИ ЖИДКОСТИ К ТВЕРДОМУ ТЕЛУ

В.Ю. Траскин, З.Н. Скворцова

(кафедра коллоидной химии; e-mail: traskine@yahoo.com, skvor@pisem.net)

Найдена корреляция между величинами работ адгезии, вычисленных по углу смачивания твердой фазы *B* расплавом *A* и по адгезионной прочности границы твердых фаз *A*–*B*. Показано, что техника раскалывания, применяемая обычно для измерения когезионной прочности, может быть распространена на измерение прочности адгезионных соединений. Предложенный подход использован для оценки величины износа в системе титановый сплав – полиэтилен. Установлено, что изменение работы адгезии органической неполярной жидкости к сплаву при различных степенях его азотирования коррелирует с величиной износа полиэтилена.

Известно, что существует корреляция между смачиваемостью твердого тела В жидкостью А и адгезионной прочностью границы твердых фаз А-В. Однако вопрос о том, насколько количественно величина работы адгезии коррелирует с реальной механической прочностью сцепления на границе твердого тела с затвердевшим расплавом, достаточно сложен и требует специального рассмотрения [1]. До настоящего времени прямые экспериментальные данные, связывающие параметры, которые характеризуют смачивание в системе $A_I - B_S$ и механические характеристики границы $A_{s}-B_{s}$, крайне ограничены, к тому же отсутствуют прямые сопоставления величины работы адгезии, определенные независимо на границах $A_I - B_S$ и *А*_{*S*}-*B*_{*S*}. Этим, по-видимому, объясняется тот факт, что обнаруживаемая связь между смачиваемостью и адгезионной прочностью носит, как правило, качественный характер и чаще всего прослеживается лишь в пределах одной адгезионной пары при изменении условий смачивания (например, при варьировании температуры, при модифицировании поверхности более тугоплавкого компонента [2] или при изменении состава припоя путем введения различных добавок [3]). В данной работе сопоставляли работу адгезии W_a^{SL} , определенную на границе $A_L - B_S$, с работой адгезии W_a^{SS} , вычисленной по результатам измерений прочности адгезионного контакта А₅-В₅. Силовое взаимодействие между контактирующими поверхностями твердых тел приводит не только к появлению сил, нормальных к поверхности раздела (силы адгезии), но и сил, касательных к поверхности раздела (сил трения), проявляющихся при взаимном тангенциальном смещении соприкасающихся тел [4], поэтому была сделана попытка сопоставить также работу адгезии W_a^{SL} с величиной износа трущихся поверхностей.

В первой части работы изучали системы щелочной галогенид – более легкоплавкая соль. Величину работы адгезии W_a^{SL} на границе раздела твердой и жидкой фаз рассчитывали по измеренным значениям угла смачивания θ и поверхностной энергии жидкости σ_L (уравнение Дюпре).

Определение величины работы адгезии W_a^{SS} гораздо сложнее, поскольку точные данные можно получить лишь при соблюдении ряда условий. Одним из наиболее надежных методов является метод Обреимова–Гилмана [5], с помощью которого были получены величины когезии (W_c) для многих хрупких тел [6, 7]. В данном случае метод был использован для определения работы адгезии на границе раздела двух твердых фаз W_a^{SS} в условиях хрупкого разрушения; полученные величины сравнивались со значениями W_a^{SL} , определенными на границе твердое тело–жидкость [8].

Во второй части работы определяли износостойкость в системе азотированный титановый сплав– полиэтилен. Помимо практического интереса, который представляют с данной точки зрения системы металл–полимер, широко используемые при протезировании суставов, выбранная пара позволяла плавно изменять поверхностный состав сплава, дозируя количество введенного азота, и моделировать полиэтилен жидким предельным углеводородом (гептаном). Величины работ адгезии W_a^{SL} определяли в условиях избирательного смачивания в системе титановый сплав–гептан–вода и сравнивали их с результатами трибологических испытаний, проведенных в присутствии воды.

Методика эксперимента

В качестве объектов исследования были выбраны галогениды щелочных металлов, так как значения их поверхностной энергии, определенные методом Обреимова-Гилмана (раскалыванием монокристаллов), достаточно надежны [9]. Легкоплавкие соли насыщали соответствующим щелочным галогенидом при температуре, превышающей на 2-3° температуру плавления каждой бинарной системы [10]. В случае систем с общим ионом составы солевых смесей были близки к эвтектическим. При этой же температуре определяли поверхностную энергию о, расплавленной смеси солей методом максимального давления пузырька. Медленная подача воздуха и его предварительный нагрев позволяли избежать локального охлаждения расплава. Для контроля были измерены поверхностные энергии солей без добавок щелочных галогенидов; полученные данные отличались от табличных не более чем на 2%. Для измерения краевого угла смачивания на поверхность {100} монокристалла щелочного галогенида помещали кусочек заранее приготовленной солевой смеси. При нагревании в трубчатой печи для микроанализа смесь расплавляли и выдерживали при температуре плавления около 30 мин. Краевой угол θ, измерявшийся в течение этого времени с помощью горизонтального микроскопа с гониометрической шкалой, оставался постоянным. Измерения проводили с точностью ±2° на 5-6 образцах. Работу адгезии рассчитывали по уравнению Дюпре:

$$W_a^{SL} = \sigma_L (1 + \cos \theta).$$

Образцы для механических испытаний готовили следующим образом. Между выколотыми по спайности монокристаллами размером 5×5×3 мм насыпали порошок предварительно приготовленной солевой смеси. Монокристаллы прижимали друг к другу под давлением 10 кПа, нагревали до температуры, на несколько градусов превышающей температуру плавления смеси, и охлаждали до комнатной темпе-

Рис. 1. Схема устройства для определения адгезионной прочности: *1* – монокристаллы MeHal, *2* – легкоплавкая соль, *3* – стальные пластинки, *4* – эпоксидная смола, *5* – карданные подвесы

ратуры в течение 8-9 ч. Толщина солевой прослойки составляла несколько десятков микрон. Готовые образцы приклеивали эпоксидной смолой к стальным пластинкам, прикрепленным к шарнирным подвескам (рис. 1), и испытывали на растяжение перпендикулярно поверхности склейки в режиме постоянной скорости нагружения 5 Н/с до разрушения при напряжении Р_с. Для каждой пары солей было испытано 40-50 образцов; коэффициент вариации составил 17%. Следует отметить, что в этом случае, в отличие от метода раскалывания, перед нагружением не вводили зародышевую трещину (такая постановка эксперимента была обоснована в работе [11]). Как правило, трещина распространялась вдоль поверхности раздела двух солей, но иногда наблюдалось и разрушение по когезионной границе вдоль плоскости спайности {100}. Таким

же образом, как и для двухкомпонентных образцов, измеряли прочность на растяжение монокристаллов щелочных галогенидов. В этом случае трещина всегда распространялась по плоскости спайности кристалла. Фрактографические наблюдения показали, что распространение трещины всегда начиналось с внешней поверхности образца. При разрушении по адгезионной границе под микроскопом была отчетливо заметна разница между двумя поверхностями разрыва: прозрачной поверхностью грани {100} щелочного галогенида (иногда с участками солевой смеси) и непрозрачной поверхностью солевой смеси. При когезионном разрыве наблюдались только плоскости спайности.

Во второй части работы объектами исследования служили полиэтилен низкого давления и азотированный титановый сплав TA6V4 (стандарт AFNOR), содержащий 6% алюминия и 4% ванадия. Перед азотированием образцы полировали по 12 классу чистоты (Ra = 0,035-0,045 мкм при базовой длине 0,8 мм). Имплантация ионов азота с энергией 40 кэВ была проведена фирмой "Ion Beam Service" (г. Греаск, Франция). Степень азотирования сплава, регулируемую продолжительностью азотирования, изменяли в пределах от $5 \cdot 10^{16}$ до $5 \cdot 10^{17} N^{+}/cm^{2}$. Имплантацию проводили при комнатной температуре; незначительное нагревание образцов, контролируемое в ходе азотирования, вызывалось только действием ионного пучка. Такой режим азотирования, принятый в технологии изготовления компонентов протезов, обеспечивает повышение твердости их поверхностного слоя без деформации последнего.

Краевые углы избирательного смачивания измеряли в системе титановый сплав-гептан-вода. Трибологические испытания проводили на специальном устройстве, позволяющем определять износ цилиндрических образцов полиэтилена при трении их торца о титановый диск [12, 13]. Скорость вращения диска составляла 60 об/мин при напряжении поджима 3,45 МПа. Каждый эксперимент длился около 11 сут, что соответствует ~10⁶ циклам вращения. Износ определяли как количество удаленного с поверхности трения материала на единицу пути скольжения, отнесенное к усилию поджима. Электронно-микроскопические и профилометрические исследования показали, что износ носит адгезионный характер.

Результаты и их обсуждение

Результаты экспериментов первой части работы представлены в таблице. При их интерпретации было сделано три допущения.

1. По теории Гриффитса, критерий хрупкого разрушения может быть получен из соотношения $(\delta U_{\sigma}/\delta L)$ = $-(\delta U_{el}/\delta L)$, приводимого к виду $\sigma \sim {K\!P_{\rm C}}^2\!/E$, где U_σ – энергия, затрачиваемая на образование поверхности при распространении трещины длиной L; U_{el} – упругая энергия, запасенная в разрушаемом кристалле и разрывной машине; о, Р и Е – свободная поверхностная энергия, прочность и модуль Юнга твердого тела [14]. Параметр К имеет размерность длины и обозначает либо длину критической трещины (для однородного напряженного состояния), либо пропорциональную ей величину, тем большую, чем выше концентрация напряжений в вершине трещины. Первое допущение состоит в том, что тот же принцип можно использовать и при анализе хрупкого разрушения вдоль адгезионной границы. Тогда уравнение Гриффитса может быть записано в следующем общем виде:

$$W \sim K P_c^2 / E$$
, где $W = W_a^{SS}$ или W_c . (1)

2. Второе допущение состоит в том, что величина U_{el} рассматривается без учета упругой деформации прослойки легкоплавкой соли, имеющей меньший модуль Юнга и значительно меньшую толщину, чем щелочногалоидный кристалл. Правомерность такого допущения при измерении работы адгезии следует из результатов работы [15], в которой по аналогичной схеме измеряли работу когезии пластичного компонента (нафталина), деформацию которого предотвращали прикреплением его к жестким пластинам, аккумулировавшим всю упругую энергию.

3. Важное значение имеет, по-видимому, следующий экспериментальный факт: при $W_a^{SL} < W_c$ (системы 1–5 в таблице), разрушение всегда происходит по адгезионной границе, а при $W_a^{SL} \approx W_c$ – или по адгезионной (30 и 80% образцов в системах 6 и 7 соответственно), или по когезионной. Это не совсем обычное явление, если учесть, что величина W_a^{SL} была рассчитана для случая, когда одна из солей находится в расплавленном состоянии. Из вышесказанного следует третье допущение: при изменении агрегатного состояния одного из компонентов работа адгезии изменяется незначительно, т.е. $W_a^{SL} \approx W_a^{SS}$. Это

Н омер системы	Система	7 _{пл} , °С	σ _L , мДж/м ²	0, град.	<i>W_a^{SL}</i> или <i>W_c,</i> мДж/м ²	<i>Р_с,</i> МПа
1	LIF/KNO3	334	108±1	52±5	174	0,95±0,2
2	$LiF/NaNO_3$	306	115±1	46±4	194	1,15±0,2
3	NaCI/PbCI ₂	408	137±2	32±2	252	0,81±0,2
4	N aCI/N aN O_3	304	128±1	46±3	216	0,64±0,1
5	KCI/PbCI ₂	405	106±1	18±1	207	0,63±0,1
6	KCI/K ₂ Cr ₂ O ₇	366	144±2	48±5	240	0,60±0,1
7	KCI/KNO3	320	120±2	31±3	225	0,65±0,1
8	ксі	-	-	-	230	0,65±0,1
9	NaCl	-	-	-	300	0,84±0,1
10	KBr	-	-	-	200	0,60±0,10
11	LiF	-	-	-	560	1,80±0,4

Параметры, характеризующие межфазные взаимодействия и прочность солей при адгезионном и когезионном разрушении

возможно, если в уравнении $W_a^{SL} = \sigma_S + \sigma_L - \sigma_{SL}$ увеличение второго члена при затвердевании солевой смеси компенсируется увеличением третьего, по крайней мере частично.

Правомерность сделанных допущений подтверждается графиком, представленным на рис. 2. Зависимость P_c^2 (*WE*) как для работы когезии W_c , так и для работы адгезии W_a^{SL} может быть аппроксимирована одной и той же прямой $P_c^2 = WE/K$ с коэффициентом корреляции 0,996 и параметром $K \approx 1$ см. В координатах ln P_C (ln *WE*) наклон прямых составляет 0,52 (для $W = W_c$) и 0,53 (для $W = W_a^{SL}$) с коэффициентами корреляции 0,97 и 0,99 соответственно. В обоих случаях показатель степени близок к 0,5. Это подтверждает применимость первых двух допущений, в то время как совпадение двух зависимостей является доказательством правильности третьего допущения.

Величина параметра *К* может быть сопоставлена с расчетным значением. Как известно [9], этот параметр может быть определен с большой точностью из экспериментов по расщеплению образцов, имеющих предварительно введенную трещину длиной *L*, на

Рис. 2. Адгезионная (1) и когезионная (2) прочность P_C солевых систем в зависимости от величины WE (W – работа адгезии W_a^{SL} или когезии W_c , E – модуль Юнга)

Рис. 3. Работа адгезии в солевых системах, рассчитанная из механических испытаний (W_a^{SS}) и из краевых углов смачивания (W_a^{SL})

две половинки толщиной h и шириной b, при условии что $h \ll L$:

$$K^* = 6 L^2 b^2 (1 - v^2) / h^3, \qquad (2)$$

где v – коэффициент Пуассона. Если же L << h, как в наших экспериментах, выражение преобразуется к виду [14]:

$$K = K^* \left[1 + 0.5\alpha (1 + \nu)(h^2 / L^2) \right], \tag{3}$$

где $\alpha < 1$. Подставляя h = 0,3 см, b = 0,5 см и v для различных щелочных галогенидов в выражение (3) и полагая $\alpha = 0,4$ [13] и L = 0,01 см, получаем для K значения от 0,8 до 1,4 см, что близко к полученной нами экспериментальной величине.

Как видно из уравнения (3), в случае очень малых значений длины трещины параметр K слабо зависит от L. Действительно, если L возрастает от 0 до 0,5 мм, K изменяется в пределах 3% от исходного значения (при постоянных h и b и незначительных изменениях v). Слабая зависимость результатов измерений от длины исходной трещины, при условии, что трещина достаточно короткая, подтверждается относительно малым разбросом прочности для каждой данной системы в наших экспериментах. Этим оправдывается отказ от классического варианта метода раскалывания [5] в пользу испытаний без предварительного зарождения трещины.

Использование полученных величин *K* позволяет с помощью уравнения (1) рассчитать значения W_a^{SS} по данным измерения прочности и сопоставить их с работой адгезии W_a^{SL} (рис. 3). Все точки лежат вблизи диагонали $W_a^{SL} = W_a^{SS}$, что подтверждает незначительность изменения работы адгезии при затвердевании одной из фаз в рассмотренных системах.

Результаты измерения адгезионных и трибологических характеристик в системе углеводородная фаза – титановый сплав – вода представлены на рис. 4. Очевидно, что наблюдается корреляция между изменениями работы адгезии W_a^{SL} (рис. 4, δ) и величины износа (рис. 4, a) в зависимости от степени азотирования сплава. Минимальное значение износа при количестве имплантированного азота $2 \cdot 10^{17} N^+$ /см² соответствует примерно двукратному снижению работы адгезии по сравнению с другими дозами, что говорит о минимальном сродстве как жидкой, так и твердой углеводородных фаз к титановому сплаву. Возможно, наблюдаемый эффект связан с особенностями состава поверхности, возникающими в данном интервале доз азо-

Рис. 4. Износ (T) образцов полиэтилена (a) и работа адгезии W_a^{SL} гептана (δ) в контакте с титановым сплавом в воде в зависимости от дозы азотирования D

тирования. Расчеты, проведенные по программе *THERMOCALC* и подтвержденные результатами исследования азотированных слоев методом малоуглового рентгеновского рассеяния, показали, что при таких дозах образуется не обычный нитрид TiN, а преимущественно Ti_2N [13, 16], окисляющийся в дальнейшем до низшего оксида TiO. Вопрос о том, как именно связаны эти особенности состава с пониженной олеофильностью, требует дальнейшего исследования.

Заключение

Найдено соответствие между величинами работы адгезии, полученными из измерений углов смачи-

СПИСОК ЛИТЕРАТУРЫ

- 1. Найдич Ю.В., Колесниченко Г.А., Лавриненко И.А., Моцак Я.Ф. Пайка и металлизация сверхтвердых инструментальных материалов. Киев, 1977.
- Sobczak N., Ksiazek M., Radziwill W. et al. // Trans. JWRI. 2001.
 30. P. 125.
- Павлова М.А., Метелкин И.И., Викман К.В. // Сб. Смачиваемость и поверхностные свойства расплавов и твердых тел. Киев, 1972. С. 281.
- 4. Дерягин Б.В., Кротова Н.А., Смилга В.П. Адгезия твердых тел. М., 1973.
- 5. Obreimoff I.W. // Proc. Roy. Soc. Ser. A. 1930. 12. C. 290.
- 6. Гилман Дж. // Успехи физических наук. 1963. 80. С. 455.
- 7. Westwood A.R.C., Hitch T.T. // J. Appl. Phys. 1963. 34. P. 3085.
- 8. Траскин В.Ю., Арутюнян Л.Г., Скворцова З.Н., Перцов Н.В. // Коллоидн. журн. 1987. **49.** С. 197.

вания твердого тела A жидкостью B, и механическими свойствами границы твердое тело A – твердое тело B для систем с различными типами связи. Работа адгезии, вычисленная по уравнению Дюпре, близка к работе хрупкого разрушения в солевых системах и коррелирует с трибологическими характеристиками системы титановый сплав – полиэтилен. Предложенный подход может лечь в основу простых методов предварительной оценки прочности адгезионных соединений и сопротивления адгезионному износу для материалов различной природы.

- 9. Gilman J. // J. Appl. Phys. 1963. 31. P. 3085.
- 10. Справочник по плавкости систем из безводных неорганических солей. Т. 1. М.;Л., 1961.
- 11. Rehbinder P., Shchukin E. // Progr. Surf. Sci. 1972. 3. P. 97.
- Траскин В.Ю., Торрегроса Ф., Скворцова З.Н. и др. // Тезисы докл. Международной конференции по коллоидной химии и физико-химической механике. М., 1998. С. 331.
- Torregrosa F., Barrallier L., Roux L. // Thin Solid Films. 1995.
 266. P. 245.
- 14. Gupta Y.P., Santhanam A.T. // Acta Metall. 1969. 17. P. 419.
- 15. Скворцов А.Г., Синевич Е.А., Перцов Н.В. и др.// ДАН СССР. 1970. **193.** С. 76.
- 16. *Torregrosa F.* These...docteur: "Prothese totale de hanche et usure", L'Universite Paris XII, 1995.

Поступила в редакцию 02.02.04

ESTIMATION OF ADHESIVE TENSILE AND WEARING STRENGTHS FROM WORK OF ADHESION ON THE LIQUID – SOLID INTERFACE

V.Yu. Traskine, Z.N. Skvortsova

(Division of Colloid Chemistry)

A quantitative correlation has been found between the works of adhesion in salt systems estimated from two sets of experimental data: contact angles formed by a liquid A on a solid B and adhesive strength of the solid A – solid B interface. A similar qualitative correlation has been observed in systems of different nature (nitrided Ti alloy – hydrocarbons – water): the same nitrogen concentration gives rise to the least heptane to alloy adhesion and to the least polyethylene to alloy wear. The proposed approach can be useful as a simple method for predicting mechanical and tribological properties of solid – solid interfaces on the basis of liquid – solid contact angles measurements.