УДК 543.9; 543.64

РАЗРАБОТКА ПЬЕЗОКВАРЦЕВЫХ ИММУНОСЕНСОРОВ ДЛЯ ПРОТОЧНО-ИНЖЕКЦИОННОГО АНАЛИЗА ВЫСОКО- И НИЗКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ

Е.Н. Калмыкова, Т.Н. Ермолаева, С.А. Еремин*

(Московский государственный университет им. М.В. Ломоносова, химический факультет, кафедра химической энзимологии; e-mail: eremin@enz.chem.msu.ru)

Оценена возможность использования отечественных пьезокварцевых резонаторов с серебряными электродами для создания иммуносенсоров для проточно-инжекционного определения высоко- и низкомолекулярных соединений. Показано, что высокомолекулярные соединения могут непосредственно детектироваться по приращению массы биослоя сенсора в результате образования иммунного комплекса. Так наблюдалась линейная зависимость изменения частоты пьезокристалла от концентрации антител к ДНК красной волчанки в диапазоне 0,1–25 мкг/мл. Низкомолекулярные гаптены, например котинин (метаболит никотина), могут быть определены разработанным иммуносенсором, но только конкурентным методом. Найдено, что концентрация котинина в моче активных курильщиков составляет 4–6 мг/л; а для некурящих людей – 0,5–0,7 мг/л.

Иммунохимические методы анализа обычно применяются в биохимических исследованиях, в медицине, ветеринарии и фармакологии. Они основаны на антиген-антительном взаимодействии определяемого соединения со специфическим биологическим реагентом – антителом. Уникальная способность антител к комплементарным взаимодействиям с антигенами в сложных по составу растворах (слюна, кровь, моча и другие биологические жидкости) обеспечивает высокую специфичность и чувствительность иммуноанализов, позволяя выявлять очень низкие концентрации бактериальных и опухолевых клеток, вирусов, гормонов, ферментов, различных метаболитов и лекарственных препаратов [1, 2]. Поэтому создание иммуносенсоров (аналитических устройств, использующих в качестве биочувствительного элемента антитела, антигены или белково-гаптеновые коньюгаты) становится одним из перспективных направлений аналитического приборостроения. В зависимости от типа физического преобразователя (детектора) выделяют электрохимические, оптические, термические, пьезоэлектрические и другие иммуносенсоры, рекомендованные для решения целого ряда аналитических задач.

В последнее время активно исследуются пьезокварцевые сенсоры, чувствительные к изменению массы и характеризующиеся рядом достоинств: экспрессностью, малой инерционностью, портативностью,

простотой конструкции и низкой стоимостью, а также возможностью осуществлять прямой контроль иммунных реакций без предварительного введения флуоресцентной или ферментной меток, позволяющих регистрировать аналитический сигнал [3–5]. Аналитическим сигналом пьезокварцевого иммуносенсора, служит изменение частоты колебаний пьезокварцевого резонатора (Δf) при увеличении или уменьшении массы биорецепторного покрытия за счет образования или разрушения на его поверхности иммунного комплекса.

Возможно два варианта использования пьезокварцевых сенсоров. В первом случае (статическом) концентрацию определяемого соединения устанавливают сопоставлением данных, полученных до и после выдерживания сенсора в анализируемом растворе. К недостаткам этого способа следует отнести длительность и трудоемкость анализа. Второй вариант – проточно-инжекционный анализ (ПИА), позволяет значительно сократить время получения аналитического сигнала, делает возможным проведение серии измерений на одном сенсоре. Кроме того, относительное измерение аналитического сигнала в ПИА позволяет нивелировать вклад неспецифических взаимодействий матричных компонентов пробы с поверхностью сенсора, скорости потока, вязкости реакционной среды и т.п. [6, 7].

За рубежом применяют пьезокварцевые сенсоры с золотыми электродами. Высокая стоимость и отсут-

^{*}кафедра аналитической химии Липецкого государственного технического университета; e-mail: eremin@enz.chem.msu.ru.

ствие серийного производства таких сенсоров сдерживают их широкое применение в отечественном анализе [8].

Цель проводимого исследования – оценка возможности использования отечественных пьезокварцевых резонаторов с серебряными электродами для проточно-инжекционного анализа высоко- и низкомолекуляных органических соединений.

Методы исследования

В работе использовали следующие реагенты: котинин, транс-4'-карбоксикотинин, бычий сывороточный альбумин (ВSA), тартразин ("Sigma", США), глутаровый альдегид ("Renal", Венгрия), мочевину, креатинин, хлорид натрия, азид натрия, гидроксид натрия, муравьиную и соляную кислоты, роданид калия, тетраэтоксисилан и γ-аминопропилтриэтоксисилан ("х.ч.") отечественного производства. Для анализов применяли бидистиллированную воду.

В качестве антител к ДНК применяли сыворотку крови больного с симптомами системной красной волчанки (активность 320 м.е.). Антитела к котинину получены иммунизацией овец иммуногеном на основе транс-4'-карбоксикотинина по ранее описанной схеме [9]. В работе использовали 0,1% растворы лиофилизо-

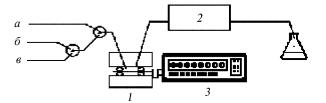


Рис. 1. Схема установки для проточно-инжекционного анализа: I – проточная ячейка с пьезокварцевым биосенсором; 2 – перистальтический насос; 3 – частотомер; a – фосфатный буфер; δ – анализируемая проба; ϵ – регенерирующий раствор

ванных антител в фосфатном буферном растворе (pH 7,2). Котинин-белковые конъюгаты синтезированы по методу [10].

Синтетическая урина была приготовлена в соответствии с методикой [11] и содержала в 1 л воды следующие компоненты (г): мочевину (22,0); креатинин (1,50); NaCl (5,20); NaH₂PO₄·2H₂O (1,4); Na₂HPO₄·H₂O (1,10); NaN₃ (1,00); тартразина (0,010). Раствор хранили при 4°.

Определение котинина в моче осуществляли по предварительно построенному калибровочному графику. Стандартные растворы котинина (0,5; 1; 2; 4 и 8 мкг/мл) готовили растворением препарата в синтетической урине. При построении калибровочного

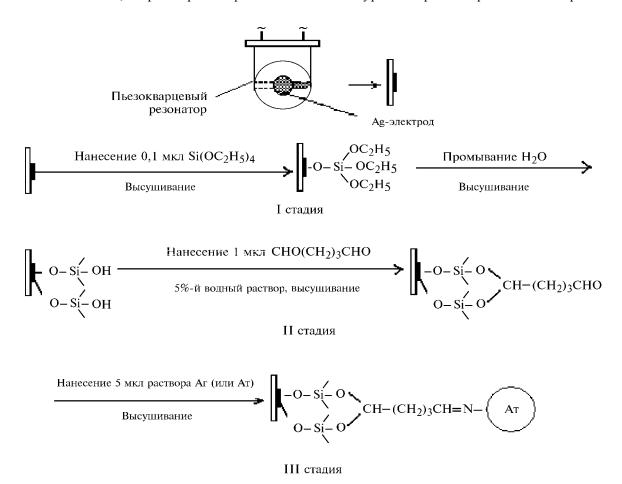


Рис. 2. Схема формирования биослоя на поверхности серебряного электрода пьезокварцевого биосенсора

графика и подготовке образцов мочи к анализу к 10 мкл стандартного раствора с различным содержанием котинина или анализируемой пробы добавляли 850 мкл фосфатного буферного раствора (рН 7,2) и 5 мкл раствора антител. Смесь инкубировали в течение 15 мин при 20°.

Установка для ПИА (рис. 1) состояла из перистальтического насоса "Gilson", дозатора, проточной ячейки детектирования объемом 15-20 мкл, включающей серийно выпускаемые отечественные пьезокварцевые сенсоры АТ-среза с серебряными электродами диаметром 8 мм и собственной частотой колебаний 8-10 МГц, на поверхности которых были иммобилизованы иммунореагенты (ДНК или котинин-белковые коньюгаты). Сенсоры контактировали одной стороной с анализируемой жидкой фазой. Силиконовые трубки диаметром 0,16 мм соединяли микроячейку с перистальтическим насосом и дозатором. Скорость потока жидкости составляла 30 мкл/мин. В качестве раствора-носителя использовали 5-50 мМ фосфатный буфер (рН 6,8; 7,0; 7,2). Изменение частоты колебаний сенсора с интервалом в 1 мин регистрировали частотомером Ч3-54.

Результаты и обсуждение

Стабильная работа иммуносенсоров зависит от прочности иммобилизации биорецепторов на поверхности электродов. Наиболее распространенным приемом является предварительное формирование зольгель методом кремнеорганического слоя, к которому затем ковалентно пришивают антитела или антигены [12, 13]. Несмотря на то, что известные способы обеспечивают достаточно прочную иммобилизацию биополимеров, процесс получения рецепторного слоя является длительным и трудоемким. В проточно-инжекционном анализе важно сохранение постоянной массы чувствительного слоя в течение одного измерения (3 мин), поскольку аналитический сигнал (Δf) рассчитывается как разность частот колебаний сенсо-

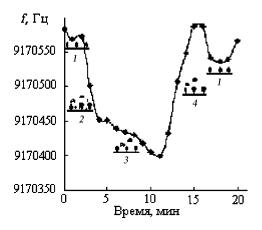


Рис. 3. Изменение отклика сенсора в ходе одного цикла измерения

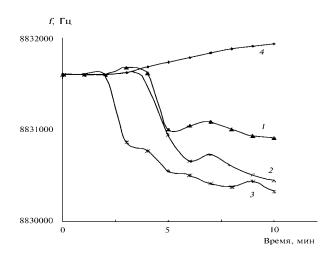


Рис. 4. Кинетические кривые связывания различных концентраций антител к ДНК (I-1,0 нг/мл; 2-10 нг/мл; 3-100 нг/мл) и BSA (4) с рецепторным покрытием биосенсора

ра в начале измерения и в момент установления равновесия. Поэтому процесс формирования биорецепторного покрытия сенсора был значительно упрощен и сокращен (рис. 2). Кремнеорганический слой получается путем нанесения фиксированного объема неразбавленного тетраэтоксисилана на тщательно обезжиренный ацетоном электрод. Исключение стадии обработки у-аминопропилтриэтоксисиланом сокращало продолжительность формирования покрытия без снижения его качества. Биомолекулы пришивали к подложке глутаровым альдегидом, нанося последовательно на поверхность электродов соответствующие растворы в виде капель. Предлагаемая схема иммобилизации обеспечивает многократное использование пьезокварцевого сенсора в проточно-инжекционном анализе.

Перед началом измерений через систему пропускали буферный раствор до стабилизации базисной линии (30 мин). Измерительный цикл включал следующие этапы (рис. 3): I – пропускание через ячейку фосфатного буфера (1 мл) для стабилизации сигнала биосенсора; 2 – введение в поток анализируемой пробы (0,2 мл); 3 — пропускание буферного раствора (0,2)мл) для удаления избыточных, не связавшихся в иммунный комплекс молекул аналита; 4 - ввод регенерирующего раствора (0,01 мл) для диссоциации иммунного комплекса, образованного на поверхности электродов сенсора и восстановление частоты сенсора практически до исходных значений. Введение в поток анализируемой пробы, содержащей определяемое соединение, вызывает резкое снижение частоты колебаний сенсора вследствие иммунного взаимодействия с рецепторным биослоем на поверхности иммуносенсора. Разность частоты колебаний пьезокварцевого резонатора (Δf) между стадиями 1 и 3 (рис. 3) регистри-

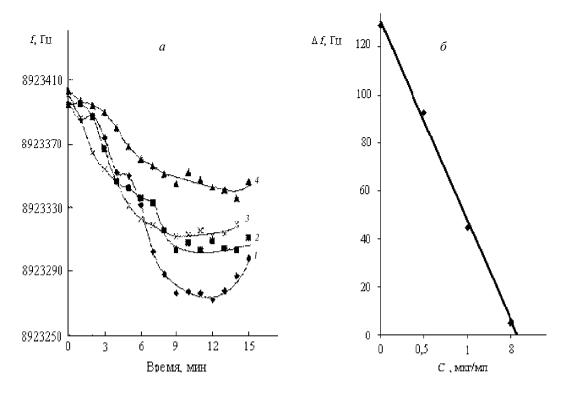


Рис. 5. Формирование аналитического отклика биосенсора в зависимости от содержания (нг): I - 0; 2 - 0,1; 3 - 1,0; 4 - 10,0 котинина в ячейке (a) и градуировочный график для определения котинина в моче (δ)

ровали в качестве аналитического сигнала. Для регенерации сенсора применяли 3 М KCNS.

Определение высокомолекулярных соединений обычно осуществляеют прямым измерением увеличения массы биорецепторного слоя сенсора в результате образования аффинного комплекса на его поверхности. В качестве примера рассмотрено определение антител к ДНК.

Известно, что так называемые аутоиммунные заболевания человека и животных характеризуются неадекватной реакцией организма на его собственные клеточные компоненты, например ДНК. Накопление антител к ДНК в крови является одним из клинических показателей аутоиммунных заболеваний, например системной красной волчанки [14]. Нами в качестве антител к ДНК использована сыворотка крови больного с симптомами системной красной волчанки. Аналитический отклик иммуносенсора зависит от концентрации и рН буферного раствора, скорости потока жидкости, температуры опыта. Выбор диапазона рН обусловлен значениями, близкими для биологических жидкостей человека (6,8-7,2). Изменение рН в указанном интервале и температуры в диапазоне 18-26° незначительно влияет на аналитический отклик. Снижение концентрации буферного раствора (до 5 мМ) и скорости потока (до 30 мл/мин) приводит к увеличению аналитического сигнала сенсора.

В интервале концентраций 0,1-25 мкл/мл отмечена линейная зависимость Δf сенсора от концентрации антител к ДНК (рис. 4). Определение антител к ДНК может осуществляться в присутствии сопутствующих веществ белковой природы. Например, молекулы BSA не связываются с рецепторным покрытием сенсора и не вызывают изменения частоты колебаний при прохождении раствора BSA через ячейку детектирования.

Иммуносенсор может быть использован многократно после его регенерации веществами, способными разрушать иммунный комплекс на поверхности рецепторного слоя (8 М раствор мочевины, 0,1 М NaOH, 0,1 М HCOOH или 3 М KCNS). При применении в качестве регенерирующего раствора KCNS сохраняется целостность кремнеорганической подложки при достаточно быстром разрушении иммунного комплекса. Чувствительность сенсора сохранялась практически постоянной в течение 10-15 измерений. Остальные реагенты вызывали наряду с регенерацией частичную деструкцию биослоя, на что указывало увеличение на 40-60 Гц величины f_0 после каждого цикла измерений.

Для разработки иммуносенсора на низкомолекулярное соединение в качестве гаптена исследовали котинин – основной метаболит никотина (маркер курильщиков), используемый при проведении массовых

клинических исследований. В настоящее время котинин определяют методами жидкостной хроматографии [15], а также различными высокочувствительными иммунохимическими методами (радиоиммуноанализ [11], ELISA [16], поляризационный флуоресцентный иммуноанализ [17] и др.), но все иммунохимические методы требуют введения специальной метки.

Прямое определение низкомолекулярных антигенов (гаптенов) в проточно-инжекционном режиме с помощью пьезокварцевых биосенсоров затруднено, вследствие очень низкого приращения массы чувствительного слоя при протекании иммунохимической реакции [2, 18]. Для проведения анализа по конкурентной схеме [18] биорецепторный слой формировали на основе конъюгата гаптена с белком. Анализируемые пробы содержали различное количество котинина и одинаковое для всех образцов фик-

сированное количество антител к нему. На стадии детектирования котинин, содержащийся в анализируемой пробе и иммобилизованный на поверхности сенсора, конкурировали за взаимодействие с фиксированным количеством антител. Аналитический отклик иммуносенсора обратно пропорционален содержанию гаптена в растворе (рис. 5, a).

Иммуносенсор апробирован для определения котинина в моче людей. Для построения градуировочного графика (рис. 5, б) использовали синтетическую мочу с различной концентрацией котинина. Ранее установлено, что содержание котинина в свежей моче некурящих людей не превышает 0,5 мг/л, для активных курильщиков этот показатель составляет 1,0 мг/л и выше [17]. В исследованных нами образцах мочи концентрация котинина составляла 4–6 мг/л у курящих, 0,5–0,7 мг/л у некурящих.

Работа была выполнена при поддержке гранта ИНТАС 00-00870 "Простые методы определения потенциальных ксенобиотиков в воде и пищевых продуктах". Авторы выражают благодарность проф. Казанского государственного университета В.Г. Винтеру за любезно предоставленые образцы ДНК.

СПИСОК ЛИТЕРАТУРЫ

- Minunni M., Mancini M., Guilbault G., Hock B. // Anal. Lett. 1995.
 P. 749.
- Медянцева Э.П., Халдеева Е.В., Будников К.Г. // ЖАХ. 2001. 56.
 № 10. С. 1015.
- 3. Tang A.X.J., Pravda M., Guilbault G.G., Piletsky S., Turner A.P.F. // Anal. Chim. Acta. 2002. 471. P. 33.
- 4. Wong Y.Y., Ng S.P., Ng M.H., Si S.H., Yao S.Z., Fung Y.S. // Biosen. Bioelectron. 2002. 17. P. 676.
- Halamek J., Hepel M., Skladal P. // Biosen. Bioelectron. 2001. 16. P. 253.
- Thompson V., Kipling A.L., Duncan-Hewitt W.C. et al. // Analyst. 1991. 116. P. 881.
- Liu Y.-C., Wang C.-M., Hsiung K.-P. // Anal. Biochem. 2001. 299.
 P 130
- Huang M., Shen D., Chow L.-M., Yang M. // Analyst. 2002. 127.
 P. 940.
- Al-Hakiem M.H.H., White G.W., Smith D.S., Landon J. // Ther. Drug Monit. 1981. 3. P. 159.

- Degraw J.I., Cory M., Skinner A. et al. // J. Med. Chem. 1968. 11.
 P. 225.
- Hansel M.C., Rowell F.J., Landon J., Sidki A.M. // Ann. Clin. Biochem. 1986. 23. P. 596.
- 12. Фадеев А.Ю., Ельцов А.А., Алешин Ю.К., Малышенко С.И. и др. // Ж. физ. химии. 1994. **68.** № 11. С. 2071.
- 13. Babacan S., Pivarnik P., Letcher S., Rand A.G. // Biosen. Bioelectron. 2000. 15. P. 615.
- 14. Tan E.M. // Adv. Immunol. 1982. 33. P. 167.
- Baranowski J., Pochopien G., Baranowska I. // J. Chromatgr. B 1998. 707. P. 317.
- Galanti L.M., Dell'Omo J., Vanbeckbergen D., Dubois P., Masson P.L., Cambiaso C.L. // Clin. Chem. Lab. Med. 1999. 37. P. 729.
- Eremin S.A., Coxon R.E., Colbert D.L., Landon J., Smith D. S. // Analyst. 1992. 117. P. 697.
- 18. Horacek J., Skladal P. // Anal. Chim. Acta. 1997. 347. P. 43.

Поступила в редакцию 25.10.02