УДК: 669.715.25/232

ВЗАИМОДЕЙСТВИЕ АЛЮМИНИЯ С КОБАЛЬТОМ И ТИТАНОМ

Н. Г. Буханько, Е. Ф. Казакова, Е. М. Соколовская

(кафедра общей химии)

Изучено взаимодействия алюминия с кобальтом и титаном с построением изотермического сечения при 600° и политермических сечений. В работе использован комплекс методов физико-химического анализа: рентгенофазовый, локальный рентгеноспектральный, микроструктурный, высокотемпературный дифференциально-термический, измерение твердости и микротвердости. Установлено, что между интерметаллидами Al₃Ti и Al₉Co₂ реализуется взаимодействие эвтектического типа с ограниченной растворимостью компонентов, а на разрезе между соединениями AlCo и TiCo наблюдается образование тройного соединения AlCo₂Ti. Впервые установлены температура и способ образования тройных интерметаллических соединений Al₁₅Co₈Ti₆, AlCo₂Ti, а также определены границы их областей гомогенности.

В настоящей работе изучено физико-химическое взаимодействие компонентов в тройной системе Al–Co–Ti с последующим построением изотермического сечения во всей области составов при 600° и политермических сечений между бинарными интерметаллидами Al₃Ti–Al₉Co₂ и AlCo–TiCo.

Анализ литературных данных показал, что сведения о строении диаграммы состояния системы Al–Co–Ti ниже линии солидуса отсутствуют, а взаимодействие в двойных системах Al–Co, Al–Ti и Co–Ti в условиях равновесия изучено достаточно подробно [1–11]. Установлено, что в этих двойных системах в условиях равновесия образуется большое количество интерметаллических соединений с разной протяженностью областей гомогенности. В литературе имеются лишь краткие сведения о строении тройной системы Al–Co–Ti при температуре 800°, что выше солидуса в области, богатой алюминием [12].

Сплавы для исследования готовили в электродуговой печи с нерасходуемым вольфрамовым электродом на медном водоохлаждаемом поддоне в атмосфере аргона. Геттером служил титан. В качестве исходных металлов использовали алюминий марки «Al-999» (99,999 мас.% Al); титан йодидный (99,9 мас.% Ті); кобальт электролитический (99,9 мас.% Со). Для достижения полного проплавления и однородности образцов сплавы переплавляли 5 раз, переворачивая после каждой плавки. Масса навесок составляла 2 г. Контроль составов сплавов осуществляли взвешиванием образцов до и после плавки, а также локальным рентгеноспектральным и химическим анализом выборочных образцов [13]. В дальнейшей работе были использованы сплавы, угар которых не превышал 0,6-0,8 ат.%. Для приведения сплавов в равновесное состояние проводили гомогенизирующий отжиг в вакуумированных кварцевых ампулах с использованием титановой стружки в качестве геттера. Сплавы группы I (50-93 ат.% Al) подвергали гомогенизирующему отжигу в трубчатых печах сопротивления при 600° в течение 1,5 мес с последующей закалкой в ледяную воду, а сплавы группы II (0-50 ат.% Al) - при 900° в течение 3 недель, затем температуру в печи снижали до 600°, и продолжали отжиг еще 3 недели с последующей закалкой в ледяную воду. Такой выбор режима отжига обусловлен строением двойных диаграмм состояния. Температуру в печи контролировали с помощью хромель-алюмелевой термопары с точностью ±5°.

Исследование взаимодействия алюминия с кобальтом и титаном проводили с помощью комплекса методов физико-химического анализа: рентгенофазового, локального рентгеноспектрального, микроструктурного, высокотемпературного дифференциально-термического, а также измерением твердости и микротвердости. Рентгенофазовый анализ сплавов проводили на дифрактометре «ДРОН-4» на СиК, -излучении. Порошки для рентгенофазового анализа получали растиранием сплавов в агатовой ступке с добавлением гептана для снятия статического напряжения. Для снятия внутренних напряжений порошки подвергали дополнительному отжигу в течение 2 ч. Значения межплоскостных расстояний определяли с помощью компьютерной программы «EXPRESS». Идентификацию фаз проводили с помощью данных о межплоскостных расстояниях в картотеке JCPDS-ICDD. При расчете параметров решетки использовали программу «POWDER».

Локальный рентгеноспектральный анализ (ЛРСА) в данной работе проводили на приборе «САМЕВАХ-MicroBeam» посредством набора импульсов в течение 10 с в 7–8 точках фазы. Для многофазных сплавов проводили сканирование поверхности электронным лучом. Для исследуемых металлов использовали характеристическое K_{α} -излучение при ускоряющем напряжении 20 кВ. Точность в определении состава связана с соотношением размеров зерна фазы и электронного зонда. Так, состав фаз Al₅Co₂ и Al₁₅Co₈Ti₆ в сплавах № 5 и № 9 отличается от стехиометрического в связи с небольшим размером зерна этих фаз по сравнению с размером зонда (табл. 1).

Исследование состава выборочных образцов проводили спектрофотометрическим методом на приборе КФК-2 (колориметр фотоэлектрический концентрационный) с целью количественного определения ионов металлов после растворения сплавов. Анализ проводили при помощи стандартных методик определения металлов в растворах,

Таблица 1

Номер сплава	Состав сплавов по шихте, ат.%			Состав фаз по данным ЛРСА, ат.%			Фазовый состав
	Al	Co	Ti	Al	Co	Ti	1
1	93,0	4,5	2,5	82,7	17,2	0,1	Al ₉ Co ₂
				99,0	0,2	0,8	Al
				75,5	0,2	24,3	Al ₃ Ti
2	80,0	17,0	3,0	74,6	0,3	25,1	Al ₃ Ti
				82,7	17,2	0,3	Al ₉ Co ₂
3	77,0	21,0	2,0	72,1	0,4	27,5	Al ₃ Ti
				82,0	17,6	0,4	Al ₉ Co ₂
				76,4	23,4	0,2	Al ₁₃ Co ₄
4	65,0	7,0	28,0	58,3	0,1	41,6	Al ₂ Ti
				53,9	20,5	25,6	Al ₁₅ Co ₈ Ti ₆
5	62,0	18,0	20,0	74,9	0,4	24,6	Al ₃ Ti
				73,6	25,6	0,8	Al ₅ Co ₂
				57,9	21,9	20,2	Al ₁₅ Co ₈ Ti ₆
6	50,0	35,5	14,5	47,5	45,3	7,2	AlCo
				55,3	22,4	22,3	Al ₁₅ Co ₈ Ti ₆
7	40,0	30,0	40,0	45,4	23,1	31,4	Al ₁₅ Co ₈ Ti ₆
				27,8	46,5	25,6	AlCo ₂ Ti
8	3,0	73,0	24,0	20,6	53,2	25,8	AlCo ₂ Ti
				0,1	75,2	24,7	Co ₃ Ti
9	20,0	70,0	10,0	29,2	56,4	14,5	AlCo ₂ Ti
				8,3	89,0	2,7	Со
10	65,0	15,0	20,0	70,7	5,6	23,7	Al ₃ Ti
				73,1	21,8	5,1	Al ₅ Co ₂
				57,1	22,1	20,7	Al ₁₅ Co ₈ Ti ₆
11	50,0	20,0	30,0	48,7	22,4	28,9	Al ₁₅ Co ₈ Ti ₆
12	53,0	20,0	27,0	52,8	22,7	24,5	Al ₁₅ Co ₈ Ti ₆
13	46,0	24,0	30,0	47,8	22,3	29,8	Al ₁₅ Co ₈ Ti ₆

Результаты ЛРСА для сплавов системы Al-Co-Ti

приведенных в [13]. Для определения алюминия в растворах использовали методику с применением эриохромцианина R. При взаимодействии эриохромцианина R с алюминием в слабокислой среде образуется растворимый в воде фиолетово-красный комплекс, который используют для фотометрического определения. Наиболее простым методом определения титана является пероксидный метод [13]. Титан образует с перекисью водорода в кислой среде желто-оранжевый комплекс [TiO·H₂O₂]²⁺, реакция образования которого протекает в сернокислых растворах и при этом алюминий не мешает определению титана. Спектрофотометрический метод определения кобальта в различных сплавах с помощью 2-нитрозо-1-нафтола С₁₀Н₇О₂N и 6-нафталиндисульфокислоты (нитрозо-R-соль) С₁₀H₅S₂O₆Na₂N характеризуется простотой, высокой чувствительностью и селективностью.

Для исследования микроструктуры образцы заливали сплавом Вуда в алюминиевые цилиндрические обоймы и

шлифовали на наждачной бумаге разной зернистости. Затем проводили полировку образцов на сукне с применением суспензий из оксида хрома и оксида алюминия. Образцы подвергали травлению составом NH₄F+ HNO₂+H₂O(дист). Съемку проводили на микроскопе «NEOPHOT-2» при различном увеличении и на приборе «САМЕВАХ-МісгоВеат». Измерение твердости и микротвердости равновесных сплавов проводили на приборе ТП-7П-1 по ГОСТ 2999-75 методом вдавливания алмазной четырехгранной пирамидки с углом при вершине 136° при нагрузке 50 г (метод Виккерса). На поверхность сплава наносили 10-12 отпечатков. Для определения температуры фазовых переходов сплавов проводили дифференциально-термический анализ на ВДТА-986 с помощью вольфрам-вольфрам-рениевой термопары при непрерывном нагревании образцов до 1800° со скоростью 80 град/мин (регистрация температур с помощью самописца Н-307). Образцы помещали в алундовые тигли, толщина которых

Рис. 1. Изотермическое сечение системы Al-Co-Ti при 600°

составляет ~1 мм. Спай термопары помещали под дном тигля. Исследования проводили в атмосфере очищенного гелия при давлении 10^5 Па. Точность метода составляла 3%.

Результаты исследования представлены в виде изотермического сечения диаграммы состояния системы Al-Co-Ti (рис. 1). В результате исследований подтверждено существование в системе при 600° следующих интерметаллических соединений: Al₃Ti, Al₂Ti, AlTi, AlTi₃, Al₉Co₂, Al₁₃Co₄, Al₅Co₂, AlCo, Ti₂Co, TiCo, TiCo₂, TiCo₃. Границу областей гомогенности интерметаллических соединений устанавливали на основании результатов локального рентгеноспектрального, микроструктурного и рентгенофазового анализов. В системе было обнаружено два тройных интерметаллических соединения Al₁₅Co₈Ti₆ и AlCo₂Ti.

Исследование сплавов, отвечающих по составу бинарным интерметаллическим соединениям, показало хорошее соответствие с литературными данными. Так, для бинарного соединения Al₃Ti (собственный структурный тип) рассчитанные значения параметров решетки (Å) составляют $a = 3,84\pm0,01$, $c = 8,59\pm0,02$, что хорошо согласуется с данными [1]; для соединения AlTi структурного типа AuCu $a = 3,98\pm0,01$, $c = 4,07\pm0,02$, что согласуется с данными [2]; для AlTi₃ (структурный тип Mg₃Cd) параметры решетки (Å) составили $a = 5,79\pm0,01$, $c = 4,66\pm0,01$, что согласуется с результатами работы [3].

По данным работ [4, 5], возможно существование двух модификаций фазы Al₂Ti: орторомбической типа Ga₂Zr (δ) и тетрагональной типа HfGa₂. Высокотемпературная δ -модификация фазы Al₂Ti образуется по перитектической реакции при температурах выше 1400°, низкотемпературная – при 1175°. При 600° нами обнаружена лишь одна полиморфная модификация соединения Al₂Ti структурного типа Ga₂Zr с параметрами решетки (Å) $a = 12,26\pm0,31, b = 13,95\pm0,02, c = 4,03\pm0,02.$

Для соединения Al_9Co_2 параметры решетки (Å) оказались следующими: $a = 8,54\pm0,09$, $b = 6,28\pm0,02$, c = 6,20±0,04; $\gamma = 94,23\pm0,51^{\circ}$; для соединения Al₁₃Co₄: $a = 15,15\pm0,03$, $b = 8,19\pm0,09$, $c = 12,32\pm0,02$, $\gamma = 107,81\pm1,09^{\circ}$, что хорошо соответствует данным [6]; для соединения Al₅Co₂: $a = 7,67\pm0,01$, $c = 7,58\pm0,01$ Å, что хорошо согласуется с данными [7]; для соединения AlCo $a = 2,86\pm0,01$, что хорошо согласуется с данными [8].

Дифрактограмма сплава состава Al–0,0; Co–75,0; Ti– 25,0 ат.% содержит систему отражения от плоскостей кубической решетки структурного типа Cu₃Au, соответствующую соединению TiCo₃. По данным настоящей работы, значение параметра решетки *а* составляет 3,61±0,01 Å, что согласуется с данными [9].

Известно, что в интервале концентраций 32–38 ат.% Ті двойной системы Ті–Со существуют две модификации соединения TiCo₂: кубическая и гексагональная. Первая из них имеет кристаллическую структуру типа MgCu₂ – фаза Лавеса типа λ_2 [10], а вторая – типа λ_3 (структурный тип MgNi₂) [11]. По данным настоящей работы, на дифрактограмме сплава состава (ат.%): Al (0,0); Co (70,0); Ti (30,0) присутствуют системы отражений от плоскостей кристаллической решетки обеих модификаций, параметры решетки которых (Å) составили: для гексагональной модификации $a = 4,73\pm0,0$; $c = 15,43\pm0,02$ и для кубической модификации $a = 6,69\pm0,01$. Следует отметить, что добавление алюминия понижает устойчивость λ_2 -модификации фазы TiCo₂, тогда как λ_3 -модификация проникает в тройную систему (рис. 1).

Наличие соединения ТіСо подтверждается дифрактограммой сплава состава (ат.%): Al (0,0); Co (50,0); Ti (50,0), содержащей систему отражений от плоскостей кубической решетки структурного типа CsCl. Для соединения Ti₂Co (структурного типа TiNi₂) рассчитанное значение параметра решетки *а* составило 2,99±0,01 Å, а экспериментальное – 11,27±0,04 Å, что согласуется с данными [10].

Результаты локального рентгеноспектрального анализа, приведенные в табл. 1 и на рис. 2, показали, что проникновение интерметаллидов Al₂Ti и Al₀Co₂ в тройную

Рис. 2. Направление конод в системе Al-Co-Ti при 600°

Рис. 3. Дифрактограмма сплава состава (ат.%): Al (53,0); Co (20,0); Ti (27,0), отожженного при 600°

систему невелико, содержание третьего компонента составляет 2,9±0,4 и 0,4±0,1 ат.% соответственно. Растворимость Со и Ті в алюминии очень низка и составляет 0,4±0,1 и 1,3±0,8 ат.% соответственно. Проникновение в тройную систему интерметаллида Al_5Co_2 невелико и составляет 0,9±0,2 ат.% Ті, а соединений $Al_{13}Co_4$ и AlCo – меньше 1 и 9,2±0,8 ат.% Ті соответственно. Растворимость кобальта в интерметаллидах Al_2 Ті, AlTi и AlTi₃ составляет 2,3±0,4; 0,9±0,4 и 9,6±0,7 ат.% соответственно. Растворимость алюминия в интерметаллидах Ti_2Co , TiCo, TiCo₂, TiCo₃ а также в Со и Ті составляет соответственно 6,8±0,9; 7,9±0,2; 0,1±0,1; 2,2±0,1; 6,0±2,0; 13,7±2,2 ат.%. Растворимость Со в Ті составляет 10,3±1,5 ат.%, а Ті в Со – 8,5±1,5 ат.%.

В системе обнаружено тройное соединение $Al_{15}Co_8Ti_6$. По результатам РФА установлено, что для сплавов из обширной области концентраций (ат.%) Al (27–58), Co (20– 25) ат.%, Ti (20–50) ат.%, наблюдается система отражений от плоскостей кубической решетки структурного типа Th_6Mn_{23} , характерной для $Al_{15}Co_8Ti_6$. Дифрактограмма сплава состава (ат.%): Al (53,0); Co (20,0); Ti (27,0) приведена на рис. 3. Для сплава состава (ат.%): Al (50,0); Co (25,0); Ti (50,0) рассчитанное значение параметра *a* решетки этого соединения составляет 11,93±0,01 Å, что

Рис. 4. Зависимость параметра решетки интерметаллида $Al_{15}Co_8Ti_6$ по области гомогенности

хорошо согласуется с данными [14]. На рис. 3, *а* представлена зависимость параметра элементарной ячейки $Al_{15}Co_8Ti_6$ от содержания алюминия по области его гомогенности. Известно, что атомные радиусы титана и алюминия близки по размеру, поэтому естественно, что период решетки фазы $Al_{15}Co_8Ti_6$ при замещении Ti на Al меняется незначительно, о чем свидетельствует вид графика на рис. 4.

Существование этого тройного соединения было также подтверждено нами с помощью ЛРСА. Так, на рис. 2 представлено направление конод в области концентраций 25-58 ат.% АІ в системе АІ-Со-Ті. Область гомогенности соединения Al₁₅Co₈Ti₆ простирается в пределах от 25 до 58 ат.% Аl. По данным дифференциально-термического и микроструктурного анализов определены температура и способ образования этого соединения - перитектическая реакция L + TiCo \leftrightarrow Al₁₅Co₈Ti₆ при 1250°. Соединение Al₁₅Co₈Ti₆ вступает в двухфазное взаимодействие с бинарными интерметаллидами Al₃Ti, Al₂Ti, AlTi, Al₁₃Co₄, Al₉Co₅, Al₅Co₂ и тройной фазой AlCo₂Ti. Надо отметить, что в ряде исследований сообщалось о существовании в близкой области составов тройного соединения, которому в разных работах приписывается различный состав (Al₂CoTi₂ [12], Al₁₅Co₈Ti₆ [14], Al₂CoTi [15]).

В системе Al–Co–Ti после отжига при 600° обнаружено тройное соединение AlCo₂Ti со структурным типом AlCu₂Mn, о существовании которого при 800° сообщается авторами [14, 16]. Этот структурный тип является сверхструктурой к типу CsCl с удвоением параметров решетки [17]. На дифрактограмме сплава состава (ат.%): Al (25,0); Co (50,0); Ti (25,0) присутствует одна система отражений, характерная для кубической решетки AlCo₂Ti, что подтверждает существование в системе этого тройного соединения. Рассчитанное значение параметра решетки *a* составило 5,85±0,01 Å, что хорошо согласуется с

Рис. 5. Зависимость периодов решетки от состава по разрезу Al₃Ti- Al₉Co₂

литературными данными [16]. Существование тройного соединения AlCo₂Ti подтверждается также и данными ЛРСА. Как видно из рис. 2, для сплава состава (ат.%): Al (25,0); Co (50,0); Ti (25,0) и прилегающей к нему обширной области концентраций наблюдается схождение коннод, что свидетельствует об образовании в этой области тройного интерметаллида. Расположение коннод показывает малый размер области гомогенности у данного соединения. Нами определен способ образования интерметаллического соединения AlCo₂Ti – кристаллизация из расплава при 1640°. В равновесии с AlCo₂Ti находятся бинарные интерметаллиды AlCo, TiCo₃, TiCo₂, TiCo, тройное соединение Al₁₅Co₈Ti₆ и твердый раствор на основе Co.

В исследуемой системе образуются многочисленные области двухфазного взаимодействия, ограничивающие различные по протяженности трехфазные поля (рис. 1).

Сплавы из области концентраций составов (ат.%): Al (75,0–81,5); Co (0,0–18,5); Ti (25,5–0,0) обнаруживают на дифрактограммах две системы отражений от тетрагональной и моноклинной решеток, характерных для фаз Al₃Ti и Al₉Co₂. Это подтверждает существование области двухфазного равновесия (Al₃Ti+Al₉Co₂). На рис. 5 представлена зависимость изменения периодов решетки Al₃Ti и Al₉Co₂.

от состава по разрезу $Al_3Ti-Al_9Co_2$. В пределах ошибки эксперимента периоды решетки интерметаллидов Al_3Ti и Al_9Co_2 , являются постоянными.

Существование данной двухфазной области подтверждается данными микроструктурного анализа и измерения твердости сплавов. Микроструктура представлена на рис. 6 для сплава состава (ат.%): Al (76,5); Co (4,0); Ti (19,5), где темная фаза – Al_oCo₂, светлая – Al₃Ti.

Рис. 6. Микроструктура отожженного сплава состава (ат.%): Al (76,5); Co (4,0); Ti (19,5) (×800)

Таблица 2

Результаты дифференциально-термического анализа сплавов системы Al-Co-Ti

Coc	тав сплава, ат.	Температуры фазовых переходов, °С		
Al	Со	Ti	слабый эффект	сильный эффект
80,0	17,0	3,0	630	1030
80,0	15,0	5,0	1020	940
78,5	12,0	9,5	1030	940
77,0	8,0	15,0	950	1260
76,5	4,0	19,5	950	1320
75,5	2,5	22,0	940	1330
75,0	0,0	25,0		1420
81,5	18,5	0	950	1020
50,0	50,0	0,0		1650
40,0	50,0	10,0		1640
30,0	50,0	20,0		1640
20,0	50,0	30,0		1540
25,0	50,0	25,0		1580
10,0	50,0	40,0	1580	1460
0,0	50,0	50,0		1380

Рис. 7. Зависимость микротвердости сплавов от концентрации Со по разрезу $\rm Al_3Ti-Al_9Co_2$

На рис. 7 представлены результаты измерений микротвердости по разрезу Al₃Ti–Al₉Co₂ в виде графика зависимости микротвердости фазы Al₉Co₂ в сплавах от концентрации кобальта. Из рисунка видно, что в двухфазной области в пределах ошибки эксперимента микротвердость интерметаллида практически не изменяется.

Для получения более подробной информации о характере превращений были изучены процессы кристаллизации в тройной системе Al–Co–Ti. Политермический разрез между интерметаллидами Al₃Ti–Al₉Co₂ построен на основании данных дифференциально-термического анализа (табл. 2) и с учетом результатов РФА и ЛРСА (рис. 8).

Кривая ликвидуса политермического разреза состоит из ветвей *ab, be, de', ee',* соответствующих первичной кристаллизации фаз AlTi, Al₃Ti, Al₉Co₂ и Al₁₃Co₄ соответственно. В системе существует эвтектическое равновесие $L \leftrightarrow Al_3Ti + Al_9Co_2$, протекающее в узком интервале температур.

При более высоких температурах протекают перитектические реакции L + AlTi \leftrightarrow Al₃Ti и L + Al₁₃Co₄ \leftrightarrow Al₉Co₂, обозначенные на рисунке областями *lb* и *e'f*. Для перитектической реакции L + Al₁₃Co₄ \leftrightarrow Al₉Co₂ тепловые эффекты на термограммах не обнаружены, поэтому линии, характеризующие это равновесие, нанесены на рис. 8 пунктиром. Линии *gf* и *lm* отвечают окончанию кристаллизации фаз Al₉Co₂ и Al₃Ti соответственно. В субсолидусной области существуют твердые растворы на основе Al₃Ti и Al₉Co₂, а также эвтектическая смесь этих фаз. Линия *gk* характеризует изменение растворимости Ti в Al₉Co₂, а линия *mn* – изменение растворимости Co в Al₃Ti с изменением температуры.

Фазы эквиатомного состава в системе Al–Co–Ti относятся к различным структурным типам: AlCo и TiCo имеют тип CsCl, а фаза AlTi – тип AuCu (тетрагональная решетка). Поэтому естественно, что TiCo и AlTi не образуют непрерывного ряда твердых растворов, а между соединениями AlCo и TiCo образуется тройное соединение AlCo,Ti.

Рис. 8. Политермическое сечение системы Al–Co–Ti по разрезу Al_3Ti –Al_6Co2

Рис. 9. Политермическое сечение системы Al-Co-Ti по разрезу AlCo-TiCo

Политермическое сечение системы Al–Co–Ti по разрезу AlCo–TiCo представлено на рис. 9, откуда видно, что в области концентраций 22–27 ат.% Al образуется тройное интерметаллическое соединение AlCo₂Ti при 1640° с конгруэнтным характером плавления. При этом соединение AlCo₂Ti вступает в эвтектическое взаимодействие AlCo и в перитектическое с TiCo (L + AlCo₂Ti \leftrightarrow TiCo) при 1550°, сверхструктурой к которым оно является. Данные дифференциально-термического анализа приведены в табл. 2.

Первичной кристаллизации фазы AlCo из расплава при 1640° соответствует ветвь ликвидуса *ае*. Между тройным соединением AlCo₂Ti и двойным соединением AlCo в области концентраций 40 ат.% Al кристаллизуется эвтектика L ↔ AlCo + AlCo₂Ti в интервале температур 1550–1580°.

Рис. 10. Микроструктура отожженных сплавов составов (ат.%): *a*-Al (93,0); Со (4,5); Ti (2,5) (×800); *б* - Al (85,0); Со (10,0); Ti (5,0) (×800)

СПИСОК ЛИТЕРАТУРЫ

- 1. Ence E., Margolin H. // Trans. AIME. 1961. 221. P. 151.
- Braun J., Ellner M., Predel B. // Z. Metallkunde. 1995. Bd.86. S. 870.
- 3. Корнилов И.И., Нартова Т.Т., Чернышова С.П. // Изв. АН СССР. Металлы. 1976. № 6. С. 192.
- 4. Schuster J., Ipser H. // Z. Metallkunde. 1990. 81. P. 389.
- Loiseau A., van Tendeloo G., Portier R., Ducastelle F. // J. Phys. 1985. 46. P. 595.
- 6. Gydecke T. // Z. Metallkunde. 1971. Bd.62. S. 842.
- Newkrik J.B., Black P.J., Damjanovic A. // Acta Crystallogr. 1961.
 P. 532.
- 8. Cooper M.J. // Phil. Mag. 1963. 8. P. 805.
- 9. Петьков В.В., Киреев М.В. // Металлофизика. 1971. Вып. 33. С. 107.

Как видно из рис. 9, данное эвтектическое равновесие не является нонвариантным, поскольку плоскость данного разреза не лежит в плоскости коннод, соединяющих фазы $AlCo_2Ti$ и AlCo. Ниже эвтектической реакции в области концентраций 25–42 ат.% Al находится смесь фаз $AlCo_2Ti$ и AlCo. Ветвь ликвидуса *ст* соответствует первичной кристаллизации из расплава фазы TiCo, а область *cd'd* отвечает перитектической реакции L + $AlCo_2Ti \leftrightarrow TiCo$. Ниже данной реакции в области концентраций 9–22 ат.% Al находится смесь фаз $AlCo_2Ti$ и TiCo. Линии *dm* и *af* отвечают окончанию кристаллизации фаз TiCo и AlCo соответственно. Линия *dl* показывает растворимость алюминия в TiCo, а линия *fg* – растворимость титана в AlCo.

Существование одной из наиболее протяженных трехфазных областей Al+Al₃Ti+Al₉Co₂ иллюстрируют микроструктуры сплавов (ат.%): Al (93,0); Co (4,0); Ti (5,0) и Al (85,0); Co (4,5); Ti (2,5), где отчетливо видны три фазы: белая фаза – алюминий, серые фрагменты принадлежат интерметаллиду Al₉Co₂, а темно-серая матрица – фазе Al₃Ti. (рис. 10 *a*, δ)

Таким образом, в настоящей работе впервые с помощью комплекса методов физико-химического анализа установлен характер фазовых равновесий в системе Al-Co-Ті при 600° во всем интервале концентраций. Установлено, что в равновесии с алюминием находятся интерметаллические соединения Al₂Ti и Al₀Co₂. Впервые изучены процессы кристаллизации в системе Al-Co-Ti с последующим построением политермических сечений между интерметаллидами Al₃Ti-Al₉Co₂ и AlCo-TiCo. Установлено, что между интерметаллидами Al₃Ti и Al₆Co₂ peaлизуется взаимодействие эвтектического типа с ограниченной растворимостью компонентов, а на разрезе между соединениями AlCo и TiCo наблюдается образование тройного соединения AlCo, Ti. Впервые установлены температура и способ образования тройных интерметаллических соединений Al₁₅Co₈Ti₆, AlCo₂Ti, а также определены границы областей их гомогенности.

- Straten van der P.J.M., Bastin G.F., Loo van F.J.J., Rieck G.D. // Z. Metallkunde. 1976. Bd.67. S. 152.
- 11. Liu Y., Takasugi T., Izumi O. // Met. Trans. A. 1986. 17. P. 1433.
- 12. Маркив В.Я. // Изв. АН СССР. Металлы. 1966. №1. С. 156.
- Марченко З.Н. Фотометрическое определение элементов. М., 1971.
- 14. *Pearson W.B.* A Handbook of Lattice Spacing and Structures of Metals and Alloys. Ohio, 1967. P. 1446.
- 15. Марків В.Я., Бурнашова В.В. // ДАН УРСР. Сер. А. 1969. №5. С. 463.
- 16. Марків В.Я, Теслюк М.Ю. // ДАН УРСР. 1962. № 12. С. 1609.
- Крипякевич П.Я. Структурные типы интерметаллических соединений. М., 1977.

Поступила в редакцию 30.01.01