УДК 548.737

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА КОМПЛЕКСА 1:1 3,7-ДИБЕНЗИЛ-1,5-ДИФЕНИЛ-3,7-ДИАЗАБИЦИКЛО[3.3.1]НОНАН-9-ОНА С ХЛОРИДОМ МЕДИ(II)

С. В. Емец, Н. И. Курто, В. А. Палюлин, Н. С. Зефиров, К. А. Потехин, А. Е. Лысов

(кафедра органической химии)

В работе получены и проанализированы данные рентгеноструктурного анализа комплекса 1:1 3,7-дибензил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9-она с хлоридом меди(II). Найдено, что бицикло[3.3.1]нонановый каркас молекулы комплекса в кристалле принимает конформацию почти неискаженного двойного кресла, координация иона меди(II) – искаженный тетраэдр. Полученные данные сопоставлены с результатами исследования других комплексов 3,7-диазабицикло[3.3.1]нонанов с хлоридом меди(II).

Производные 3,7-диазабицикло[3.3.1]нонана (биспидины) благодаря оптимальному пространственному расположению двух неподеленных электронных пар атомов азота в конформации кресло-кресло ведут себя как бидентатные лиганды, образующие прочные комплексы с катионами переходных металлов [1–3]. Первыми были получены [4] комплексы собственно биспидина с солями меди(II) и никеля(II) состава 2:1, предположительно имеющие структуру **1**.

Комплексы такого же состава с солями меди(II) были получены и для 3,7-диалкилбиспидинов [5]. Однако, как было показано в дальнейшем, комплексы состава 2:1 образуются достаточно редко, чаще встречаются комплексы состава 1:1, особенно при введении в молекулу заместителей, способных дополнительно хелатировать катион металла. При этом 3,7-диазабицикло[3.3.1]нонаны способны образовывать хелаты MLX₂ различной геометрии, например имеющие структуру **2** [6], **3** [7], **4** [7, 8] и **5** [9].

R=Me, R_1 =Bn, M=Co, Fe, Cd, X=SCN; R=Et, R_1 =Bn, M=Ni, X=SCN; R=Et, R_1 =Me, M=Mn, X=Cl.

R=H, M=Co, Cu, Ni.
 R=Me, M=Co, Ni, Cu, Zn.

Следует отметить, что комплекс **6** с ионами меди(II) оказался самым прочным для тетрааминов с открытой цепью [10] (в работе [11] он исследован с помощью рентгеноструктурного анализа (PCA)).

Ранее [12] нами впервые были получены комплексы 7 состава 1:1 хлоридов меди(II), никеля(II), кобальта(II) с 3,7-диметил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9-оном, а также комплекс 8 состава 1:1 хлорида меди(II) с 3,7-ди-бензил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9-оном.

NHC₆ F_4 H, M=Cu, Y=NH₂, M=Ni, Y=2-Py, M=Pd.

Позднее в работе [8] был описан также синтез некоторых других комплексов типа 7 (R=H, Me, M=Cu, Pd, Pt, X=Cl; R=Bn, M=Cu, Pd, X=Cl, R=Allyl, M=Cu, X=Cl) и типа 9.

В комплексе **10** хлорида меди(II) с 1,5-дибром-3,7-диметил-3,7-диазабицикло[3.3.1]нонаном состава 1:1, существующем в кристалле в виде димера, по данным PCA [13] найдена искаженная тригонально-бипирамидальная координация иона меди(II).

Несмотря на относительно большое число синтезированных комплексов, лишь немногие из них были исследованы с помощью РСА – в основном комплексы 3,7-диалкил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9-онов. Но даже для данной серии комплексов не выявлено четких закономерностей в их строении.

Для получения дополнительных данных о строении таких комплексов в настоящей работе исследована структура полученного нами ранее [12] комплекса 1:1 **8** 3,7-дибензил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9она с хлоридом меди(II).

Экспериментальная часть

Комплекс **8** получен из 3,7-дибензил-1,5-дифенил-3,7диазабицикло[3.3.1]нонан-9-она [14] по нижеприведенной методике [12].

К горячему раствору 0,20 г (0,42 ммоля) 3,7-дибензил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9-она в 50 мл метанола приливают раствор 0,08 г (0,52 ммоля) дигидрата хлорида меди(II) в 10 мл метанола. Через несколько часов отфильтровывают выпавшие светло-зеленые игольчатые кристаллы, сушат на воздухе и получают 0,20 г (выход 78%) соединения **8**, *T*_{III} 178–180° (с разл.).

Параметры ячейки и интенсивности 4029 независимых отражений измерены на четырехкружном автоматическом дифрактометре «*Siemens P3/PC*» (λ Mo- K_{α} , графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta < 24^{\circ}$).

Структура расшифрована прямым методом и уточнена полноматричным МНК сначала в изотропном, а затем в анизотропном приближении. Все атомы водорода объективно выявлены в разностном фурье-синтезе и уточнены в модели «наездника». Уточнение структуры по 2187 отражениям с $I > 4\sigma$ (I) в анизотропном (изотропном для атомов водорода) приближении доведено до R = 0,055, $R_w = 0,087$. Все расчеты проведены по программе SHELXTL PLUS [15] (версия PC).

Обсуждение результатов

Кристаллы **8** ромбические, при 20°: a = 19,573(3), b = 14,215(2), c = 20,680(3) Å, V = 5754(1) Å³, Z = 8, $d_{\rm выч} = 1,402$ г/см³, пр. гр. Рbса.

Координаты неводородных атомов молекулы 8 представлены в табл. 1, длины связей – в табл. 2 и валентные углы – в табл. 3. Перспективный вид молекулы 8 с нумерацией атомов показан на рис. 1, 2.

Из данных РСА видно, что при образовании комплекса 8 с хлоридом меди(II) происходит закрепление конформации двойного кресла 3,7-диазабицикло[3.3.1]нонанового каркаса комплекса 8 в отличие от конформации креслованна исходного лиганда [16]. Для характеристики формы бицикло[3.3.1]нонанового каркаса комплекса 8 нами рассчитаны параметры складчатости для шестичленных

Таблица 1

Координаты неводородных атомов молекулы 8 (×10⁴)

Атом	x	у	Z	
Cu	2000(1)	5245(1)	571(1)	
Cl(1)	3016(1)	4686(1)	906(1)	
Cl(2)	1256(1)	4231(1)	949(1)	
O(1)	2092(2)	8051(2)	1024(2)	
N(3)	2240(2)	6622(3)	568(2)	
N(7)	1718(2)	5366(3)	376(2)	
C(1)	2608(2)	6635(3)	610(2)	
C(2)	2812(2)	6790(4)	104(2)	
C(4)	1621(2)	7198(3)	400(2)	
C(5)	1395(2)	7093(3)	312(2)	
C(6)	1181(2)	6077(3)	475(2)	
C(8)	2349(2)	5627(3)	744(2)	
C(9)	2032(2)	7336(3)	716(2)	
C(10)	3205(2)	6795(3)	1072(2)	
C(11)	3085(3)	6799(4)	1735(3)	
C(12)	3616(4)	6877(5)	2174(3)	
C(13)	4277(4)	6957(5)	1957(4)	
C(14)	4402(3)	6987(4)	1308(4)	
C(15)	3869(3)	6894(4)	864(3)	
C(16)	802(2)	7761(4)	456(2)	
C(17)	171(2)	7452(4)	682(3)	
C(18)	334(3)	8081(4)	846(3)	
C(19)	233(3)	9031(4)	788(2)	
C(20)	391(3)	9350(4)	553(3)	
C(21)	891(3)	8727(4)	387(2)	
C(22)	1465(3)	4412(3)	625(2)	
C(23)	1146(2)	4442(3)	1284(2)	
C(24)	1524(3)	4360(4)	1843(3)	
C(25)	1216(4)	4460(5)	2447(3)	
C(26)	530(4)	4643(5)	2486(3)	
C(27)	139(3)	4703(5)	1936(3)	
C(28)	448(3)	4589(4)	1345(3)	
C(29)	2496(3)	6944(3)	1223(2)	
C(30)	1996(3)	6847(3)	1770(2)	
C(31)	1635(3)	7629(4)	1977(3)	
C(32)	1188(3)	7553(5)	2492(3)	
C(33)	1099(3)	6715(5)	2806(3)	
C(34)	1461(3)	5946(4)	2609(3)	
C(35)	1908(3)	6000(4)	2095(2)	

Таблица З

Рис. 1

Таблица 2

Длины связей молекулы 8

Длина (~)	Связь	Длина (~)
2,012(4)	C(13) C(14)	1,364(9)
2,042(4)	C(14) C(15)	1,396(8)
2,194(2)	C(16) C(17)	1,391(7)
2,251(2)	C(16) C(21)	1,392(6)
1,205(5)	C(17) C(18)	1,375(7)
1,494(5)	C(18) C(19)	1,371(7)
1,504(5)	C(19) C(20)	1,390(7)
1,516(5)	C(20) C(21)	1,365(7)
1,473(5)	C(22) C(23)	1,500(6)
1,497(6)	C(23) C(24)	1,378(7)
1,533(5)	C(23) C(28)	1,388(7)
1,522(6)	C(24) C(25)	1,395(8)
1,526(6)	C(25) C(26)	1,370(8)
1,544(6)	C(26) C(27)	1,374(9)
1,545(6)	C(27) C(28)	1,372(8)
1,545(6)	C(29) C(30)	1,502(6)
1,528(6)	C(30) C(31)	1,385(7)
1,541(6)	C(30) C(35)	1,389(7)
1,541(6)	C(31) C(32)	1,383(8)
1,377(7)	C(32) C(33)	1,367(8)
1,391(7)	C(33) C(34)	1,364(8)
1,384(8)	C(34) C(35)	1,380(7)
1,373(9)		
	Длина (~) 2,012(4) 2,042(4) 2,194(2) 2,251(2) 1,205(5) 1,494(5) 1,504(5) 1,516(5) 1,4773(5) 1,497(6) 1,533(5) 1,522(6) 1,522(6) 1,524(6) 1,545(6) 1,545(6) 1,545(6) 1,541(6) 1,541(6) 1,377(7) 1,391(7) 1,384(8) 1,373(9)	Длина (~)Связь2,012(4)C(13) C(14)2,042(4)C(14) C(15)2,194(2)C(16) C(17)2,251(2)C(16) C(21)1,205(5)C(17) C(18)1,494(5)C(18) C(19)1,504(5)C(20) C(21)1,516(5)C(20) C(21)1,473(5)C(22) C(23)1,497(6)C(23) C(24)1,533(5)C(23) C(28)1,522(6)C(24) C(25)1,526(6)C(25) C(26)1,544(6)C(26) C(27)1,545(6)C(29) C(30)1,545(6)C(30) C(31)1,541(6)C(30) C(35)1,541(6)C(31) C(32)1,377(7)C(32) C(33)1,391(7)C(33) C(34)1,384(8)C(34) C(35)1,373(9)

Угол	Градус	Угол	Градус
N(3) Cu N(7)	88,7(2)	C(1) C(9) C(5)	112,0(4)
N(3) Cu Cl(2)	142,7(2)	C(15) C(10) C(11)	117,8(5)
N(7) Cu Cl(2)	102,6(2)	C(15) C(10) C(1)	122,9(5)
N(3) Cu Cl(1)	98,0(2)	C(11) C(10) C(1)	119,3(5)
N(7) Cu Cl(1)	124,3(2)	C(12) C(11) C(10)	121,3(6)
Cl(2) Cu Cl(1)	104,15(6)	C(13) C(12) C(11)	120,0(6)
C(2) N(3) C(4)	111,6(3)	C(14) C(13) C(12)	119,6(6)
C(2) N(3) C(29)	106,2(3)	C(13) C(14) C(15)	120,6(6)
C(4) N(3) C(29)	108,0(3)	C(10) C(15) C(14)	120,7(6)
C(2) N(3) Cu(1)	109,4(3)	C(17) C(16) C(21)	117,2(5)
C(4) N(3) Cu(1)	110,0(3)	C(17) C(16) C(5)	122,9(5)
C(29) N(3) Cu(1)	111,6(3)	C(21) C(16) C(5)	119,8(4)
C(6) N(7) C(8)	110,4(3)	C(18) C(17) C(16)	121,1(5)
C(6) N(7) C(22)	109,3(3)	C(19) C(18) C(17)	121,0(5)
C(8) N(7) C(22)	108,3(3)	C(18) C(19) C(20)	118,6(5)
C(6) N(7) Cu(1)	112,6(3)	C(21) C(20) C(19)	120,4(5)
C(8) N(7) Cu(1)	106,6(3)	C(20) C(21) C(16)	121,7(5)
C(22) N(7) Cu(1)	109,5(3)	C(23) C(22) N(7)	114,5(4)
C(9) C(1) C(10)	112,3(4)	C(24) C(23) C(28)	117,7(5)
C(9) C(1) C(8)	109,8(4)	C(24) C(23) C(22)	122,4(5)
C(10) C(1) C(8)	106,1(4)	C(28) C(23) C(22)	119,9(5)
C(9) C(1) C(2)	103,6(4)	C(23) C(24) C(25)	120,7(5)
C(10) C(1) C(2)	112,3(4)	C(26) C(25) C(24)	119,7(6)
C(8) C(1) C(2)	112,9(4)	C(25) C(26) C(27)	120,6(6)
N(3) C(2) C(1)	113,5(4)	C(28) C(27) C(26)	119,0(6)
N(3) C(4) C(5)	113,5(4)	C(27) C(28) C(23)	122,2(6)
C(16) C(5) C(9)	111,7(4)	C(30) C(29) N(3)	115,4(4)
C(16) C(5) C(6)	109,5(4)	C(31) C(30) C(35)	118,9(5)
C(9) C(5) C(6)	108,1(4)	C(31) C(30) C(29)	119,4(5)
C(16) C(5) C(4)	110,1(4)	C(35) C(30) C(29)	121,6(5)
C(9) C(5) C(4)	105,3(4)	C(32) C(31) C(30)	119,9(6)
C(6) C(5) C(4)	112,2(4)	C(33) C(32) C(31)	120,9(6)
N(7) C(6) C(5)	114,7(4)	C(34) C(33) C(32)	119,4(6)
N(7) C(8) C(1)	114,2(4)	C(33) C(34) C(35)	120,9(6)
O(1) C(9) C(1)	123,8(5)	C(34) C(35) C(30)	120,0(5)
O(1) C(9) C(5)	123,7(4)		

Валентные углы молекулы 8

Таблица 4

Параметры складчатости шестичленных циклов в молекуле 8

Цикл	S	θ, град.	ψ2, град.
C(9) C(1) C(2) N(3) C(4) C(5)	1,199	4,7	18,0
C(9) C(5) C(6) N(7) C(8) C(1)	1,122	1,2	60,7

Таблица 5

Длины связей (Å) и валентные углы (градус) комплексов 3,7-диазабицикло[3.3.1]нонанов с хлоридом меди (II)

Связи и валентные	Комплекс			
углы	11	12	13	8
Cu Cl(1)	2,262(5)	2,241(5)	2,215(1)	2,251(2)
Cu Cl(2)	2,182(5)	2,225(5)	2,233(1)	2,194(2)
Cu N(3)	2,00(1)	1,99(1)	2,015(3)	2,012(4)
Cu N(7)	1,96(1)	2,00(1)	2,021(3)	2,042(4)
N(3)N(7)	2,71(2)	2,81(3)	2,79(3)	2,84(5)
Cl(1) Cu Cl(2)	110,9(2)	101,9(2)	104,6(6)	104,1(5)
N(3) Cu N(7)	86,3(4)	89,6(5)	87,5(1)	88,7(2)
Cl(1) Cu N(3)	118,8(3)	126,5(5)	102,5(1)	98,0(2)
Cl(1) Cu N(7)	104,4(3)	99,7(4)	137,2(1)	124,3(2)
Cl(2) Cu N(3)	112,8(3)	104,6(3)	129,9(1)	142,7(4)
Cl(2) Cu N(7)	122,0(3)	138,9(4)	99,8(1)	102,6(2)

циклов [17], приведенные в табл. 4, откуда следует, что один шестичленный цикл в молекуле 9 принимает форму почти неискаженного кресла, а другой – форму несколько скрученного кресла с небольшим уплощением фрагмента C(1)C(9)C(5).

Для сравнения в табл. 5 приведены расстояния N₃...N₇, длины связей и валентные углы в координационном полиэдре для комплексов 3,7-диметил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9-она [18], 1,5-дифенил-3,7-бис(2-цианоэтил)-3,7-диазабицикло[3.3.1]нонан-9-она [19], 3,7-диаллил-1,5-дифенил-3,7-диазабицикло[3.3.1]нонан-9-она [20] с хлоридом меди(II) **11–13** и комплекса **8**.

В комплексе **8**, как и в **11–13**, наблюдается уменьшение (относительно идеального тетраэдрического значения 109,5°) валентного угла N_3CuN_7 до 88,9(6)° и сильное различие валентных углов Cl–Cu–N. Это обусловлено поворотом плоскости атомов Cl₁–Cu–Cl₂ относительно плоскости N_3 –Cu– N_7 не на 90°, как при идеальной тетраэдрической координации, а на 64,8° (аналогичные углы для комплексов **11**, **12**, **13** равны 80,2; 63,1 и 63,3° соответственно) [18–20]. Угол между плоскостями фенильных колец равен 89,1°.

Авторы выражают благодарность РФФИ за поддержку настоящей работы.

СПИСОК ЛИТЕРАТУРЫ

- Chiavarelli S., Toffler F., Misity D. // Ann. Ist. Super. Sanita. 1968.
 P. 157.
- 2. Зефиров Н.С., Рогозина С.В. // Усп. хим. 1973. 42. С. 423.
- Hancock R.D., Pattrick G., Wade P.W., Hosken G.D. // Pure Appl. Chem. 1993. 65. P. 473.
- Stetter H., Schäfer J., Dieminger K. // Chem. Ber. 1958. 91. S. 598.
- 5. Douglass J.E., Ratliff T.B. // J. Org. Chem. 1968. 33. P. 355.
- 6. Haller R. // Arch. Pharm. 1969. 302. S. 113.
- 7. Stetter H., Dieminger K. // Chem. Ber. 1959. 92. S. 2658.
- Black D.S.C., Deacon G.B., Rose M. // Tetrahedron. 1995. 51. P. 2055.
- Chiavarelli S., Toffler F., Valsecchi G.P., Gramiccioni L. // Bull. Chim. Farm. 1967. 106. P. 301.
- Hosken G.D., Hancock R.D. // Chem. Commun. 1994. 4. P. 1363.
- 11. Hosken G.D., Allan C.C., Boeyens J.C.A., Hancock R.D. // J. Chem. Soc., Dalt. Trans. 1995. P. 3705.
- 12. Палюлин В. А. // Дис. ... канд. хим. наук. М., 1985.
- 13. Палюлин В.А., Грек О.М., Емец С.В. // ДАН. 2000. 374. С. 1.
- 14. Kyi Z.-Y., Wilson W. // J. Chem. Soc. 1951. P. 1706.
- Sheldrick G.M., SHELXTL PLUS. PC version. Siemens Analytical X-Ray Instruments, Inc., Madison, Wisconsin, USA, 1989.
- Levina O.I., Potekhin K.A., Kurkutova E.N. // Cryst. Str. Commun. 1982. 11. P. 1909.
- Zefirov N.S., Palyulin V.A., Dashevskaya E.E. // J. Phys. Org. Chem. 1990. 3. P. 147.
- Левина О.И., Куркутова Е.Н., Стручков Ю.Т. // ДАН. 1986.
 289. С. 876.
- 19. Вацадзе С.З., Бельский В.К., Сосонюк С.Е., Зык Н.В., Зефиров Н. С. // ХГС. 1997. **3.** С. 356.
- 20. Чехлов А.Н., Вацадзе С.З., Зык Н.В., Зефиров Н.С. // ДАН. 1995. **343.** С. 785.

Поступила в редакцию 25.12.00