УДК 541.128 + 546.72

КАТАЛИЗ РЕАКЦИЙ ХЛОРОЛЕФИНОВ АЛЛИЛЬНОГО СТРОЕНИЯ НАНОРАЗМЕРНЫМИ ОКСИДАМИ ЖЕЛЕЗА

Т. Н. Ростовщикова, О. И. Киселева, Г. Ю. Юрков*, С. П. Губин*, Д. А. Панкратов, Ю. Д. Перфильев, В. В. Смирнов, П. А. Чернавский, Г. В. Панкина

(кафедра химической кинетики, кафедра радиохимии и кафедра физической химии; e-mail:rtn@kinet.chem.msu.ru)

Наноразмерные частицы оксидов железа (Fe_2O_3 , FeO, Fe_3O_4) катализируют реакции с участием хлоролефинов аллильного строения, в частности изомеризацию с миграцией двойной связи и атома хлора, а также алкилирование ароматических углеводородов. Эффективность катализа и направление реакций зависят от присутствия кислорода. Другими факторами, определяющими каталитические свойства оксидов, являются степень окисления железа и природа ближайшего окружения наночастиц в каталитической системе.

Ранее [1, 2] было показано, что аллильная изомеризация дихлорбутенов (ДХБ)

 $CH,CI-CHCI-CH=CH, \xrightarrow{\rightarrow} CH,CI-CH=CH-CH,CI$ (1)

может эффективно катализироваться наноразмерными частицами металлов, в том числе нанокластерами железа, иммобилизованными в матрице полиэтилена, и относится к структурно-чувствительным реакциям. Реакция (1), равно как и другие процессы с участием хлоролефинов, имеет важное прикладное значение [3], поиск эффективных катализаторов превращений хлоролефинов и исследование природы их каталитической активности – одна из актуальных задач химии галогенпроизводных. Согласно [4], наночастицы железа, полученные разложением карбонилов в полимерном расплаве, содержат наряду с металлическим ядром оксидные или карбидные оболочки. Объем и состав последних определяются условиями синтеза и соотношением металл/полимер. Частицы, содержащие карбиды, обладают, по данным [2], низкой активностью, в то время как наличие оксидной оболочки не препятствует катализу. Особенности каталитического поведения наноразмерных оксидов железа в катализе превращений хлоролефинов аллильного строения изучены в настоящей работе.

Каталитическая активность наноразмерных частиц оксидов железа, стабилизированных в полимерных матрицах (полиэтилен, ПЭ) и на поверхности кремнезема, исследована на примере реакции (1) и другого характерного для хлоролефинов процесса – алкилирования бензола:

Экспериментальная часть

Железосодержащие композиции в ПЭ- и ПП-матрицах получали путем термораспада пентакарбонила, ацетата, формиата или хлорида железа в растворе-расплаве полимерной матрицы в инертной атмосфере при температуре 240-260°, как описано в [4], и хранили на воздухе. Согласно данным рентгенофазового анализа (РФА) и др. методов, а также результатам, полученным в настоящей работе методом мессбауэровской спектроскопии, в материалах с содержанием железа от 3 до 10% содержание кластерных частиц оксида железа, синтезированных из карбонила железа и хранящихся на воздухе, составляет в среднем 80%. Размер наночастиц при содержании металла в полимере около 5% в таких композитах не превышал 2-4 нм [4]. При использовании ацетата или формиата железа полученные композиты содержали только частицы оксида железа Fe₂O₂. Для материалов, синтезированных из ацетата, методом EXAFS-спектроскопии обнаружено бимодальное распределение частиц по размерам в пределах 2-10 нм. Разложение хлорида железа в расплаве полимера приводило к образованию многофазных частиц, включающих, вероятно, смесь оксида и хлорида железа (III и II), условно обозначенную FeOCl₂. Частицы металлического железа размером несколько микрон в ПЭ, получали введением «х.ч.» карбонильного железа в раствор-расплав полимера.

Абсорбционные мессбауэровские спектры металлсодержащей фазы катализатора до и после проведения реакции получали на экспрессном мессбауэровском спектрометре МС1101Э (МНПП «*МосТек*», г. Ростов-на-Дону). В качестве источников γ -излучения использовали стандартные источники ⁵⁷Со в матрице металлического хрома или родия (активность до 30 мКи) производства ЗАО «Циклотрон» (г. Обнинск). Химические сдвиги в настоящей работе представлены относительно α -железа. Спектры

^{*} Институт общей и неорганической химии им. Н.С. Курнакова РАН. 119991 Москва, Ленинский пр., д. 31.

регистрировали при комнатной температуре. Моделирование спектров методом наименьших квадратов проводили с помощью программного обеспечения «Univem» (МНПП «MocTeк»).

Нанесенный Fe_2O_3 на SiO_2 (КСК-2) получали пропиткой носителя раствором нитрата железа с последующим прокаливанием при 400° в течение 6 ч. Последующее восстановление осуществляли либо в изотермическом режиме (10 ч при 450°), либо термопрограммируемым восстановлением водородом в интервале температур 400– 500° с остановкой восстановления при образовании новой фазы оксида по разработанной методике [5], позволяющей осуществлять последовательное восстановление железа по схеме:

$$\operatorname{Fe}_2\operatorname{O}_3 \to \operatorname{Fe}_3\operatorname{O}_4 \to \operatorname{FeO} \to \operatorname{Fe}.$$

Оксид-оксидное взаимодействие между нанесенным соединением и носителем позволяет стабилизировать малоустойчивые оксиды железа и препятствует полному восстановлению до металла.

Состав металлической фазы контролировали путем непрерывного измерения намагниченности образцов в процессе восстановления при помощи вибрационного магнитометра. Проведение восстановления в специально подобранном температурном режиме и его прекращение в заданное время позволило получить нанесенные катализаторы с преимущественным содержанием Fe_3O_4 или FeO. Ряд характеристик (размер частиц, удельная поверхность) восстановленных форм таких катализаторов приведен в работе [6]. Показано, что размер частиц возрастает от 5 до 15 нм при увеличении содержания железа от 4 до 15 мас.%.

Химически чистые карбонильное железо и его оксид, содержащий смесь α - и γ -Fe₂O₃, использовали без дополнительной очистки; α -Fe₂O₃ получали методом транспортной реакции γ -Fe₂O₃ с HCl с последующим разложением образовавшегося хлорида железа в парах воды [7]. Индивидуальность полученных черных кристаллов подтверждена методом РФА.

Реагенты и растворители чистили стандартными методами, чистоту контролировали хроматографически.

Реакционные смеси готовили на воздухе или с использованием вакуумной установки при давлении кислорода от $5 \cdot 10^{-1}$ до $5 \cdot 10^{-3}$ мм рт. ст., реакцию проводили в запаянных ампулах при температуре $80-120^{\circ}$. В ампулу помещали навеску катализатора с содержанием Fe около 5–10 вес. % от реагента и 0,3–1,0 мл раствора ДХБ или аллилхлорида в бензоле в соотношении 1:5–10. Состав реакционной смеси анализировали на хроматографе «*Chrom-5»* с ПИД на колонке с неподвижной фазой SE-30 при 50–150°.

По данным хроматографического анализа основным продуктом изомеризации 3,4-ДХБ в отсутствие кислорода является *транс*-1,4-ДХБ. Детальное исследование состава продуктов взаимодействия бензола с хлоролефином проведено на примере аллилхлорида методами хроматомасс-спектрометрии на приборах *«Finnigan MAT-212»*, «Varian 3740», а также с помощью ГЖХ. Результаты анализа этими методами хорошо совпадали.

В контрольных опытах использовали перекись бензоила для осуществления радикальноцепного взаимодействия хлоролефинов с бензолом и безводный хлорид железа (III) как кислотный катализатор (0,02г на 1 мл раствора).

Результаты и обсуждение

Изомеризация дихлорбутенов

Активность железосодержащих кластерных катализаторов и направление реакций в системе хлоролефин (3,4дихлорбутен-1, аллилхлорид) – бензол зависят от размера и состава металлсодержащей фазы, а также присутствия кислорода.

В отсутствие кислорода на катализаторах, содержащих наноразмерные оксиды железа, при температурах 90–110° в бензоле осуществляется только изомеризация ДХБ. Карбонильное железо и частицы железа микронного размера в ПЭ не катализировали процесс. Массивный оксид железа ведет процесс малоселективно с образованием большого числа высококипящих продуктов (25–30%), подобных наблюдаемым при радикально-цепной изомеризации в присутствии перекиси бензоила.

Некоторые данные по удельной активности массивных и ультрадисперсных оксидных катализаторов сопоставлены в табл. 1 и 2. Видно, что активность железосодержащих нанокомпозитов в полимере сопоставима с нанесенными оксидными катализаторами. Активность нанокомпозитов, полученных из пентакарбонила железа с меньшим содержанием оксидной фазы, ниже значений, полученных для катализаторов, синтезированных из солей железа. Активность ультрадисперсных катализаторов на основе оксида Fe(III) на SiO₂ и нанокомпозитов возрастает в отсутствие кислорода. Этот эффект в растворах проявляется ярче, чем в чистом ДХБ.

Другой интересной особенностью изомеризации ДХБ в бензоле на оксидных катализаторах является индукционный период на кинетических кривых накопления 1,4-ДХБ, продолжительность которого сильно зависит от давления кислорода. Примеры кинетических кривых представлены на рис. 1 для Fe₂O₃, нанесенного на SiO₂, и нанокомпозитов Fe в ПЭ. Видно, что для Fe₂O₃/SiO₂ период индукции при уменьшении давления кислорода от 5.10⁻¹ до 10⁻² мм рт. ст. сокращается с 2,5 ч до 15 мин. В момент окончания индукционного периода визуально наблюдали изменение красно-коричневого (ү-Fe₂O₃) или желто-оранжевого (Fe₂O₃/SiO₂) цвета катализатора на черный. Во всех случаях, даже для обладающей намагниченностью модификации ү-Fe₂O₃, твердые остатки катализатора после реакции утрачивали намагниченность. Эти изменения происходили только в присутствии ДХБ, нагревание оксидов железа в бензоле при 100° в течение 4 ч не приводило к изменению цвета и магнитных свойств образцов. Эти данные позволили предположить, что в присутствии ДХБ происходит формирование новой, более активной

Таблица 1

N⁰	Катализатор	Fe, 10 ⁴ моль	3,4-ДХБ, 10 ⁴ моль	<i>T</i> , °C	<i>t</i> , мин	1,4-ДХБ %	A _y ¹	${A_{np}}^2$
1	Fe (карб)	1,0	9,3	100	60	12	1,1	11
2	5% Fe(карб) / ПЭ	0,9	92,8	100	60	2	2,0	2
3	α-иγ-Fe ₂ O ₃	5,0	92,8	100	15	75	56	56
4	α-Fe ₂ O ₃	1	9,3	100	60	68	6,3	63
5	12%Fe ₂ O ₃ /SiO ₂	0,86	9,3	100	30	60	13,0	130
6	12% Fe/ SiO ₂ ³	1,1	92,8	100	180	49	-	14
7	5% Fe ₂ O ₃ / ПЭ (из ацетата)	0,36	92,8	100	60	70	180	180
8	5% FeOCl _x / ПЭ (из хлорида)	0,34	92,8	80	30	40	220	220
9	5 % Fe/ ПЭ (из карбонила)	0,22	92,8	100	120	42	89	89
9a	повторное использование катализатора № 9	0,22	92,8	100	60	51	-	215

Сравнение каталитических свойств железосодержащих катализаторов в изомеризации ДХБ при 100° при давлении кислорода 10⁻² мм рт. ст.

Примечания. ¹ – удельная активность, моль продукта/ ат. Fe'ч; ² – приведенная активность получена приведением удельной активности к одинаковому количеству исходного ДХБ делением на отношение количества ДХБ в образце и в чистом ДХБ (92,8·10⁻⁴моль); ³ – катализатор 5 восстанавливали в токе водорода в течение 10 ч при температуре 450°.

Таблица 2

Сравнение каталитических свойств железосодержащих катализаторов в изомеризации ДХБ при 100° на воздухе

№	Катализатор	Fe,10 ⁴ моль	3,4-ДХБ, 10 ⁴ моль	<i>T</i> °, C	<i>t</i> , мин	1,4-ДХБ, %	$A_{y\!_{\rm J}\!_{\rm J}}^{ 1}$
3	α-и γ-Fe ₂ O ₃	1,7	92,8	100	60	49	27
4	α-Fe ₂ O ₃	1	9,3	100	60	5	0,5
5	12%Fe ₂ O ₃ / SiO ₂	1,1	92,8	100	30 60	27 43	45 37
6	12% Fe/ SiO ₂ ³	1,1 0,55	92,8 92,8	100 100	60 120 60	54 77 30	45 32 51
7	5% Fe ₂ O ₃ / ПЭ (из ацетата)	0,54	92,8	100	60	65	112
8	5% FeOCl _x / ПЭ (из хлорида)	0,89	92,8	100	60	44	46
9	5 % Fe/ ПЭ (из карбонила)	0,45	92,8	100	120	44	45
10	5% Fe ₂ O ₃ / ПЭ (из формиата)	0,89	92,8	100	30 60	54 66	113 69
11	10% Fe ₂ O ₃ / SiO ₂	0,89	92,8	100	15 30 60	54 68 76	225 142 81
12	5% Fe ₂ O ₃ / SiO ₂	0,89	92,8	100	15 30 60	26 40 48	108 83 50
13	5% Fe ₃ O ₄ / SiO ₂	0,89	92,8	100	15 30 60	43 50 55	179 104 57
14	5% FeO/ SiO ₂	0,89	92,8	100	15 30 60	22 45 50	92 94 52

Примечания. См. примечания к табл. 1.

модификации катализатора, причем тем легче, чем меньше давление кислорода и больше концентрация ДХБ. Повидимому, адсорбция кислорода на оксидных материалах блокирует или уничтожает активные центры и препятствует взаимодействию с ДХБ, а также формированию новой модификации катализатора. С этим предположением согласуется и то, что при повторном использовании активность катализатора возрастает (см. табл. 1, №9). Однако после многократного использования оксидных катализаторов их эффективность падает. Известно [8], что в зависимости от парциального давления кислорода и температуры состав оксидов железа сильно меняется, при снижении давления и увеличении температуры возрастает доля нестехиометрических оксидов Fe2+xO3, имеющих дефицитные по кислороду ионы железа. По нашему мнению, именно на таких дефектах осуществляется активированная адсорбция ДХБ, включающая стадию переноса электрона от Fe^{II} на молекулу ДХБ. Роль электроноакцепторных свойств молекул ДХБ уже обсуждалась применительно к катализу низковалентными комплексами металлов [9]. Координация хлора молекулы ДХБ по вакантному координационному месту иона Fe^{II} приводит, вероятно, к гомолитическому разрыву связи C-Cl и образованию оксихлорида железа:

 $K_2 en_2 en_2 en_2 en_2 en_2$

Взаимодействие радикала R^{\bullet} с хлором оксихлорида приводит к восстановлению Fe^{III} до Fe^{II} и образованию

Рис. 1. Кинетические кривые накопления 1,4-ДХБ (раствор в бензоле 1:10) при 100° в присутствии Fe₂O₃/SiO₂ при давлении (мм рт. ст.): 10⁻² (1); 10⁻¹ (2); 5.10⁻¹ (3); в присутствии нанокомпозита Fe в ПЭ в чистом ДХБ при 90° при давлении 10⁻¹ мм рт. ст. (4)

либо исходного 3,4-ДХБ, либо продукта изомеризации 1,4-ДХБ (R'Cl):

$$R^{\bullet} + Fe^{III} Cl(O) \rightleftharpoons R'Cl + Fe^{II} (O).$$

Нельзя также исключить возможность изомеризации с участием молекулы ДХБ на центрах Fe^{III} в окружении хлорид-анионов. Высокая эффективность FeCl₃ в этой реакции известна, в присутствии безводного хлорида железа изомеризация осуществляется количественно уже при комнатной температуре [10].

Выход аллильных радикалов в раствор и их рекомбинация приводят к образованию побочных продуктов, например олигомеров ДХБ. На оксидных катализаторах при больших глубинах превращения в заметной степени происходит отщепление HCl от молекулы ДХБ с образованием α - и β -хлоропренов и их последующая олигомеризация. Кроме того, возможно взаимодействие хлоролефинов с бензолом. Эти процессы на массивных катализаторах в отсутствие кислорода дают до 15–20% хлоропрена и более высококипящих продуктов дальнейших превращений ДХБ и бензола.

Предложенная схема подтверждается тем, что при использовании восстановленных форм катализаторов и нанокомпозита, синтезированного из хлорида железа, период индукции и влияние кислорода отсутствуют, а также приведенными ниже результатами исследований состава исходных катализаторов и продуктов их взаимодействия с ДХБ.

Взаимодействие оксидов железа с хлоролефинами

Мессбауэровские спектры нанокомпозитов и ультрадисперсных оксидов, полученных термическим разложением ацетата, формиата (ПЭ) или нитрата железа (SiO₂), имеют много общего. Они содержат помимо секстета линий с параметрами, близкими к значениям для Fe₂O₃ (как правило, α-модификация) [11], дублетные линии с параметрами, соответствующими Fe(III) в октаэдрическом окружении, которые могут быть отнесены к оксогидроксиду железа FeO(OH) [11] или наноразмерному суперпарамагнитному оксиду железа [12]. Соотношение интенсивностей указанных линий сильно зависит от условий синтеза образцов. Дублеты со сходными параметрами присутствуют в спектрах всех исходных катализаторов, исследованных в работе. Мессбауэровские спектры нанесенных оксидов характеризуются более узкими линиями, наблюдаемыми на фоне достаточно протяженного поглощения, очевидно, релаксационной природы. Параметры спектров приведены в табл. 3. В спектре нанесенного катализатора 13 наблюдали резонансный сигнал в виде комбинации двух секстетов, хорошо согласующийся с данными [11] для смешанного оксида Fe₃O₄, и дополнительный дублет с параметрами, соответствующими кислородсодержащему соединению Fe(II) в тетраэдрическом окружении. В спектре образца 14 дополнительно присутствует дублет с параметрами, характерными для Fe(II) в октаэдрическом кислородном окружении.

В спектрах образца № 8 (рис. 2), синтезированного из хлорида железа в ПЭ, дополнительно присутствуют дублетные линии с параметрами близкими к значениям $\delta = 1,26$ мм/с, $\Delta = 3,00$ мм/с, полученным для тетрагидрата хлорида железа (II) в работе [13].

Подобные же дублетные линии с параметрами $\delta = 1,22\pm0,01$ мм/с, $\Delta = 3,00\pm0,01$ мм/с, появляются на фоне полос оксида в спектрах массивных и ультрадисперсных оксидов после их прогрева в течение 30 мин при 100° в растворе хлоролефина в бензоле. Пример спектра показан на рис. 3. В образцах катализаторов, прогретых в чистом ДХБ (например, рис. 4), появляются две пары дублетных линий с параметрами, во всех случаях близкими к значениям $\delta = 1,22\pm0,01$ мм/с, $\Delta =$ 2,97 \pm 0,01 мм/с и δ = 1,16 \pm 0,01 мм/с, Δ = 2,30 \pm 0,01 мм/с. Первый дублет по своим параметрам близок к описанным выше, вторая пара линий также относится к Fe(II) в продукте взаимодействия оксида железа молекулами ДХБ. По-видимому, в чистом ДХБ происходит более полное восстановление и хлорирование оксида железа, что является причиной снижения активности катализатора.

Таким образом, оксидные катализаторы способны отрывать атом хлора от молекулы хлоролефина, вероятно с промежуточным образованием более активных в катализе нестехиометрических оксихлоридов железа. Их медленное формирование в присутствии кислорода приводит к появлению периода индукции на кинетических кривых. Это подтверждается тем фактом, что при использовании катализатора №8, спектр которого уже содержит сигналы с параметрами, близкими к спектрам соединений, образующихся в реакции с хлоролефинами, изомеризация осуществляется без периода индукции.

Кроме того, как видно из табл. 2, при малых глубинах конверсии скорость образования 1,4-ДХБ максимальна на катализаторе №13, содержащем наибольшую долю нестехиометрических оксидов.

Таблица 3

Параметры мессбауэровских спектров исходных катализаторов (5 вес. % Fe)

Катализатор	δ, мм/с	Δ , мм/с	<i>Н</i> , кЭ	Площадь, %
$3-\text{Fe}_2\text{O}_3$	0,38 <u>+</u> 0,01	0,18 <u>+</u> 0,01	515 <u>+</u> 1	
7-Fe ₂ O ₃ /ПЭ	0,39 <u>+</u> 0,01 0,37 <u>+</u> 0,01	0,18 <u>+</u> 0,01 0,66 <u>+</u> 0,01	502 <u>+</u> 1	34 66
8-FeOCl _x /ПЭ	0,39 <u>+</u> 0,01 1,22 <u>+</u> 0,01	0,65 <u>+</u> 0,01 2,96 <u>+</u> 0,01		54 46
12-Fe ₂ O ₃ /SiO ₂	0,33 <u>+</u> 0,01 0,43 <u>+</u> 0,01	0,04 <u>+</u> 0,01 0,72 <u>+</u> 0,01	501 <u>+</u> 1	58 42
13-Fe ₃ O ₄ /SiO ₂	$\begin{array}{c} 0,28{\pm}0,02\\ 0,59{\pm}0,02\\ 0,42{\pm}0,02\\ 0,84{\pm}0,08 \end{array}$	$\begin{array}{c} 0,11{\pm}0,03\\ 0,11{\pm}0,04\\ 0,81{\pm}0,04\\ 1,64{\pm}0,17 \end{array}$	479 <u>±</u> 1 446 <u>±</u> 1	24 31 40 5
14-FeO/SiO ₂	0,46 <u>+</u> 0,01 1,05 <u>+</u> 0,05	$\begin{array}{c} 0,94 \underline{+} 0,01 \\ 0,91 \underline{+} 0,05 \end{array}$		75 25

Рис. 2. Мессбауэровский спектр нанокомпозита FeOCl,/ПЭ

Рис. 3. Мессбауэровский спектр $\alpha\text{-}Fe_2O_3$ после нагревания при 100° в течение 30 мин в растворе ДХБ в бензоле (1:5)

Алкилирование бензола хлоролефинами

Алкилирование бензола хлоролефинами более детально исследовано на примере аллилхлорида, близкого по строению и свойствам к ДХБ. Хлоролефины аллильного типа как алкилирующие агенты могут реагировать с ароматическими углеводородами двояко – подобно хлоралканам или олефинам. Ранее каталитические свойства оксидов железа типа шпинелей были обнаружены в жидкофазном алкилировании бензола бензилхлоридом [14]. В этом процеесе Fe₂O₃ малоактивен и неселективен.

Таблица 4

Продукты взаимодействия аллилхлорида с бензолом в отсутствие кислорода при катализе массивным оксидом железа (T = 100°; время реакции 4 ч; 0,5 мл бензола; 0,1 мл аллилхлорида; 0,05 г Fe₂O₃) по данным хроматографического и хроматомасс-спектрометрического анализа

№	Соединение	Индекс, I ^{SE} (50–150 °C)	% 1	% 2			
1	аллилхлорид	550	18	19			
2	бензол	660	-	-			
Алкилирование с разрывом связи С-Сl*							
3	2-пропенилбензол	935	39	36			
4	1-пропенилбензол (цис)	960	-	1			
5	димер аллилхлорида 5-хлор-4-(хлорметил-1- пентен	988	15	20			
6	*1-пропенилбензол (транс)	1004	4	4			
Алкилирование с разрывом двойной связи							
7	2-хлор-1-метилэтилбензол	1126	20	18			
8	3-хлорпропилбензол	1176	3	1			
9	тяжелые продукты: 1,2-дифенилэтанон 1,1-дифенилпропан и др.	>1250	1	1			

Примечания. ¹ – по данным хроматграфического анализа; ² – по данным хроматомасс-спектоматографического анализа.

При прогреве растворов исследованных хлоролефинов в бензоле (5:1) при температуре 100° в течение 4 ч в отсутствие кислорода с массивным оксидом железа образуется сложная смесь продуктов, содержащяя, как видно из табл. 4 на примере аллилхлорида, продукты алкилирования бензола с разрывом связей С–С1 или С=С хлоролефина, а также значительное количество продуктов димеризации и дальнейших превращений аллилхлорида. На воздухе процесс осуществляется также малоселективно с образованием в тех же условиях за 3 ч около 2% димера аллилхлорида и 10% высококипящих продуктов (индексы Ковача 1300–1600).

В контрольных опытах с использованием в качестве инициатора радикально-цепного процесса перекиси бензоила конверсия аллилхлорида составила около 50%, основным продуктом оказался димер аллилхлорида (20%), кроме того присутствовал диаллил (5%); 20% смеси составили высококипящие продукты (индексы Ковача 1300–1600). Выход пропенилбензола не превышал 5%, продуктов алкилирования с разрывом двойной связи не обнаружено.

Наноразмерные оксиды железа в присутствии кислорода катализируют алкилирование бензола хлоролефинами с образованием только продуктов алкилирования с разрывом связей C-Cl и C=C. Примеры данных по составу реакционных смесей на разных типах наноразмерных катализаторов представлены в табл. 5. Выход других продуктов во всех случаях не превышал 1%. В отсутствие кислорода с низким выходом (1–5%) образуется 2-пропенилбензол. Только в случае использования катализатора №8, синтезированного из хлорида железа, его выход достигал ~20% за 3 ч превращения при 100°. Образование хлорпропилбензолов не обнаружено и на этом катализаторе.

Как видно из табл. 5, каталитические свойства наноразмерных оксидов железа в алкилировании зависят от состава оксидной фазы, температуры и продолжительности реакции. При этом меняется как активность катализатора (суммарный выход продуктов), так и селективность (соотношение продуктов). В алкилировании с разрывом связи C-Cl наиболее активны катализаторы на основе оксида железа (III). На малых глубинах превращения образуется главным образом продукт алкилирования с разрывом связи C-Cl (2-пропенилбензол), а затем увеличивается содержание продукта разрыва двойной связи аллилхлорида -2-хлор-1-метилэтилбензола. К преимущественному образованию последнего приводит использование восстановленных форм катализатора, что может быть связано с образованием центров Fe^{III}(Cl) при взаимодействии Fe^{II} с хлором молекулы хлоролефина. Действительно, при катализе безводным хлоридом железа (III), обладающим сильной льюисовской кислотностью, алкилирование осуществляется преимущественно с разрывом двойной связи. В сравнительных опытах при 80° селективность по 2-хлор-1-метилэтилбензолу превышала 90% при конверсии аллилхлорида около 50% за 40 мин. Это говорит о том, что высокая активность наноразмерных оксидов в алкилировании с разрывом связи C-Cl, вероятно, не определяется наличием кислотных активных центров. Существующее отличие состава продуктов от смеси, полученной с использованием перекиси бензоила, не оставляет сомнений, что алкилирование, как и изомеризация, осуществляется на наноразмерных оксидах железа не по радикально-цепному механизму.

Таким образом, наноразмерные оксиды железа являются активными и селективными катализаторами превращений хлоролефинов. Сходство в поведении нанокомпозитов железа в полимерных матрицах с нанесенными оксидами железа, с одной стороны, и их отличие от массивных и кислотных катализаторв, с другой стороны, позволяют предполагать особую роль высокодисперсной оксидной фазы в реакциях галогенуглеводородов с разрывом связи C-Cl. Возможно, что ее особенности связаны с образованием в присутствии хлоролефинов аллильного строения нестехиометрических оксидов или оксихлоридов железа. Сильное влияние кислорода на активность катализаторов и направление каталитических реакций говорят о сложном характере процессов, протекающих в системе хлоролефин – ароматический углеводород – наноразмерный оксид железа, вероятно, на разных активных центрах нестехиометрических оксидов.

Таблица 5

№ Катализатор Количествово T, °C *t*, ч Конверсия Селективность, % катализатора в аллилхлорида, продукт с продукт с растворе, % разрывом связи разрывом связи г/мл C-Cl C=C 5 50 Fe_20_3 /SiO₂ (12%) 0,025/0,5 110 2 54 50 3 110 72 46 54 2 6 Fe/SiO₂(12%) 0,025/0,5 100 46 15 85 110 2 63 32 68 100 7 Fe₂0₃/ПЭ (5%) 0,075/0,5 2 25 100 41 2 110 71 59 3 0,025/0,5 100 28 66 34 110 3 44 64 36 FeOCl_x/ПЭ (5%) 8 0,075/0,5 100 2 14 100 _ 100 3 20 110 2 33 61 39 42 110 4 68 58 120 2 55 53 45 9 Fe/II (5%) 0,03/0,5 110 3 6 100 Fe₂0₃/SiO₂ (10%) 0,025/0,5 110 51 11 4 35 65 13 110 2 31 23 77 Fe₃0₄/SiO₂ (5%) 0.050/0.5 14 Fe0/SiO₂ (5%) 0,050/0,5 110 2 43 14 86 15 Fe₂0₃/SiO₂ (15%) 0,033/0,5 110 2 23 48 52 16 Fe₃0₄/SiO₂ (15%) 0,033/0,5 11 2 41 40 60

Сопоставление каталитических свойств наноразмерных оксидов железа в алкилировании бензола аллилхлоридом (10⁻³моль) при их соотношении 5:1 в присутствии кислорода

Работа выполнена при поддержке РФФИ (№ 98-03-32130, № 01-03-32783) и ФЦП «Интеграция» (№ АО114). Исследования методом мессбауэровской спектроскопии проводили на базе Центра коллективного пользования РФФИ по радионуклидной диагностике материалов.

СПИСОК ЛИТЕРАТУРЫ

- Trakhtenberg L.I., Gerasimov G.N., Grigoriev E.I. et al. // Studies in Surface Science and Catalysis / Ed. B. Delmon and J. T. Yates, Elsevier. Amsterdam. 2000. 130. 12th ICC, Part B. P. 941.
- 2. Загорская О.В., Зуфман В.Ю., Ростовщикова Т.Н., Смирнов В.В., Губин С.П. // Изв. АН. Сер. хим. 2000. № 5. С. 854.
- Промышленные хлорорганические продукты. Справочник. М., 1978. С. 302.
- 4. Козинкин А.В., Власенко В.Г., Губин С.П., Шуваев А.Т., Дубовцев И.А. // Неорган. матер. 1996. **32.** С. 422.
- 5. Чернавский П.А., Киселев В.В., Лунин В.В. // ЖФХ. 1992. 66. С. 2712.
- 6. Чернавский П.А., Панкина В.А., Лунин В.В. // ЖФХ. 1996. **70**. С. 1016.
- Эломанов В.П. Практикум по неорганической химии. М., 1994. С. 232.

- 8. *Третьяков Ю.Д.* Химия нестехиометрических окислов. М., 1974. С. 321.
- Rostovshchikova T.N., Smirnov V.V., Kokorin A.I. // J. Molec. Cat. A: Chem. 1998. 129. P. 141.
- 10. Ростовщикова Т.Н., Смирнов В.В., Голубева Е.Н. и др. // Химическая физика. 1998. 17. С. 63.
- Oh S.J., Cook D.C., Townsend H.E. // Hyperfine Interactions. 1998. 112. P. 59.
- 12. Суздалев И.П. Динамические эффекты в резонансной спектроскопии. М., 1979. С. 149.
- 13. Goldanskii V.I., Herber R.H. // Chemical Application of Mossbauer Spectroscopy. Academic Press. N.Y.; L., 1968.
- 14. Ghorpade S. P., Darshane V.S., Dixit S.G. // Appl. Catalysis. A: General. 1998. 166. P. 135.

Поступила в редакцию 12.07.01