УДК 541.121:536.7:669.23'26'292

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ И ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФАЗОВЫХ РАВНОВЕСИЙ В СИСТЕМЕ Со-Cr-V

В. Н. Кузнецов, Г. П. Жмурко, Ж. Н. Тойбаев, К. Б. Калмыков, Л. М. Азиева, Л. С. Гузей

(кафедра общей химии)

Методом диффузионных пар исследованы фазовые равновесия в системе Co-Cr-V при 1423 К. С использованием литературных термодинамических описаний систем Co-Cr и Cr-V, а также полученного авторами настоящей работы описания системы Co-V выполнен расчет фазовых равновесий в данной тройной системе. Проанализировано влияние различных приближений при построении модели **б**-фазы на результаты расчета.

Целью настоящей работы явилось исследование фазовых равновесий и определение области стабильности σ -фазы в тройной системе кобальт-хром-ванадий при температуре 1423 К. Сплавы этих металлов представляют большой интерес как с практической точки зрения, являясь основой многих жаропрочных и магнитных материалов, так и с теоретической, как типичный пример системы с широкой областью существования σ -фазы.

Экспериментальные данные по исследованию тройной системы Co–Cr–V до настоящего времени отсутствовали. Строение граничных двойных систем Co–V и Co–Cr аналогично, т. е. в них реализуется одна и та же последовательность фаз: γ -твердый раствор на основе кобальта, σ -фаза и β -твердый раствор на основе ОЦК компонента

(Сг или V). В системе Cr–V образуется непрерывный ряд твердых растворов. Естественно было предположить, что строение тройной системы будет простым с той же последовательностью фаз (γ , σ , β).

Взаимодействие элементов в системе Co-Cr-V было исследовано кинетическим методом диффузионных пар с использованием микроструктурного, дюрометрического и локального рентгеноспектрального методов анализа. Образцы для исследования получали соединением кобальта с однофазными сплавами системы Cr-V. Были получены и исследованы пары составов Co-Cr₁₀V₃₀ и Co-Cr₁₅V₈₅.

Распределение элементов в диффузионных зонах приготовленных пар исследовали после изотермического отжига при температуре 1423 К.

Состав пары	ү-фаза, ат.%			σ-фаза, ат.%			β-фаза, ат.%		
	Co	Cr	V	Co	Cr	V	Со	Cr	V
Co Cr ₇₀ V ₃₀	63,0	26,1	10,9	50,4	36,2	13,4	-	-	-
Co Cr ₁₅ V ₈₅	67,5	4,7	27,8	59,1	5,8	35,1	-	-	-
Co Cr ₇₀ V ₃₀	-	-	-	29,7	51,7	18,5	22,3	60,4	17,2
Co Cr ₁₅ V ₈₅	-	_	_	28,2	12,3	59,3	17,6	15,7	66,6

Составы равновесных фаз ү, о и β в системе Co-Cr-V при 1423 К

Строение переходных зон обеих диффузионных пар было аналогичным. В этих зонах последовательно реализовались три фазы: γ -твердый раствор на основе кобальта, σ -фаза и β -фаза на основе хрома и ванадия. Все эти фазы обладали различной твердостью: наибольшей обладала σ -фаза (~330–350 кг/мм²), значения твердости γ -фазы составляли 185–195 кг/мм², β -фазы – ~147–163 кг/мм².

Анализ диффузионных путей и концентрационных кривых элементов в переходных зонах позволил получить коноды двухфазных областей $\gamma + \sigma$ и $\sigma + \beta$ системы Co–Cr–V и построить изотермическое сечение данной системы при температуре 1423 К (рис. 1). Составы равновесных γ -, σ - и β -фаз приведены в таблице.

Из рис. 1 видно, что область гомогенности σ -фазы в тройной системе несколько расширяется по сравнению с граничными двойными системами (22 ат.% в системе Со– V и 11,5 ат.% в системе Со–Сг) и достигает максимальной ширины на изоконцентрате 10 ат.% хрома.

В качестве исходных данных для термодинамического расчета системы Co–Cr–V были использованы литературные модельные описания систем Co–Cr и Cr–V [1, 2], а также описание системы Co–V, выполненное авторами данной работы на основании экспериментальных исследований фазовых границ [3–5] и термодинамических свойств [6].

Термодинамические свойства ГЦК-(γ-) и ОЦК-(β-)-фаз тройной системы определяли, пользуясь экстраполяцией описания соответствующих фаз в двойных системах с помощью встроенной в программу *Thermo-Calc* модели Муггиану. Дополнительных поправок на тройные взаимодействия не вводили.

Модель σ -фазы записывали в виде: (A,A')₄B₈(A,A',B)₁₈, где A – Cr, A' – V, а B – Со. В отличие от моделей твердых растворов, которые в принципе могут быть записаны только на основе граничных двойных систем, для записи модели σ -фазы помимо параметров моделей σ -фаз двойных систем необходима оценка параметров стабильности тройных квазикомпонентов Co₈Cr₁₈V₄ и Co₈V₁₈Cr₄.

Простейшим способом оценки этих величин можно считать предположение, что их энтальпии, энтропии и, следовательно, энергии Гиббса образования линейно связаны со значениями этих же величин для квазикомпонентов σ-фаз в ограничивающих двойных системах.

Результаты пробного расчета с линейно интерполированными параметрами стабильности тройных квазикомпонентов σ -фазы Co₈Cr₁₈V₄ и Co₈V₁₈Cr₄ оказались неудовлетворительными (рис. 2). На рассчитанном сечении области σ -фаз из двойных граничных систем оказались изолированными и разделенными областью $\gamma + \beta$.

На основании вышесказанного для оценки параметров стабильности тройных квазикомпонентов значения их энтальпии и энтропии образования варьировали так, чтобы зависимость энтальпии, энтропии, а следовательно, и энергии Гиббса превращения ОЦК-фазы в σ -фазу на разрезе $x_{\rm Co} = 0.5$, соединяющем середины областей устойчивости σ -фаз в граничных двойных системах, от концентрации

Рис. 1. Экспериментальные точки и изотермическое сечение системы Co-Cr-V при 1423 К

Рис. 2. Рассчитанное в первом приближении изотермическое сечение системы Co-Cr-V при 1423 К

Рис. 3 Сопоставление рассчитанного (сплошные линии) изотермического сечения системы Со-Сг-V при 1423 К с экспериментальным (точки)

ванадия стала практически линейной. После этого был выполнен расчет изотермического сечения при 1423 К, результаты которого приведены на рис. 3 в сопоставлении с экспериментальными данными настоящей работы.

Из рис. З видно, что полученные модели фаз довольно хорошо воспроизводят практически все фазовые границы. Несколько худшее согласие получено для границы $\sigma/(\gamma+\sigma)$, для которой протяженность области σ -фазы на рассчитанной диаграмме меньше, чем на экспериментальной. Можно также отметить некоторое расхождение в начальном наклоне границы β -фазы в области, прилегающей к системе Со–Сг. Тем не менее, учитывая, что при расчете не использовались экспериментальные данные по тройной системе, результаты моделирования можно считать в целом удовлетворительными.

Все параметры моделей фаз системы приведены в Приложении в виде листинга, полученного в системе Thermo-Calc.

ПРИЛОЖЕНИЕ

Параметры моделей фаз системы Co-Cr-V

ALL DATA IN SI UNITS

FUNCTIONS VALID FOR 298.15<T< 6000.00 K UNLESS OTHER LIMITS STATED

 BCC_A2

EXCESS MODEL IS REDLICH-KISTER_MUGGIANU

ADDITIONAL CONTRIBUTION FROM MAGNETIC ORDERING

Magnetic function below Curie Temperature

+1-.905299383*TAO**(-1)-.153008346*TAO**3-

-.00680037095*TAO**9-.00153008346*TAO**15 Magnetic function above Curie Temperature -.0641731208*TAO**(-5)-.00203724193*TAO**(-15) -4.27820805E-04*TAO**(-25) 2 SUBLATTICES, SITES 1: 3 CONSTITUENTS: CO,CR,V : VA G(BCC A2,CO:VA;0)-H298(HCP A3,CO;0) = +GCOBCCTC(BCC A2,CO:VA;0) = 1450BMAGN(BCC A2,CO:VA;0) = 1.35 $G(BCC_A2,CR:VA;0)-H298(BCC_A2,CR;0) = +GHSERCR$ TC(BCC A2, CR: VA; 0) = -311.5BMAGN(BCC A2,CR:VA;0) = -.01G(BCC A2,V:VA;0)-H298(BCC A2,V;0) = 298.14<T< 4000.00: +GHSERVZ L(BCC A2,CO,CR:VA;0) = +24357-19.797*T L(BCC A2,CO,CR:VA;1) = -2010L(BCC A2,CO,V:VA;0) = -29242.08+7.8648*TTC(BCC A2, CO, V:VA; 0) = -1450BMAGN(BCC A2,CO,V:VA;0) = -1.35L(BCC A2, CR, V:VA; 0) = -9874 - 2.6964*TL(BCC A2, CR, V:VA; 1) = -1720 - 2.5237*TFCC A1 EXCESS MODEL IS REDLICH-KISTER MUGGIANU

ADDITIONAL CONTRIBUTION FROM MAGNETIC ORDERING

Magnetic function below Curie Temperature +1-.860338755*TAO**(-1)-.17449124*TAO**3--.00775516624*TAO**9-.0017449124*TAO**15 Magnetic function above Curie Temperature -.0426902268*TAO**(-5)-.0013552453*TAO**(-15) -2.84601512E-04*TAO**(-25) 2 SUBLATTICES, SITES 1: 1 CONSTITUENTS: CO,CR,V : VA $G(FCC_A1,CO:VA;0)-H298(HCP_A3,CO;0) = +GCOFCC$ $TC(FCC_A1,CO:VA;0) = 1396$ BMAGN(FCC_A1,CO:VA;0) = 1.35 $G(FCC_A1,CR:VA;0)-H298(BCC_A2,CR;0) = +GCRFCC$ $TC(FCC_A1,CR:VA;0) = -1109$ BMAGN(FCC A1,CR:VA;0) = -2.46G(FCC A1, V:VA; 0) - H298(BCC A2, V; 0) =298.14<T< 4000.00: +7500+1.7*T+GHSERVZ L(FCC A1,CO,CR:VA;0) = +2085-11.876*TTC(FCC A1,CO,CR:VA;0) = -1795L(FCC A1,CO,V:VA;0) = 298.14<T< 4000.00: --48523.62+7.6667*T L(FCC A1,CO,V:VA;1) = 298.14<T< 4000.00: --25037.05+19.511*T TC(FCC_A1,CO,V:VA;0) = -2407.36 TC(FCC A1,CO,V:VA;1) = -1111.36 $BMAGN(FCC_A1,CO,V:VA;0) = -2.4$ BMAGN(FCC A1,CO,V:VA;1) = -1.2L(FCC A1,CR,V:VA;0) = -9874-2.6964*T L(FCC A1, CR, V:VA; 1) = -1720 - 2.5237*TSIGMA EXCESS MODEL IS REDLICH-KISTER MUGGIANU 3 SUBLATTICES, SITES 8: 4: 18 CONSTITUENTS: CO : CR,V : CO,CR,V G(SIGMA,CO:CR:CO;0)- 26 H298(HCP_A3,CO;0)-4 H298(BCC A2,CR;0) = +26*GCOFCC+4*GHSERCR--4420+11.383*T G(SIGMA,CO:V:CO;0)- 26 H298(HCP A3,CO;0)-4 H298(BCC A2,V;0)=298.14<T<4000.00: +26*GHSERCO+4*GHSERVZ+52386.55-85*T G(SIGMA,CO:CR:CR;0)- 8 H298(HCP A3,CO;0)-22 H298(BCC A2,CR;0) = +8*GCOFCC+22*GHSERCR+37051--152.525*T G(SIGMA,CO:V:CR;0)-8 H298(HCP A3,CO;0)-18 H298(BCC A2,CR;0)-4 H298(BCC A2,V;0) = +8*GHSERCO+18*GHSERCR+4*GHSERVZ-30000-153.7*T

СПИСОК ЛИТЕРАТУРЫ

- 1. Jansson B. Internal report [Royal Technological Institute, Stockholm]. 1987. Цит. по ссылке в базе данных BINFREE, распространяемой с академической версией программы Thermo-Calc.
- 2. Lee B.-J. // Z. Metallkd. 1992. 83. S. 292.

G(SIGMA,CO:CR:V;0)-8 H298(HCP A3,CO;0)-4 H298(BCC A2,CR;0)-18 H298(BCC A2,V;0) = +8*GHSERCO+4*GHSERCR+18*GHSERVZ-400000+27.2*T G(SIGMA,CO:V:V;0)- 8 H298(HCP A3,CO;0)- 22 H298(BCC A2,V;0) = 298.14<T< 4000.00: +8*GHSERCO+22*GHSERVZ-231166.11-40*T L(SIGMA,CO:V:CO,V;0) = 298.14<T< 4000.00: -1011730+475*T SYMBOL VALUE/FUNCTION R 8.3145100E+00 GHSERCO 298.14<T< 1768.00: +310.241+133.36601*T-25.0861*T*LN(T) -.002654739*T**2-1.7348E-07*T**3+72527*T**(-1) 1768.00<T< 6000.00: -17197.666+253.28374*T-40.5*T*LN(T) +9.3488E+30*T**(-9) GCOBCC +2938-.7138*T+GHSERCO **GHSERVZ** 298.14<T< 790.00: -7930.43+133.346053*T-24.134*T*LN(T)-.003098*T**2+1.2175E-07*T**3+69460*T**(-1) 790.00<T< 2183.00: -7967.842+143.291093*T--25.9*T*LN(T)+6.25E-05*T**2-6.8E-07*T**3 2183.00<T< 4000.00: -41689.864+321.140783*T--47.43*T*LN(T)+6.44389E+31*T**(-9) GHSERCR 298.14<T< 2180.00: -8856.94+157.48*T--26.908*T*LN(T)+.00189435*T**2-1.47721E-06*T**3+139250*T**(-1)

```
2180.00<T< 6000.00: -34869.344+344.18*T-50*T*LN(T)-
```

-2.88526E+32*T**(-9)

GCRFCC +7284+.163*T+GHSERCR

```
GCOFCC +427.59-.615248*T+GHSERCO
```

- 3. Smith J.F. // Journal of Phase Equilibria. 1991. 12. P. 324.
- 4. Köster W., Schmid H. // Arch. Eisenhüttenwesen. 1955. 26. S. 421.
- 5. Köster W., Sachmid H. // Z. Metallkd. 1955. 46. S. 195.
- Spencer P.J., Putland F.H. // J. Chem. Thermodynamics. 1976. 8. P. 551.

Поступила в редакцию 30.03.00