УДК 546.273-31+546.27:537.563.2

ИОНИЗАЦИЯ И ФРАГМЕНТАЦИЯ МОЛЕКУЛ В₂О₂ и ВО ПРИ ЭЛЕКТРОННОМ УДАРЕ

А. В. Макаров, Н. В. Багаратьян, С. Г. Збежнева, Л. А. Алешко-Ожевская, Т. П. Георгобиани

(кафедра физической химии)

Масс-спектральным методом исследовано изотермическое (1503 К) испарение смеси В и B_2O_3 . Проанализирован масс-спектр пара над смесью расплава B_2O_3 с твердым бором. Рассчитано парциальное давление молекул B_2O_3 , B_2O_2 и ВО. Проведена оценка активности компонентов конденсированной фазы. Предложены масс-спектры молекул B_2O_3 , и ВО.

Памяти О. Т. Никитина посвящается

В настоящее время все расчеты равновесия

$$2BO(r) = B_2O_2(r) \tag{1}$$

базируются на данных о термодинамических свойствах молекул ВО и B_2O_2 , полученных независимо друг от друга. Библиография и анализ этих работ даны в [1].

Попытки подобрать системы, генерирующие в паровую фазу молекулы ВО и В₂О₂ в достаточных количествах, были предприняты давно и успехом не увенчались.

Так, в [2] в паре системы В-В₂О₃ были обнаружены молекулы В₂О₂, причем авторы считали, что возможно и

присутствие молекул ВО в ничтожно малой концентрации. Более удачными оказались опыты по изучению пара в системе $Al_2O_3 - B_2O_3$ [3], где были зарегистрированы молекулы ВО и B_2O_2 и определены их потенциалы ионизации.

Наряду с подбором и изучением систем велись работы по исследованию пара над оксидом бора, в результате чего был получен ряд неожиданных результатов. Например, в [4] в паре над чистой B_2O_3 были обнаружены молекулы B_2O_2 ; присутствие этих молекул было подтверждено путем определения потенциала ионизации.

Позже в [5] было показано, что термическая диссоциация оксида бора приводит к появлению в паровой фазе не только B_2O_2 , но и BO, а также BO_2 . Основанием для такого вывода послужили более тщательные, чем в [4], измерения потенциалов ионизации молекул. Пожалуй, работа [5] явилась на то время единственной, где были рассчитаны парциальные давления продуктов термической диссоциации, измерены константы равновесия реакций с участием молекул B_2O_3 , B_2O_2 , BO и BO₂, вычислены энтальпии реакций, а также энтальпия образования $\Delta_f H^0(BO_2, r, 0)$.

Интересными оказались опыты по исследованию пара над стеклообразующими системами $ZnO-B_2O_3$ [6]; PbO– $ZnO-B_2O_3$ [7] и SrO- B_2O_3 [8, 9]. Здесь пар помимо молекул, свойственных индивидуальным компонентам, имел в своем составе более сложные образования, например соответствующие метабораты, а также молекулы B_2O_2 , BO_2 и BO. Основное внимание в этих работах было уделено определению активности и летучести оксидных компонентов.

Усилия авторов упомянутых работ были направлены также на исследования бор-кислородсодержащих молекул. Наиболее полное рассмотрение различного типа равновесий с участием этих молекул было проведено в [8, 9].

Авторы [6, 7] сосредоточились исключительно на исследовании равновесия

$$B_2O_3(\Gamma) + 1/2O_2 = 2BO_2(\Gamma),$$
 (2)

в результате чего была уточнена энтальпия образования $\Delta_f H^0(BO_2, r, 0)$ и энтальпия образования газообразного BO_2^- [10].

Продолжением исследований [4, 5] стала работа [11], где ситуация с системой $B-B_2O_3$ сложилась иная, чем в [2]. Авторам [11] удалось зарегистрировать в паре оба вида молекул (B_2O_2 и ВО) и измерить их потенциалы ионизации.

Анализ литературы позволил выявить следующее:

1. Во всех рассматриваемых системах вклад термической диссоциации оксида бора в индивидуальные массспектры молекул B_2O_2 и ВО незначителен и не влияет на расчеты равновесий с их участием. 2. Количественная интерпретация масс-спектров этих молекул фактически отсутствует.

Последнее обстоятельство легло в основу настоящей работы, завершающей начатые в [11] исследования.

Эксперимент проводили на масс-спектрометре МИ-1201. С подробностями можно ознакомиться в [4, 5, 11]. Для испарения веществ использовали выполненную из молибдена эффузионную ячейку, состоящую из двух камер. Отношение площади эффузионного отверстия к площади поперечного сечения каждой из камер составляло ~1:100.

Весь эксперимент проводили в условиях одновременного испарения серебра (99,99%) и смеси В (99,9%) с $B_2O_3((xx.u.w))$, причем в одну камеру помещали серебро, в другую – смесь, приготовленную в соотношении ~2:1 по массе.

В данном случае серебру отводилась двоякая роль: с одной стороны, его использовали в качестве стандарта для определения чувствительности прибора, с другой – по нему контролировали режим работы аппаратуры в течение всего эксперимента.

Кроме того, серебро, помещенное в две камеры (отдельный опыт), использовали с целью устранения несоответствий в геометрии камер по отношению друг к другу и относительно ионно-оптической системы. Вычисленная с использованием серебра поправка составила 1,74. Давление серебра рассчитывали по уравнению [12]:

lg
$$P(\text{ MM Hg}) = -14400 \cdot T^{-1} - 0.85 \text{lg}T + 11.7.$$
 (3)

При T = 1503 К оно составляло $3,44 \cdot 10^{-4}$ атм (1 атм = 760 мм рт. ст.). Величина ионного тока серебра $J(Ag^+)$, рассчитанная с учетом изотопного состава и указанной выше поправки, составила 7532 абс. единиц.

В процессе исследований пара системы В-В₂О₃ зарегистрировали относительный масс-спектр. Данные приведены в табл. 1, где для сравнения представлены сведения из других литературных источников.

В табл. 2 даны результаты измерений токов ионов $B_2O_3^+$, $B_2O_2^+$ и BO^+ , проведенных в течение ~5 ч в изотермических условиях; там же представлены результаты расчетов парциальных давлений B_2O_3 , B_2O_2 и активностей расплава $B_2O_3/a(B_2O_3)/$ и твердого B/a(B)/.

Таблица 1

Фаза в ячейке	<i>Т</i> , К	U [*] , эВ	$B_2O_3^{+}$	$B_2O_2^+$	BO^+	\mathbf{B}^+	Примечание
B(т)+B ₂ O ₃ (ж)	1500	80	100	700	50	180	[2]**
B ₂ O ₃ (ж)	1500	80	100	20	10	5	
С(графит)-В2О3(ж)	1460	70	100	500	250	250	[13]
	1600	70	100	1100	330	300	
В ₂ О ₃ (ж)	1500	70	100	7	7	2	[14]
B(т)+B ₂ O ₃ (ж)	1503	70	100	450	60	70	Настоящая работа

Масс-спектры пара системы В-В2О3 (отн. ед.)

^{*} U – энергия ионизирующих электронов.

* Данные пересчитаны.

Таблица 2

Величины токов ионов (абс. ед.), парциальные давления молекул B₂O₃, B₂O₂ (атм.) и активности компонентов конденсированной фазы (1503 K, U=70 эВ)

$J(B_2O_3^+)$	$J(B_2O_2^+)$	J(BO ⁺)	$\begin{array}{c} P(B_2O_3)\\ \cdot 10^6 \end{array}$	$\begin{array}{c} P(B_2O_2)\\ \cdot 10^6 \end{array}$	$a(B_2O_3)$	<i>a</i> (B)
82,2	169,4	26,6	4,4	8,9	0,23	0,028
60,7	138,4	22,7	3,2	7,3	0,17	0,028
141,9	145,5	19,6	7,5	7,7	0,40	0,012
141,9	153,1	16,2	7,5	8,1	0,40	0,014
206,0	133,6	14,9	10,9	7,1	0,57	0,008

Необходимо отметить, что регистрация токов ионов протекала достаточно медленно, что дает возможность рассматривать процесс испарения смеси как последовательность равновесных состояний. Парциальное давление молекул В_xO_y здесь и далее вычисляли по стандартной в масс-спектрометрии методике [15]

$$P\left(\begin{array}{c}B \\ x \\ y\end{array}\right) = P(Ag) \cdot \frac{J(B \\ x \\ y\end{array}) \cdot \frac{J(Ag +)}{J(Ag +)} \cdot \frac{(Ag)}{(B \\ x \\ y\end{array}) \quad (4)$$

Соответствующие сечения ионизации атомов σ взяли из [16]. Сечения ионизации молекул B_xO_y рассчитывали по схемам, предложенным в [5]. Активности $a(B_2O_3)$ определяли путем сравнения парциальных давлений B_2O_3 над смесью с парциальным давлением чистого B_2O_3 (1,95·10⁻⁴ атм при 1503 K, [17]). Если для оксида бора изменение активности легко фиксируется по величине $P(B_2O_3)$, то для твердого бора чувствительность прибора будет явно недостаточна (Р над чистым бором при 1500 $K = 1,26\cdot10^{-12}$ атм [17]).

Была сделана попытка разрешить ситуацию с бором расчетным путем, используя для него понятие активности, расчет которой проводили так, как если бы речь шла об истинной, термодинамической активности. В действительности речь идет, скорее всего, о некоторой «эффективной» активности, поскольку бор закрыт оксидной пленкой, понижающей, в частности, его давление пара и скорость взаимодействия с газовой фазой. Для расчета a(B) мы воспользовались реакцией

2/3 B(r) + 2/3B₂O₃(
$$\mathbf{x}$$
) = B₂O₂(\mathbf{r}), (5)

для которой

$$K_{p}(T) = \frac{P(B_{2}O_{2})}{[a(B) \cdot a(B_{2}O_{3})]}$$
(6)

Расчет константы равновесия $K_p(T)$ проводили по уравнению

$$\Delta_{\rm r} {\rm H}^0(0) = {\rm T}\{\Delta_{\rm r} \Phi^*({\rm T}) - {\rm Rln} {\rm K}_{\rm p}({\rm T})\}, \qquad (7)$$

где

* (T) =
$$-\frac{{}^{\{G \ 0 \ (T) - H \ 0 \ (0)\}}}{T}$$
 (8)

Необходимые для расчета термодинамические функции взяли из [17].

Из данных табл. 2 видно, что с течением времени происходит увеличение а(B₂O₃) и уменьшение а(B). При этом их произведение оказывается почти постоянным.

Ситуация с $P(B_2O_3)$ кажется парадоксальной: сначала происходит уменьшение давления, затем – рост. Действительной причиной изменения давления могло явиться не только изменение активности расплава оксида бора, но и некоторые другие факторы, как, например, изменение поверхности испарения. В частности, «растекание» расплава по внутренней поверхности ячейки могло приводить к повышению $P(B_2O_3)$.

Аналогичный анализ с использованием реакции

$$1/3 B(r) + 1/3B_2O_3 (m) = BO (r)$$
 (9)

оказался невозможным из-за того, что образование ионов BO^+ обусловлено ионизацией трех молекул – B_2O_3 , B_2O_2 , BO.

Намного проще обстояло дело с ионом $B_2O_2^+$, молекулярными предшественниками которого являются B_2O_3 и B_2O_2 . Ситуацию с наложением масс-спектров разрешили следующим образом.

Сначала из токов ионов $B_2O_2^+$ и BO⁺ вычли соответствующие осколочные составляющие масс-спектра молекулы B_2O_3 [14]. Таким путем были получены исходные данные для ионов $B_2O_2^+$ и BO⁺ (табл. 2). В результате введенной поправки линия, принадлежащая $B_2O_2^+$, оказалась «чистой», а линия BO⁺ имела некий вклад за счет диссоциативной ионизации B_2O_2 .

Затем поступали следующим образом. С использованием значений $P(B_2O_2)$ (табл. 2) по известной из литературы [17] константе равновесия реакции (1) рассчитывали P(BO), а затем по уравнению (4) – величины $J(BO^+)$, обязанные своим происхождением исключительно молекулам BO. Оказалось, что рассчитанные таким путем токи молекулярных ионов BO^+ составляют лишь малую долю суммарного тока $J(BO^+)/B_2O_2 + BO$ и тока $J(BO^+)/B_2O_2$. Результаты расчетов приведены в табл. 3.

Из данных, представленных в табл. 2, 3 видно, что степень диссоциативной ионизации молекул B_2O_2 с образованием ионов BO^+ заметна: в среднем на 100 молекулярных

ТаблицаЗ

Ионные токи осколочных и молекулярных составляющих (абс. ед.) и парциальные давления ВО (атм) (T = 1503 K, U = 70 эВ)

J(BO ⁺)/B ₂ O ₂ +BO*	$J(BO^+)/B_2O_2$	J(BO ⁺)/BO	P(BO)·10 ⁷
26,6	25,2	1,4	1,10
22,7	21,5	1,2	0,99
19,6	18,3	1,3	1,02
16,2	14,9	1,3	1,05
14,9	13,7	1,2	0,98

^{*} Данные перенесены из табл. 2, где указанным символом здесь и в других графах таблицы обозначены ток ионов и источник его происхождения.

Т	а	б	Л	И	ц	a	4
---	---	---	---	---	---	---	---

Масс-спектры молекул B_2O_2 и ВО (отн. ед.) в паре системы B-B₂O₃ (T = 1503 K, U = 70 эВ)

Молекула в паре	$B_2O_3^{+}$	$B_2O_2{}^+$	BO^{+}	\mathbf{B}^+	Примечание
B_2O_3	100	7	7	2	[14]
B_2O_2	-	100	13	15	Настоящая
BO	-	-	100	<15	раоота

ионов $B_2O_2^+$ приходится 13 осколочных ионов BO^+ . Это почти вдвое больше, чем для молекул B_2O_3 [14].

Что касается происхождения ионов B^+ (измерения не проводили), то в соответствии с [2, 9] и с данными настоящей работы основная их часть, несомненно, связана с молекулами B_2O_2 . В этом случае степень диссоциативной ионизации оценили как 100:15. Результат этого расчета основан на полученных в настоящей работе данных и на зарегистрированном нами полном масс-спектре системы $B-B_2O_3$ (табл. 1). При оценке исходили из условия постоянства индивидуальных масс-спектров и их коэффициентов при фиксированном режиме работы аппаратуры и их независимости от концентрации молекул при T = const.

Сложнее обстояло дело с количественной оценкой диссоциативной ионизации молекул ВО с образованием иона B^+ . Трудность связана с тем, что линия B^+ , в принципе, является смешанной, обязанной своим происхождением молекулам B_2O_2 и ВО. Так как молекул B_2O_2 в паре намного больше, чем молекул ВО, то последние не

СПИСОК ЛИТЕРАТУРЫ

- 1. Справочник. Термодинамические свойства индивидуальных веществ. Т. 3, кн. 1. М., 1981. С. 8.
- Inghram M.G., Porter R.F., Chupka W.A. // J. Chem. Phys. 1956.
 25. P. 498.
- Blackburn P.E., Bechler A., Stauffer J.L. //J. Phys. Chem. 1966. 70. P. 2469
- Багаратьян Н.В., Никитин О.Т. // Вестн. Моск. ун-та. Сер. 2. Химия. 1979. 20. С. 539.
- 5. Багаратьян Н.В., Никитин О.Т., Горохов Л.Н. // Вестн. Моск. ун-та. Сер. 2. Химия. 1980. **21.** С. 139.
- 6. Семенихин В.И., Сорокин И.Д., Юрков Л.Ф., Сидоров Л.Н.// Физика и химия стекла. 1987. **13**. С. 667.
- 7. Семенихин В.И., Сорокин И.Д., Юрков Л.Ф., Сидоров Л.Н. // Физика и химия стекла. 1987. 13. С. 672.
- 8. Kou T., Asano M. // High Temper. Sci. 1987. 24. P. 1.
- 9. Asano M., Kou T. // J. Chem. Termodyn. 1988. 20. P. 1149.

вносят заметного вклада в суммарный ионный ток $J(B^*)/B_2O_2$ +ВО. И вообще, трудно получить количественные данные для молекул ВО, парциальное давление которых составляет порядка 1% от общего давления пара. В настоящей работе принято, что степень диссоциативной ионизации молекул ВО такая же, как молекул B_2O_2 с поправкой на то, что можно ожидать большего выхода молекулярного иона ВО⁺ по сравнению с осколком В⁺. Этот вывод носит качественный характер и базируется на закономерностях формирования масс-спектров, сформулированных в [18].

Данные об индивидуальных масс-спектрах молекул B_2O_2 и ВО приведены в табл. 4, где для сравнения представлен масс-спектр B_2O_3 [14].

Проведенный в настоящей работе анализ масс-спектра пара системы $B-B_2O_3$ представляет простейший вариант расшифровки, когда искомую интенсивность ионного тока (BO^+) можно найти по интенсивности неперекрывающейся линии $(B_2O_2^+)$ и абсолютному значению $K_p(T)$ реакции (1). Важная роль в расчетах принадлежит данным [14], использование которых способствовало выделению «чистой» линии $B_2O_2^+$.

Полученные в работе результаты не претендуют на абсолютную точность. В вычислениях, где использовали данные по сечениям ионизации молекул $\sigma(B_xO_y)$ и по константам равновесия (1), погрешность оценена множителем 1,5. Это не противоречит рекомендациям [16] по оценке надежности данных, получаемых в высокотемпературной масс-спектрометрии.

- 10. Семенихин В.И., Минаева И.И. и др. // Теплофиз. высок. темп. 1987. 25. С. 666.
- 11. Багаратьян Н.В., Макаров А.В. // Вестн. Моск. ун-та. Сер. 2. Химия. 1998. **39.** С. 91.
- Kubaschewski O., Alcock C.B. Metallurgical Thermochemistry. N.Y., 1979. P. 358.
- 13. Макаров А.В., Никитин О.Т. // Вестн. Моск. ун-та. Сер. 2. Химия. 1973. 14. С. 106.
- 14. Никитин О.Т., Акишин П.А. //ДАН СССР. 1962. 145. С. 1294.
- 15. Сидоров Л.Н., Коробов М.В., Журавлева Л.В. Масс-спектральные термодинамические исследования. М., 1985.
- Справочник. Термодинамические свойства индивидуальных веществ. Т. 1, кн. 1. М., 1978. С. 84.
- 17. Справочник. Термодинамические свойства индивидуальных веществ. Т. 3, кн. 2. М., 1981. С. 12.
- 18. Hastie J.W., Margrave J.L. // High Temper. Sci. 1969. 1. P. 481.

Поступила в редакцию 25.12.99