УДК 547.639+547.537.

РЕАКЦИОННАЯ СПОСОБНОСТЬ 3,7-БИС(АРИЛМЕТИЛЕН)-БИЦИКЛО[3.3.1]НОНАН-2,6-ДИОНОВ: РЕАКЦИЯ ВОССТАНОВЛЕНИЯ

Н. В. Аверина, Г. С. Борисова, А. В. Губин

(кафедра органической химии)

Расчетными методами РМЗ, АМ1 и MNDO определено расстояние между экзо-метиленовыми связями в 3-м и 7-м положениях бицикло[3.3.1]нонан-2,6-диона и -2,6-диола, а также углы, характеризующие отклонение этих связей от параллельности. Синтезирован ряд 3,7бис(арилметилен)бицикло[3.3.1]нонан-2,6-диолов.

Предположение о значительном уплощении циклогексановых колец в молекулах 3,7-бис(арилметилен)бицикло[3.3.1]нонан-2,6-диона (I) за счет О=С–С=С–Аг сопряжения и, в связи с этим, отклонение конформации таких молекул от двухкресельной, а также подтверждение этого предположения данными РСА 6,6-диметокси-3-[4-(N,N-диметиламино)бензилиден]бицикло[3.3.1]нонан-2-она [1], подтолкнуло нас к проведению расчетов по конформациям молекул дикетона (Ia) и диола (IIa) для сравнения расстояний между экзо-метиленовыми связями с целью оценки возможности использования этих препаративно доступных полифункциональных соединений в синтезах полициклических каркасных структур.

Предварительные расчеты по программе ММХ показали, что в соединении (Ia) расстояния l_1 и l_2 равны 3,42 и 5,21 Å соответственно. Это значит, что внутримолекулярные реакции, такие, как [2+2]-фотоциклизация, в данном случае не пройдут [2], и возможны лишь межмолекулярные процессы. Для сравнения величин расстояний l_1 и l_2 молекул Ia и IIa мы провели ряд квантовомеханических расчетов с использованием полуэмпирических методов РМЗ, АМ1 и MNDO. Результаты расчетов приведены в табл. 1. Сумма углов $\alpha_1 + \alpha_2$ (между прямой, соединяющей С–3 и С–7 бициклононана, и экзометиленовыми связями) характеризует отклонение двойных связей от параллельности (идеальному квадрату соответствует значение 180°).

С целью оценки применимости выбранных нами полуэмпирических методов для описания подобных структур был проведен расчет геометрии молекулы 3,7-диалленбицикло[3.3.1]нонана (III), результаты которого сравнивались с известными из литературы данными рентгеноструктурного анализа [3] (табл. 2).

Следует отметить, что структура является сложной для расчета, потому что рассчитываемые параметры (невалентные) сильно зависят от угла β , незначительные изменения которого могут приводить к существенным различиям в расстояниях l_1 и l_2 за счет специфической геометрии молекулы. Поэтому точность расчета значительно

ухудшается при переходе от (валентного параметра) β к (невалентным параметрам) l_1 и l_2 . Для валентных параметров достигается ожидаемая точность рассчета полуэмпирическими методами (~2%), ошибка же при описании невалентных параметров достигает 10%. Тем не менее с учетом вышесказанного описание структуры в целом можно признать удовлетворительным.

Таким образом, как расчитанные, так и экспериментальные данные говорят об уменьшении расстояний между C=C-арилиденовыми двойными связями в 3-м и 7-м положениях бицикло[3.3.1]нонановой молекулы в отсутствие O=C-C=C сопряженной системы связей, что должно способствовать протеканию разных реакций внутримолекулярного циклоприсоединения и фотоциклизации. В связи с этим мы продолжили изучение реакции восстановления кетонных групп, используя для этого как описанные

Таблица 1

Результаты расчетов расстояний между С=С-экзометиленовыми связями в молекулах Іа и Па

Caarmana	Парациятр	Метод			
Соединение	параметр	AM1	PM3	MNDO	
	(α ₁ +α ₂), град	250	251	244	
Ia (Ar=Ph)	l ₁ , Å	3,359	3,273	3,338	
	l ₂ , Å	4,924	4,648	4,820	
IIa (Ar=Ph)	(α ₁ +α ₂), град	220	218	238	
	l ₁ , Å	3,043	3,021	3,340	
	l ₂ , Å	3,971	3,894	4,670	

Таблица 2

Геометрические параметры молекулы 3,7-диаленбицикло[3.3.1]нонана

	Метод			
Параметр			Рентгено-	
	AM1*	PM3*	структурный	
			анализ [3]	
β, град	112,5(<1%)	112,2(<1%)	112,4	
l_1 , Å	3,043(3%)	2,890(2%)	2,953	
l_2 , Å	3,986(10%)	3,343(8%)	3,627	

* В скобках приведено отклонение от данных РСА.

193

Таблица З

Выходы, Т _{пл} н	и результаты	элементного ан	нализа полученных	соединений
---------------------------	--------------	----------------	-------------------	------------

Соединение	Выход,%	T_{nn}, C^{o}	Найдено, %		Брутто-	Вычислено, %	
			С	Н	формула	С	Н
Iб	65,7	193-196	76,98	6,33	$C_{25}H_{24}O_4$	77,30	6,23
Iг	94	230-233	74,23	5,01	$C_{19}H_{16}O_4$	74,01	5,23
II a	92	175-179	83,78	7,17	$C_{23}H_{24}O_2$	83,10	7,30
Шб	93	177-178	76,27	7,36	$C_{25}H_{28}O_4$	76,50	7,20
Шв	78	185-187	56,53	4,80	$C_{23}H_{22}Br_2O_2$	56,34	4,52
Пг	82	143,5-146	72,62	6,29	$C_{19}H_{20}O_4$	73,05	6,45

Таблица 4

Данные ИК- и ПМР-спектров полученных соединений

Соединение	ИК спектр, см ⁻¹	ПМР спектр, м.д.
Iб	1690 (C=O) 1595 (C=C)	7,35 7,60 (м. 2Н, Аг), 6,7 7,1 (м. 3Н, =СН–Аг), 3,8 (ш.с., 3Н, ОСН ₃), 1,0 3,0(м. 4Н)
Iг	1670(C=H) 1590(C=C)	7,55(c, 1H, =CH–), 7,43(м,1H, Ar), 6,68(м,1H, Ar), 6,5(м, 1H), 3,38–3,42(м, 1H), 2,9–3,1(м, 2H), 2,38(ш.с., 1H)
II a	1658(C=C) 3480 3620(OH)	7,18 7,28 и 7,3–7,35(2м,10H, Ph), 6.46(ш.с.,2H,=CH–), 4,35(ш.с.,2H, OH), 3,27(с,1H, H–COH), 3,23(с, 1H, H–COH), и Н скелета: 1,98–2,08 и 2,16–2,24(2м, 2:1, 6H), 1,54–1,66(м, 2H)
Ш б**	1615(C=C) 3200 3500(OH)	Аг пара-замещение: 6,93, 6,91(д, 4H), 6,57, 6,55(д, 4H); 6,17(с, 2H, =CH–), 4,10(ш.с., 2H, OH), 3,78(с, 6H, Оме), 3,329(с, 1H, H–С–OH), 3,289(с, 1H, H–С–OH), 2,69 и 2,03–1,96(мультиплеты 8H скелета)
Шв	1550(C=C) 3300 3500(OH)	7,2 8,0(м, 8H,Ar), 6,55(с,2H,=CH-), 4,38(ш.с., 2H, OH), 3,58(с, 1H, H-C-OH), 3,54(с, 1H, H-COH), 1,3-2,3(мультиплеты 8H скелета)
II <i>г</i> *	1660(C=C) 3300 3400(OH)	6,18(с, 2H, CH=), 4,35(ш.с., 2H, OH), 3,709(с, 1H, H–С–OH), 3,637(с, 1H, H–COH), 2,50(ш.с.,2H), 2,29(ш.с., 2H), 1,95–2,15(м,4H) скелетные. Ar: 6,10 6,15(м, 2H), 6,33–6,45(м, 2H), 7,36(ш.с., 2H).

* Спектр ПМР снят на приборе «Bruker AC-200».

** Спектр ПМР снят в CDHl₃: (CD₃)₂CO(1:1).

Таблица 5

Данные спектров ЯМР ¹³С полученных соединений

	Химические сдвиги, δ м.д. (400МГц, CDCI ₃)					
Соединение	С 3,7 и четвертичные	Ar и заместители	= <u>C</u> H–Ar	C 2,6	C 1,5	
	вAr				C 9	
I o*	151.96	125.19	1/15 39	201.98	4,8	
10	127,74	117,67	145,59	201,90	34,13	
		112,53			28,03	
II a	140,23	128,87	120,17	74,58	37,99	
	137,79	128,13			33,21	
		126,01			27,20	
ΠŐ	157,80	130,19	119,44	74,79	38,04	
	140,25	113,51			36,82	
		96,06 (<u>C</u> OMe)			27,12	
		55,05(OMe)				
II 2**	154,97	111,73	141,58	75,55	40,11	
	140,93	110,64			34,53	
		109,09			28,68	

* Отнесение без использования импульсной последовательности АРТ.

** Спектр снят в D₂O.

ранее [5] кетоны (І *a*, *в*), так и новые (І *б*, *г*), полученные в этой работе:

Строение соединений (І б. г) подтверждено результатами элементного анализа (табл. 3) и данными ИК- и ЯМР-спектров (табл. 4, 5). Последние, как и в полученных ранее [4] результатах, подтверждают *транс-транс*-конфигурацию кетонов (І б. г).

В спектре ПМР соединения (І б) сигналы ароматических протонов наблюдаются в виде двух мультиплетов в области 6,7–7,1 и 7,35–7,60 м.д., причем по интегральной интенсивности сигнал протона =CH–Ar попадает в мультиплет ароматических протонов, а именно 6,7–7,1 м.д. В спектре соединения (І г) сигнал протона при =CH–Ar наблюдается в виде синглета при δ 7,55 м.д. в более слабом поле по сравнению с протонами фурильного кольца (табл. 4).

Из-за низкой реакционной способности непредельных сопряженых кетонов типа (I) нам не удалось ранее [4] получить непредельные спирты (II) ни восстановлением NaBH₄, ни тем же восстановлением в присутствии 18-краун-6, а полное восстановление C=O-групп (LiAlH₄ – AlCl₂) проходило не избирательно и с низким выходом. Однако при восстановлении кетонов (I) раствором NaBH, в 1M водном КОН [5] нам удалось получить продукты, в ИКспектрах которых исчезает полоса поглощения С=О-групп и появляется поглощение ОН-группы (3200-3400 см⁻¹). В спектрах ПМР сигнал протона при С=С-связи перемещается в область более сильных полей; появляется сигнал в виде широкого синглета в области 4,5 м.д., который мы относим к протону ОН-групп, и 2 синглета в области 3,5 м.д., которые мы приписываем протонам Н-С-ОН (табл. 4). Ранее [6] нами было показано, что восстановление бицикло[3.3.1]нонан-2,6-диона, имеющего устойчивую конформацию двойного кресла, приводит к цис-диэкваториальной конформации ОН-групп, так как присоединение по С=О в системе бицикло[3.3.1]нонана протекает с экзостороны по отношению к мостику. Однако в данном случае мы, по-видимому, имеем дело с экзо-, эндо-изомерами по ОН-группе, так как в ПМР-спектрах диолов II сигналы протонов при С-2 и С-6 наблюдаются в виде двух синглетов с разницей химических сдвигов 12-16 Гц. По интегральной интенсивности каждый синглет соответ-

СПИСОК ЛИТЕРАТУРЫ

- Аверина Н.В., Борисова Г.С., Семиошкин А.А., Потехин К.А., Кудрявцева Е.В., Стручков Ю.Т., Зефиров Н.С. // Докл. РАН. 1995. 345. С. 624.
- Greiving H., Hopf H., Jones P.G. // J. Chem. Soc., Chem. Commun. 1994. P. 1075.
- Красуцкий П.А., Фокин А.А., Юрченко А.Г., Малеев А.В., Потехин К.А., Куркутова Е.Н., Юфит Д.С., Антипин М.Ю., Стручков Ю.Т. // ЖОрХ. 1990. 26. С. 1016.

ствует одному протону. Это может быть результатом того, что в силу уплощения циклогексановых колец за счет сопряжения и отклонения конформации молекулы от двухкресельной делается равновероятной возможность атаки восстанавливающим реагентом как с экзо-, так и с эндо-стороны по отношению к мостику бициклононана.

Величины интегральных интенсивностей соответствуют числу протонов в молекулах (II *а-г*). Сигнал =СН-Аг в соединении (II б), как и в исходном кетоне (I б), попадает в область ароматических протонов (6,4-7,6 м.д.), о чем можно судить по интегральной интенсивности сигналов. Элементные анализы спиртов (II *а-г*) приведены в табл. 3. Удовлетворительный элементный анализ (II г) удалось получить не сразу, так как даже после двух перекристаллизаций из бензола продукт содержал несгораемый остаток и проявлялся черным пятном на пластинке с тонким слоем силикагеля. Мы предполагали, что это связано с возможностью комплексообразования бора по фурильному кольцу, поскольку известны случаи, когда вместе с восстановлением идет комплексообразование и продукты, не содержащие бора, не удается получить [7]. После четырех перекристаллизаций вещество II г стало сильно электризующимся, что вызвало затруднения при определении элементного состава.

В масс-спектре II *г* проявлялся пик молекулярного иона M+212 и пики: 310 (M – H₂)⁺, 294 (M – H₂O)⁺, 278 (294 – O)⁺ и 276 (294 – H₂O)⁺.

Отнесение сигналов в спектрах ЯМР ¹³С проведено с использованием импульсной последовательности АРТ (табл. 5).

Экспериментальная часть

Контроль за ходом реакций осуществляли методом тонкослойной хроматографии на закрепленном слое силикагеля (*Silufol UV-254*). ИК-спектры регистрировали на приборе «*UR-20*» в вазелиновом масле. Спектры ЯМР регистрировали на приборах «Varian-FT-80» с рабочей частотой 80 Мгц и «Varian-VX» с рабочей частотой 400 Мгц. Массспектр регистрировался на приборе «МХ 1321А». Химические сдвиги приведены по шкале б относительно тетраметилсилана как внутреннего стандарта.

Синтез 3,7-бис(арилметилен)бицикло[3.3.1]нонан-2,6диолов (II *a*-г). Общая методика: растворяют 1,5 ммолей дикетона (I) в 50 мл МеОН и прибавляют по каплям в течение 0,5–1 ч раствор 0,8 ммолей NaBH₄ в 10 мл 1М водного КОН. Перемешивают реакционную смесь в течение несколько часов и оставляют на ночь. Отгоняют растворитель в вакууме почти досуха и прибавляют 50 мл воды. Выпавший осадок отфильтровывают, промывают на фильтре водой, сушат. Дополнительное небольшое количество диола можно выделить экстракцией маточника CH_2Cl_2 или хлороформом.

- Аверина Н.В., Семиошкин А.А., Борисова Г.С., Зефиров Н.С. // ЖОрХ. 1997. 33. С. 550.
- 5. Hassner A., Mead T.C. // Tetrahedron Lett. 1964. 20. P. 2201.
- 6. Аверина Н.В., Зефиров Н.С. // ЖОрХ. 1969. 5. С. 1991.
- Гейлорд Н. // Восстановление комплексными гидридами металлов. М., 1959. С. 110.

Поступила в редакцию 19.03.99