УДК 541.64: 543.878

СПЕКТРЫ ЭПР СПИНОВЫХ АДДУКТОВ **β**-ЗАМЕЩЕННЫХ РАДИКАЛОВ МАЛЕИНОВОГО АНГИДРИДА

В. Б. Голубев, А. В. Плуталова, Ф. А. Сбродов

(кафедра высокомолекулярных соединений)

При исследовании спектров ЭПР аддуктов спиновой ловушки 2-метил-2-нитрозопропана с β-замещенными радикалами малеинового ангидрида обнаружена зависимость вида спектра ЭПР от природы радикала-заместителя. Приведены значения констант сверхтонкой структуры спектров ЭПР для четырнадцати различных радикалов-заместителей. Предложен общий подход к синтезу различных β-замещенных радикалов малеинового ангидрида.

Радикал малеинового ангидрида (МА) был впервые зафиксирован нами методом спиновой ловушки [1, 2] в виде спинового аддукта с 2-метил-2-нитрозопропаном (МНП) при фотолизе видимым светом бензольного раствора МНП и МА [3, 4]:

Спектр ЭПР полученного аддукта характеризуется не только типичным для спиновых аддуктов МНП сверхтонким расщеплением на ядре азота ($a_N = 14,2$ э) и β-протоне ($a_H\beta = 2,4$ э), но и заметным расщеплением на γ-протоне ($a_H\gamma = 0,8$ э), что наблюдается достаточно редко и характерно только для конформационно жестких (например, циклических) радикалов [4, 5]. При дальнейшем исследовании оказалось, что в ряде случаев сверхтонкая структура спектров ЭПР аддуктов МНП с радикалами МА оказывается еще более сложной и зависит от струк туры радикала, присоединившегося к МА (радикала-за-местителя).

Непосредственно перед опытом МА очищали возгонкой. Спирты и простые эфиры, использованные в качестве растворителей, после перегонки выдерживали не менее суток над прокаленным сульфатом магния. Дициклогексилпероксидикарбонат (ЦПК) перекристаллизовывали из спирта и хранили при -18°, 2-метил-2-нитрозопропан (МНП) фирмы «Sigma» использовали без дополнительной очистки. Растворы готовили в ампулах для снятия спектров ЭПР, образцы дегазировали откачкой до 10⁻² мм рт. ст. путем повторения циклов замораживания-размораживания и отпаивали. Образцы, содержащие ЦПК, перед записью спектров нагревали 1-2 мин при 40°. Спектры ЭПР записывали на радиоспектрометре РЭ-1307. Все операции с растворами, содержащими МНП, во избежание фотолиза ловушки проводили при свете лабораторного фонаря, защищенного прозрачной кюветой с насыщенным раствором хлорида меди. В качестве эталона использовали водный раствор соли Фреми (A_N = 13,091 э, g = 2,0055 Э [6]). При использовании спиртов в качестве растворителей возможен алкоголиз малеинового ангидрида.

Методом ИК-спектроскопии показано, что за время эксперимента (~10 мин) глубина алкоголиза незначительна.

Рассмотрим реакции, которые протекают в системе, содержащей ЦПК, спиновую ловушку МНП, МА и растворитель.

1. ЦПК распадается с образованием циклогексилоксикарбоксильных радикалов (RO):

2. *а*) Часть радикалов RO[•] может быть захвачена спиновой ловушкой МНП с образованием соответствующего спинового аддукта, однако такие аддукты при комнатной температуре неустойчивы [1] и по спектрам ЭПР обычно не наблюдаются.

б) Активные радикалы RO[•] реагируют с молекулами растворителя, отрывая от них атомы водорода:

$$\begin{array}{c} \dot{RO} + R_1 - \dot{CH}_2 - & \hline ROH + R_1 - \dot{CH} \\ & & \downarrow \\ X & X \\ & & \dot{R}_2 \end{array}$$

Если в качестве растворителя используются соединения, имеющие двойную связь, то RO[•] присоединяются к β -углеродному атому, например в случае виниловых мономеров

$$\overrightarrow{RO} + \overrightarrow{CH_2} = \overrightarrow{CH} \longrightarrow \overrightarrow{RO} - \overrightarrow{CH_2} - \overrightarrow{CH}$$

 $X \qquad X$
 (\overrightarrow{R}_2)

Результатом обеих реакций является образование радикалов растворителя (в дальнейшем радикалов-заместителей).

в) Реакция присоединения RO·к MA

$$\begin{array}{c|c} R_2\text{-}CH\text{-}\dot{CH} + N\text{-}C(CH_3) & \longrightarrow & R_2\text{-}CH\text{-}CH\text{-}N\text{-}C(CH_3)_3 \\ \hline \\ CO & CO & O \\ \hline \\ O & O \\ \hline \\ O & O \\ \hline \end{array}$$

в условиях эксперимента в заметной степени не протекает, так как концентрация MA ([MA] $\approx 0,1$ моль/л) на 2 порядка меньше концентрации растворителя; кроме того, полярный эффект не благоприятствует этой реакции [7].

Таким образом, в условиях эксперимента единственным результатом второго звена цепной реакции является образование радикалов растворителя. В отсутствие МА эти радикалы (кроме радикалов вторичных спиртов [8]) захватываются ловушкой с образованием соответствующих спиновых аддуктов, спектры ЭПР которых, как правило, хорошо известны [1, 2, 4].

3. Радикалы R₂• использованных растворителей (радикалы-заместители) являются активными α-замещенными алкильными радикалами; они легко присоединяются к двойной связи MA:

$$\dot{R}_2 + CH = CH \longrightarrow R_2 - CH - CH$$

 $\dot{R}_2 + CH = CH \longrightarrow R_2 - CH - CH$
 $\dot{CO} \xrightarrow{CO} \xrightarrow{CO} CO$
 $O \longrightarrow O$

Полярный эффект в реакции присоединения активных электронодонорных радикалов R_2 к сильному электроноакцептору (MA) оказывается благоприятным, и скорости этих реакций весьма высоки ($K \approx 10^5 - 10^8$ л/моль-с). Реакции такого рода являются близкими моделями реакций перекрестного роста цепи при сополимеризации [2]. При [МНП] $\leq 10^{-2}$ моль/л всегда можно подобрать такую концентрацию MA, при которой реакция присоединения R_2 к MA будет практически единственной реакцией радикалов растворителя. При этой реакции образуются β -замещенные радикалы MA.

4. Малоактивные радикалы МА не могут отрывать атом водорода от молекулы растворителя; константы скорости присоединения ($K < 10^2$ л/моль.с) этих радикалов к двойной связи большинства виниловых мономеров малы [2]. Поэтому единственно возможной реакцией радикалов МА оказывается их присоединение к ловушке МНП с образованием спиновых аддуктов:

Таким образом, предложенный путь позволяет получить практически любые β -замещенные радикалы МА и соответственно, их спиновые аддукты. Результаты анализа спектров ЭПР спиновых аддуктов некоторых β -замещенных радикалов МА приведены в таблице.

Если при α-атоме углерода радикала-заместителя R₂[•] нет атомов водорода, то спектры ЭПР соответствующих аддуктов с радикалами МА подобны описанному ранее [3] для случая присоединения к МА *трет.*-бутильного радикала – это триплеты квартетов (3·4 = 12) линий равной интенсивности с близкими для всех аддуктов значениями констант сверхтонкого расщепления на ядре азота, βи γ-протонах (см. таблицу, № 1–4; рисунок, *a*).

Если при α -атоме углерода радикала R_2^- есть атом водорода, то спектр ЭПР соответствующего аддукта МНП с радикалом МА оказывается совершенно иным (рисунок, б): каждая группа триплета содержит не 4, а 7 линий, причем интегральная интенсивность центральной линии вдвое больше интенсивности остальных. Во всех этих случаях (таблица; № 5, 7, 10–14) каждая из линий квартета от β- и γ-протонов дополнительно расщепляется на весьма удаленном б-протоне заместителя. Как и следовало ожидать, замена δ-атома водорода в спиновом аддукте на атом дейтерия, имеющий в 6 раз меньший ядерный магнитный момент, снова превращает каждую группу линий триплета из септета в квартет (см. таблицу, № 5, 6; рисунок, в). Если в качестве растворителя используют метанол (см. таблицу, № 8), то его радикал содержит два α-протона и спектр ЭПР соответствующего аддукта –

№	Радикал-заместитель R 2	Растворитель	a _N ±0,05	а _{нв} ±0,04	а _{нү} ±0,04	а _{нб} ±0,03
1	(СН ₃) СОН	изопропанол	14,64	1,43	0,80	-
2	C ₂ H ₅ C(OH)CH ₃	бутанол-2	14,43	1,49	0,80	_
3	(CH ₃) ₂ COCH(CH ₃) ₂	диизопропиловый эфир	14,30	1,65	0,84	-
4	CH ₂ CH ₂ CH ₂ CH ₂ COH	ц-пентанол	14,52	1,51	0,84	-
5	сн,снон	этанол	14 54	1 22	0.90	0.36
6	СН₃С́ДОН	D ₂ -этанол	14,45	1,19	0,90	-
7	C ₂ H ₅ CHOH	пропанол	14,59	1,17	0,86	0,28
8	ĊH ₂ OH	метанол	14,44	?	?	?
9	ĊD ₂ OD	D ₄ -метанол	14,40	0,98	0,98	_
10	CH ₃ CHOC ₂ H ₅	диэтиловый эфир	14,12	1,26	0,86	0,44
11	$C_3H_7\dot{C}HOC_4H_{9^{\circ}-}$	дибутиловый эфир	13,98	1,33	0,79	0,48
12	ROCH ₂ CHOC ₄ H ₉	винилбутиловый эфир	14,22	1,32	0,87	0,44
13	CH₃CHOPh	фенетол	14,66	1,23	0,86	0,39
14	ROCH ₂ CHOPh	винилфениловый эфир	14,19	1,27	0,86	0,39

Значения констант сверхтонкого расщепления спектров ЭПР спиновых аддуктов 2-метил-2-нитрозопропана с В-замещенными радикалами малеинового ангидрида (в эрстедах)

Низкополевые компоненты триплетных спектров ЭПР аддуктов 2-метил-2-нитрозопропана с β-замещенными радикалами малеинового ангидрида для различных радикалов-заместителей R'2: $a - (CH_3)_2\dot{C}OH; \delta - CH_3\dot{C}HOH; \epsilon - CH_3\dot{C}DOH; \epsilon - \dot{C}H_2OH;$ ∂ – ĊD,OH

триплет мультиплетов (рисунок, г), в образовании которого, очевидно, участвуют оба б-протона. Недостаточная разрешенность спектра не позволила в этом случае надежно отнести эти линии и соответственно определить параметры сверхтонкой структуры спектров ЭПР. При замене метанола на Д₃-метанол (см. таблицу, №9) дополнительное δ-расщепление, естественно, исчезает. Значения констант расщепления на В- и у-протонах в этом случае практически одинаковы и спектр ЭПР аддукта представляет собой триплет триплетов (рисунок, д).

Работа выполнена при финансовой поддержке РФФИ (код проекта 96-03-33860а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Зубарев В.Е. Метод спиновых ловушек. М., 1984. С. 186. 2. Голубев В.Б. // Высокомолек. соед. 1994. **36.** С. 298.
- 3. Мун Г.А., Голубев В.Б., Скорикова Е.Е., Зубов В.П. // Вестн. Моск. ун-та. Сер. 2. Химия. 1983. 24. С. 280.
- 4. Landolt-Bornstein N. Namerical Data and Functional Relationship in Science and Tecnology. Berlin, 1989. 17. Part 2, S. 143.
- 5. Зубарев В.Е., Белевский В.Н., Бугаенко Л.Т. // Усп. хим. 1979. 48. C. 1361.
- 6. Вассерман А.М., Бучаченко А.А. Стабильные радикалы. М., 1973. C. 156.
- 7. Голубев В.Б., Мун Г.А., Зубов В.П.// Вестн. Моск. ун-та. Сер. 2. Химия. 1987. **28.** С. 592.
- 8. Белевский В.Н. Дис. ... докт. хим. наук. М., 1990.

Поступила в редакцию 15.01.99