На правах рукописи

Junt

Семивражская Олеся Олеговна

Мостиковые производные фуллеренов: трансформация углеродного каркаса и химические превращения

02.00.04 – Физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Москва – 2017

Работа выполнена в лаборатории термохимии кафедры физической химии химического факультета Московского государственного университета имени М. В. Ломоносова

<u>Научный руководитель:</u>	Горюнков Алексей Анатольевич, д.х.н., в.н.с.				
	Химический факультет МГУ имени М. В. Ломоносова				
Официальные оппоненты:	Конарев Дмитрий Валентинович, д.х.н., зав. лаб.				
	Институт проблем химической физики РАН				
	Пржевальский Николай Михайлович, д.х.н., проф.				
	Российский государственный аграрный университет –				
	МСХА имени К. А. Тимирязева				
Ведущая организация:	ФГБУН Институт элементоорганических соединений				
	имени А.Н. Несмеянова Российской академии наук				
	(ИНЭОС РАН)				

Защита диссертации состоится 9 июня 2017 года в 14.00 на заседании диссертационного совета Д 501.001.90 по химическим наукам при Московском государственном университете имени М. В. Ломоносова по адресу: 119991, г. Москва, ГСП-1, Ленинские горы, д. 1, стр. 3, Химический факультет МГУ, аудитория 446.

С диссертацией можно ознакомиться в Научной библиотеке МГУ имени М.В. Ломоносова по адресу: г. Москва, Ломоносовский проспект, д. 27 и на сайте химического факультета МГУ имени М. В. Ломоносова: www.chem.msu.ru.

Автореферат диссертации размещен на сайте ВАК (www.vak.ed.gov.ru) и на сайте химического факультета МГУ имени М. В. Ломоносова (www.chem.msu.ru).

Автореферат разослан « » апреля 2017 г.

Ученый секретарь диссертационного совета Д 501.001.90 при МГУ имени М. В. Ломоносова, кандидат химических наук

All

Шилина М. И.

І. Общая характеристика работы

I.1. Актуальность работы

Задачи совершенствования оптоэлектронных устройств на органической основе с планарным и объемным гетеропереходами порождают необходимость создания новых материалов с заданными физико-химическими и электрическими характеристиками. Среди множества полиненасыщенных органических производных с электронным типом проводимости перспективными субстратами для этой цели являются фуллерены, направленная функционализация которых позволяет оптимизировать электронное строение и наноморфологию объемного гетероперехода. Варьируя природу и расположение аддендов, формируя на фуллереновом каркасе полисопряженные системы различного размера и степени связанности, оказывается возможным управлять строением и энергией граничных молекулярных орбиталей и таким образом «настраивать» электронные свойства производных фуллеренов.

Малоисследованной возможностью подобной настройки является структурная модификация фуллеренового каркаса путем введения метиленовых фрагментов CR₂. Обычно присоединение группы CR₂ по двойной связи в фуллеренах и их производных приводит к образованию аннелированного циклопропана, однако в ряде исключительных случаев аннелирование сопровождается диссоциацией С-С связи углеродного каркаса с образованием т. н. гомофуллеренов, проявляющих необычные электронное строение и химические свойства, что открывает пути более глубокой структурной модификации фуллеренового каркаса. Примером такого соединения является дифторметанофуллерен С₆₀(CF₂), ставший первым идентифицированным [6,6]-открытым гомофуллереном. Это послужило стимулом для выполнения настоящей работы, которая направлена на поиск аналогичных неклассических продуктов аннелирования малых циклов, изучение влияния особенностей их молекулярного строения на электронные свойства, а также исследование закономерностей каркасных трансформаций, инициируемых электронным переносом, в производных фуллеренов.

I.2. Цели и задачи работы

Целью настоящей работы стало установление закономерностей трансформации углеродного каркаса пустых фуллеренов и их эндо- и экзоэдральных производных при внедрении мостиковых фрагментов различной природы, а также выявление взаимосвязи между особенностями строения структурно модифицированных каркасов, их электронным

3

строением, физико-химическими и химическими свойствами.

В соответствии с поставленной целью были сформулированы следующие задачи:

1. Установить особенности молекулярного и электронного строения дифторметанопроизводных фуллерена C₇₀ и эндоэдральных металлофуллеренов Sc₃N@C₇₈-D_{3h}, Sc_{3-n}Er_nN@C₈₀-I_h (*n*=0-2).

2. Выявить влияние природы мостиковой группы на особенности молекулярного и электронного строения в ряду родственных соединений $C_{70}(CF_3)_8[X]$, где мостиковая группа X=CF₂, CH₂, NCH₂C₆H₅ (NBn) и O.

3. На примере мостиковых производных фуллеренов определить закономерности трансформации углеродных каркасов, индуцируемой электронным переносом.

4. Выявить влияние структурной трансформации углеродного каркаса на химические свойства мостиковых производных фуллеренов в реакциях нуклеофильного циклоприсоединения и гидрирования.

I.3. Научная новизна

В работе впервые получены следующие результаты:

1. Синтезированы, спектрально и структурно охарактеризованы [6,6]-закрытый, [6,6]-открытый и [5,6]-открытый изомеры $C_{70}(CF_2)$. Осуществлено дифторметиленирование эндоэдральных металлофуллеренов Sc₃N@C₈₀-*I*_h и Sc₃N@C₇₈-*D*_{3h}; на основании спектральных данных установлено строение [6,6]-открытого изомера Sc₃N@C₈₀(CF₂) и [6,6]-закрытого изомера Sc₃N@C₇₈(CF₂).

2. Методом РСА установлено строение трифторметилфуллеренов C₇₀(CF₃)₄ и C₇₀(CF₃)₈, а также уточнены структурные данные для C₇₀(CF₃)₂.

3. Синтезированы, спектрально и структурно охарактеризованы шесть новых мостиковых производных $C_{70}(CF_3)_8[X]$, X=CF₂ (2 изомера), CH₂ (2 изомера), NBn и O. Установлена возможность фотоиндуцированной изомеризации [6,6]-открытого изомера в [5,6]-закрытый изомер $C_{70}(CF_3)_8(CH_2)$. Показано, что присоединение мостиковых фрагментов по околоэкваториальной [5,6]-связи происходит с сохранением одинарной C–C связи (r_{C-C} 1.57–1.68 Å); исключением является C_8 -C₇₀(CF₃)₈(CF₂), где эта связь разорвана (r_{C-C} 2.09 Å).

4. Методом циклической вольтамперометрии (ЦВА) показано, что различие в размере и связности сопряженных π -систем в изомерах $C_{70}(CF_2)$ и производных $C_{70}(CF_3)_8[X]$ приводит к значительной вариации электроноакцепторных свойств. Максимальная разница в первых потенциалах восстановления наблюдается между родственными производными $C_{70}(CF_3)_8[X]$ с X=CH₂ и CF₂ и достигает 0.4 В.

5. Методом *in situ* спектроэлектрохимии ЭПР исследованы особенности молекулярного строения анион-радикалов изомеров $C_{70}(CF_2)$, $C_{70}(CF_3)_8(CF_2)$ и $C_{70}(CF_3)_8(CH_2)$. Доказано протекание обратимой зарядово-контролируемой трансформации между закрытой и открытой конфигурациями соединений [6,6]- $C_{70}(CF_2)$ и [5,6]- $C_{70}(CF_3)_8(CH_2)$.

6. На примере производных *цис*-2-С₆₀(CF₂)₂ и C₇₀(CF₃)₈(CF₂) показано, что наличие мостиковых фрагментов обеспечивает региоселективное присоединение стерически незатрудненных групп H и OH по атомам углерода, несущим мостиковую группу. Однако присоединение более объемной группы по реакции Бингеля протекает с высокой региоселективностью по стерически более доступной приполярной двойной связи.

I.4. Положения, выносимые на защиту

1. Особенности молекулярного и электронного строения дифторметанопроизводных фуллерена С₇₀ и эндоэдральных металлофуллеренов Sc₃N@C₈₀-*I*_h и Sc₃N@C₇₈-*D*_{3h}.

2. Строение мостиковых производных C₇₀(CF₃)₈[X], X=CF₂, CH₂, NBn, O, и его влияние на оптические и электронные свойства соединений.

3. Закономерности трансформации углеродного каркаса, индуцируемой электронным переносом, на примере [6,6]-закрытого C₇₀(CF₂) и [5,6]-закрытого C₇₀(CF₃)₈(CH₂).

4. Особенности влияния мостиковых групп на химическую активность производных фуллеренов на примере C_s - $C_{70}(CF_3)_8(CF_2)$.

I.5. Практическая значимость

Разработанные методики региоселективного синтеза новых мостиковых производных фуллеренов позволили расширить класс синтетически доступных производных эндо- и для экзоэдральных производных фуллеренов, перспективных фотофизических И спектроэлектрохимических исследований. На примере фуллеренов [6,6]-С₇₀(CF₂) и [5,6]-С₇₀(СF₃)₈(СH₂) была показана возможность обратимой зарядово-контролируемой трансформации углеродного каркаса между закрытой и открытой конфигурациями. Такой процесс перестройки углеродного скелета фуллерена сопровождается изменением размера и связности сопряженной π-системы фуллеренового каркаса. Обнаруженное поведение может быть использовано для конструирования полевых транзисторов и молекулярных переключателей на органической основе.

Использование результатов настоящей работы рекомендовано для исследований в области химии производных фуллеренов в научных коллективах: Институт проблем химической физики РАН (Черноголовка), Институт общей и неорганической химии имени Н.С. Курнакова РАН (Москва), Физико-технический институт имени А.Ф. Иоффе РАН (Санкт-Петербург),

5

Институт органической и физической химии имени А.Е. Арбузова Казанского научного центра РАН (Казань), Институт неорганической химии имени А.В. Николаева СО РАН (Новосибирск), АО «Государственный оптический институт имени С.И. Вавилова» (Санкт-Петербург).

I.6. Личный вклад автора

В диссертационной работе представлены результаты исследований, выполненных автором в лаборатории термохимии на кафедре физической химии химического факультета МГУ имени М. В. Ломоносова. Личный вклад автора заключается в сборе, анализе и систематизации литературных данных по исследуемой научной тематике, подготовке и проведении экспериментов, включающих разработку синтетических подходов и выполнение синтетических работ, выделении индивидуальных соединений методом высокоэффективной жидкостной хроматографии, получении монокристаллических образцов для анализа методом РСА, проведении масс-спектрального анализа методом матрично-активированной лазерной десорбции/ионизации (МАЛДИ, под руководством д.х.н. В. Ю. Маркова), проведении исследований методом ЦВА соединений С₇₀(CF₃)₈[X], X=CH₂, NBn, O (выполнены под руководством А. В. Рыбальченко), проведении квантово-химических расчетов, а также в обработке полученных спектральных и расчетных данных.

Регистрация масс-спектров высокого разрешения выполнена к.х.н. В. А. Иоутси. Регистрация спектров ядерного магнитного резонанса (ЯМР) проведена Н. М. Беловым. Исследования методом in situ спектроэлектрохимии ЭПР соединений C₇₀(CF₂), C₇₀(CF₃)₈ и С₇₀(CF₃)₈(CF₂) проведены А. В. Рыбальченко, к.х.н. А. В. Богдановым, к.х.н. Т. С. Янковой и исследования этих соединений методом ЦВА выполнены А. В. Рыбальченко. Гидрирование *uuc*-2-C₆₀(CF₂)₂ совместно В. П. Богдановым. Исследование выполнено с дифторметанопроизводных $C_{70}(CF_2)$ И $C_{70}(CF_3)_8(CF_2)$ выполнено совместно с Н. А. Самойловой и к.х.н. М. Г. Апеновой, соответственно. Рентгеноструктурный анализ проведен проф., д.х.н. С. И. Трояновым.

I.7. Апробация работы

Основные результаты данной работы представлены в виде устных и стендовых докладов на всероссийских и международных конференциях: ХІ Всероссийская конференция с международным участием «Химия фтора» (2016, Москва, Россия), 11-я, 12-я международные конференции «Углеродные наноструктуры» (2013, 2015, Санкт-Петербург, Россия), «21-й Международный симпозиум по фторной химии и 6-й международный симпозиум по фторным технологиям» (2015, Комо, Италия), «8-я Международная конференция по

технологиям и моделированию материалов» (2014, Ариэль, Израиль).

I.8. Публикации

По результатам диссертационной работы опубликовано 4 статьи и 5 тезисов докладов на российских и международных конференциях.

I.9. Структура и объем диссертации

Диссертация состоит из введения, обзора литературы, экспериментальной части, обсуждения полученных результатов, выводов, приложения и списка литературы из 129 наименований. Материалы диссертации изложены на 146 страницах, содержат 85 рисунков и 21 таблицу.

Во введении обоснована актуальность исследований, сформулированы основные цели, научная новизна, представлены практическая значимость и апробация материалов диссертационной работы.

Вторая глава посвящена обзору литературы. В ней кратко освещены вопросы основных понятий и номенклатуры фуллеренов и их производных, необходимые для корректного понимания материала. Кроме того, представлена информация о методах функционализации фуллеренов C_{60} и C_{70} . Уделено внимание известным к настоящему моменту методам региоселективной функционализации фуллеренов, возможным процессам трансформации их углеродного каркаса, а также некоторым спектральным и электронным свойствам производных фуллеренов.

В экспериментальной части приведен перечень используемых в работе реактивов и материалов, характеристики использованного оборудования, методики проведения синтетических работ и экспериментов, а также спектральные и кристаллографические характеристики впервые синтезированных соединений. Приведены методические описания проведения квантово-химического моделирования.

II. Основное содержание работы

В четвертой главе диссертации изложены результаты экспериментальных и теоретических исследований дифторметанопроизводных фуллеренов C₇₀ и Sc₃N@C₇₈-D_{3h}, Sc_nEr_{n-3}N@C₈₀- I_h (*n*=1-3), а также производных C_s -C₇₀(CF₃)₈ с различными мостиковыми группами CF₂, CH₂, NBn и O. На примере полученных соединений изучены закономерности региоселективной функционализации фуллеренового каркаса, а также взаимосвязи молекулярного и электронного строения. Также рассмотрены особенности реакций нуклеофильного циклоприсоединения и гидрирования с фуллеренами C_s -C₇₀(CF₃)₈(CF₂) и *цис*-2-C₆₀(CF₂)₂.

II.1. Дифторметановые производные фуллерена С₇₀

Для синтеза дифторметанофуллеренов использована реакция термолиза CF₂ClCOONa при 180 °C в присутствии фуллерена C₇₀ и каталитических количеств 18-краун-6. В качестве основных продуктов реакции были выделены три изомера C₇₀(CF₂) (**I**, **II**, **III**), строение которых было предложено на основании данных спектроскопии ЯМР, а в случае изомера **I** также доказано методом PCA. Доминирующие изомеры C₇₀(CF₂) (**I** и **II**) соответствуют присоединению группы CF₂ по наиболее реакционноспособным связям **4** и **2**, соответственно, а минорный изомер C₇₀(CF₂) (**III**) является аддуктом по связи **6** (*Puc.* 1). Присоединение группы CF₂ сопровождается диссоциацией C–C связи в случае изомеров **II** и **III** (r_{C-C} 2.09 и 2.19 Å, данные ТФП), а в случае изомера **I** – эта связь сохраняется (r_{C-C} 1.72 Å), что делает эти изомерные соединения удобным объектом для выявления особенностей электронного строения, обусловленных конфигурацией аннелированного фрагмента.

Рис. 1. Диаграмма Шлегеля С₇₀ (цифрами отмечены места присоединения группы CF₂) и строение изомеров С₇₀(CF₂).

Электрохимические свойства изомеров $C_{70}(CF_2)$ (I) и (II) были исследованы методом ЦВА. Оба моноаддукта претерпевают 3 последовательных одноэлектронных процесса восстановления. Первые потенциалы восстановления изомера I и C_{70} совпадают, что свидетельствует о взаимной компенсации отрицательного индуктивного эффекта введенной группы CF_2 и уменьшения размера сопряженной π -системы. В случае изомера $C_{70}(CF_2)$ (II), в котором сохраняется размер π -сопряженной системы, введение группы CF_2 приводит к заметному усилению электроноакцепторных свойств молекулы, о чем свидетельствует смещение первого потенциала восстановления на 0.15 В в область положительных потенциалов по сравнению с C_{70} .

Для нейтральной и анионной форм изомеров $C_{70}(CF_2)$ (**I**, **II**) методом ТФП были построены сечения поверхности потенциальной энергии (ППЭ) вдоль координаты, соединяющей два атома углерода (r_{C-C}), несущих группу CF₂ (*Puc.* 2, *б*, *г*). В нейтральном состоянии изомеры $C_{70}(CF_2)$ характеризуются весьма пологим сечением ППЭ и вариация расстояния r_{C-C} от 1.6 до 2.2 Å приводит к изменению энергии менее чем на 10 кДж моль⁻¹.

Для моноанион-радикала $C_{70}(CF_2)^{--}$ (II) равновесное расстояние r_{C-C} возрастает с 2.09 Å до 2.27 Å, а характер сечения ППЭ становится более крутым.

нейтральной и анионных формах (ТФП, PBE/TZ2P) (б, г).

экспериментальных свидетельств о свойствах и строении анион-радикальных частиц $C_{70}(CF_2)^{-1}$ (I) и $C_{70}(CF_2)^{-1}$ (II) было проведено их исследование методом спектроскопии ЭПР. Для *in situ* электрохимически сгенерированных анион-радикалов $C_{70}(CF_2)^{-1}$ (I) и $C_{70}(CF_2)^{-1}$ (II) были зарегистрированы спектры ЭПР (*Puc. 2, a, 6*), определены величины изотропных констант сверхтонкого взаимодействия (СТВ) на атомах фтора (a_F) и *g*-фактора. Для того, чтобы определить, какая из конфигураций $C_{70}(CF_2)^{-1}$ (I) реализуется в условиях данного эксперимента, был проведен расчет изотропных констант СТВ a_F для закрытой и открытой конфигураций $C_{70}(CF_2)^{-1}$ (I), а также усредненной величины в предположении быстрого взаимопревращения этих конфигураций.

Табл. 1. Экспериментальные и теоретические параметры ЭПР для изомеров С₇₀(CF₂).

Для

получения

Анион	<i>g-</i> фактор	Константа СТВ (<i>a</i> _F) / Гс				
		Эксперимент –	ТФП (РВЕ/QZ3Р)			
			[6,6]-откр.	[6,6]-закр.	Равнов.	
$C_{70}(CF_2)^{-\cdot}(\mathbf{I})$	2.0010(2)	1.62	1.66	0.27	0.68	
		1.61	1.64	0.17	0.37	
$C_{70}(CF_2)^{-}$ (II)	2.0026(2)	1.01	0.99	_	_	

Результаты, представленные в *Табл.* 1, демонстрируют хорошее совпадение теоретически рассчитанных величин для [6,6]-открытой конфигурации C₇₀(CF₂)^{-•} (I) с экспериментальными данными, что указывает на существование моноанион-радикала C₇₀(CF₂)^{-•} (I) в открытой

конфигурации. Таким образом, в ходе одноэлектронного восстановления изомера I имеет место обратимая трансформация фуллеренового каркаса, приводящая к разрыву связи между атомами углерода, связанными с мостиковой группой CF₂.

II.2. Дифторметанопроизводные эндоэдральных металлофуллеренов

Третьим по синтетической доступности после фуллеренов C_{60} и C_{70} является эндоэдральный металлофуллерен (ЭМФ) $Sc_3N@C_{80}-I_h$, наиболее распространенный представитель класса ЭМФ, содержащий кластер нитрида скандия внутри фуллеренового каркаса. В отличие от пустых фуллеренов, где химия предопределяется лишь строением фуллеренового каркаса, в случае ЭМФ происходит частичный перенос заряда с эндоэдрального кластера на фуллереновый каркас, что меняет строение и энергию граничных молекулярных орбиталей. Поэтому химическое поведение и физико-химические свойства ЭМФ и пустых фуллеренов различаются.

В настоящей работе на примере $Sc_3N@C_{78}-D_{3h}$ и $Sc_nEr_{3-n}N@C_{80}-I_h$ (*n*=1-3) была исследована возможность синтеза дифторметанопроизводных ЭМФ путем термолиза дифторхлорацетатов щелочных металлов. Было установлено, что $Sc_3N@C_{80}-I_h$ не вступает в реакцию при нагревании в течение 2 ч при температуре 180 °C, в то время $Sc_3N@C_{78}-D_{3h}$ уже через 15 мин в этих условиях реагирует с образованием $Sc_3N@C_{78}(CF_2)$ с выходом около 40%. При проведении реакции с $Sc_3N@C_{80}-I_h$ при более высокой температуре в высококипящем 1,2,4-трихлорбензоле ($t_{кнп}$ 214°C) удалось синтезировать $Sc_3N@C_{80}-I_h$ (*n*=1-2) не удалось даже при повышенной температуре.

Рис. 3. Хроматограммы (Cosmosil Buckyprep 4.6 мм в.д. × 25 см, толуол, 2 мл мин⁻¹) реакционных смесей CF_2ClCO_2Na с $Sc_3N@C_{80}$ - I_h (в начале реакции и спустя 2 ч) (а) и $Sc_3N@C_{78}$ - D_{3h} (в начале реакции и спустя 15 мин) (в). Спектр ЯМР ¹⁹F и диаграмма Шлегеля соединения $Sc_3N@C_{80}(CF_2)$ (б).

В результате дифторметиленирования Sc₃N@C₈₀-I_h и Sc₃N@C₇₈-D_{3h} образуются

моноаддукты $Sc_3N@C_{80}(CF_2)$ и $Sc_3N@C_{78}(CF_2)$, которые были выделены методом ВЭЖХ и спектрально охарактеризованы (*Puc.* 3, *a*, *b*). [6,6]-Закрытое строение $Sc_3N@C_{78}(CF_2)$ было предложено на основании сопоставления спектральных данных с известными производными Sc₃N@C₇₈-D_{3h}. К сожалению, из-за низкой стабильности Sc₃N@C₇₈(CF₂) не удалось зарегистрировать спектры ЯМР, которые позволили бы сделать более надежные выводы. Строение производного Sc₃N@C₈₀(CF₂) было предложено на основании данных спектроскопии ЯМР на ядрах ¹⁹F и ¹³C. Присутствие единственного синглетного сигнала в спектре ЯМР ¹⁹F при $\delta_{\rm F}$ –102.1 м.д. свидетельствует об эквивалентности атомов фтора группы СF₂ (*Puc.* 3, *б*), что возможно лишь в случае присоединения группы CF₂ по [6,6]-связи $Sc_3N@C_{80}$ (благодаря высокой симметрии углеродного каркаса $C_{80}-I_h$ и свободному вращению эндоэдрального кластера в молекуле $Sc_3N@C_{80}-I_h$ присутствуют лишь два неэквивалентных типа связей С-С: [6,6]- и [5,6]-связи). Согласно данным ТФП, такое соединение имеет [6,6]-открытую конфигурацию (расстояние между атомами углерода, несущими мостиковую группу CF₂, составляет 2.23 Å). Для Sc₃N(a)C₈₀(CF₂) были также зарегистрированы спектры ЯМР ⁴⁵Sc в интервале температур 258-318 К, спектры электронного поглощения в УФ и видимом диапазоне, а также спектры фотолюминесценции. Полученные данные указывают на затрудненное вращение кластера Sc₃N внутри углеродного каркаса по сравнению с $Sc_3N(a)C_{80}-I_h$.

II.3. Мостиковые производные C₇₀(CF₃)₈[X], X=CF₂, CH₂, NBn, O

Хотя для дифторметанофуллерена $C_{70}(CF_2)$ **(I)** была обнаружена обратимая трансформация фуллеренового каркаса, контролируемая зарядовым состоянием молекулы, она не приводит к сильным изменениям её электронного строения. сильных изменений электронных, оптических и химических свойств соответственно.

Рис. 4. Боковая проекция C_s-C₇₀(CF₃)₈ вдоль плоскости Более симметрии и диаграмма Шлегеля. Позиции присоединения групп CF₃ и [5,6]-околоэкваториальная C-C связь отмечены черными кружками и овалом, войств соответственно.

при подобных трансформациях можно ожидать в случае аналогичных мостиковых производных полиаддуктов фуллеренов, в которых мотив расположения аддендов предопределяет более значительную перестройку *π*-системы. В качестве примера такого производного был выбран синтетически легкодоступный поли(трифторметил)фуллерен

 C_{s} - $C_{70}(CF_{3})_{8}$, расположение групп CF₃ В котором приводит к активации [5,6]-околоэкваториальной С-С связи, проявляющей двойной характер, и к разделению единой фуллереновой 62π-системы на две сопряженные π-системы из 32 и 28 sp^2 -гибридизованных атомов углерода, связанных между собой двумя sp^2 -гибридизованными атомами углерода [5,6]-околоэкваториальной связи (*Рис.* 4). На основе C_s-C₇₀(CF₃)₈ были синтезированы мостиковые производные C70(CF3)8[X], где X=CF2, CH2, NBn, O, и исследованы особенности их молекулярного строения и свойства, предопределяемые природой мостиковой группы.

Трифторметилфуллерен C_s-C₇₀(CF₃)₈ был синтезирован с использованием известной двустадийной методики путем взаимодействия фуллерена С₇₀ с CF₃I. Данный подход трифторметилфуллеренов состава $C_{70}(CF_3)_n$ (*n*=2-10), с позволяет получить смесь $C_{\rm s}$ - $C_{70}({\rm CF}_3)_8$. В доминированием среди продуктов результате многостадийного хроматографического разделения помимо C_{s} - $C_{70}(CF_{3})_{8}$ были также выделены другие изомеры трифторметилфуллеренов $C_{70}(CF_3)_n$ (*n*=2-10). В результате сокристаллизации этих соединений с октаэтилпорфирином никеля(II) удалось вырастить монокристаллы и впервые получить рентгеноструктурные данные для изомеров C₇₀(CF₃)₄ и C₇₀(CF₃)₈, а также уточнить структурные данные для $C_{70}(CF_3)_2$ (*Puc.* 5).

Рис. 5. Структуры трифторметилфуллеренов С₇₀(CF₃)_n, (n=2, 4, 8) с октаэтилпорфирином Ni(II). Дифторметанопроизводные фуллерена C_s-C₇₀(CF₃)₈

Синтез дифторметанопроизводных C_8 - $C_{70}(CF_3)_8$ проводили термолизом CF₂ClCOONa в *о*-ДХБ в присутствии 18-краун-6 в качестве катализатора в инертной атмосфере в течение 2.5 ч. Реакция приводит к преимущественному образованию моноаддукта $C_{70}(CF_3)_8(CF_2)$ (I), а также минорных количеств $C_{70}(CF_3)_8(CF_2)_2$ и второго изомера $C_{70}(CF_3)_8(CF_2)$ (II) (*Puc.* 6, *a*).

Строение обоих изомеров $C_{70}(CF_3)_8(CF_2)$ было предложено на основании данных спектроскопии ЯМР и РСА. Доминирующий изомер $C_{70}(CF_3)_8(CF_2)$ (I) является продуктом присоединения группы CF_2 по околоэкваториальной [5,6]-связи *d* с образованием

околоэкваториального пояса из фторсодержащих групп (*Puc.* 6, δ). Расстояние между атомами углерода, несущими группу CF₂, составляет 2.099(4) Å, что свидетельствует об отсутствии связи между ними. В случае C₇₀(CF₃)₈(CF₂) (**II**) группа CF₂ присоединена по приполюсной [6,6]-связи **b'**, причем расстояние между атомами углерода, связывающими мостиковую группу CF₂, составляет 1.774(8) Å (*Puc.* 6, δ).

Рис. 6. Хроматограмма (Cosmosil Buckyprep, 4.6 мм в.д. × 25 см, толуол–гексан 1:1, 1 мл мин⁻¹) и массспектр МАЛДИ реакционной смеси C_s-C₇₀(CF₃)₈ с CF₂ClCOONa спустя 2.5 ч (а). Строение C₇₀(CF₃)₈(CF₂) (**I**, **II**) (б).

В предположении, что процесс образования дифторметаносодержащих производных фуллерена C_s - $C_{70}(CF_3)_8$ может протекать как по карбеновому механизму, так и по механизму нуклеофильного циклопропанирования, методом ТФП были рассчитаны относительные энергии образования всех возможных анионных интермедиатов { $C_{70}(CF_3)_8[CF_2Cl]$ }⁻ и моноаддуктов $C_{70}(CF_3)_8(CF_2)$. Наиболее термодинамически предпочтительными оказались интермедиаты, ведущие к экспериментально обнаруженным моноаддуктам $C_{70}(CF_3)_8(CF_2)$ (I) и (II), при этом среди моноаддуктов наиболее термодинамически выгодным является доминирующий изомер $C_{70}(CF_3)_8(CF_2)$ (I).

Метанофуллерены C₇₀(CF₃)₈(CH₂)

Для введения метиленового мостика была исследована реакция фуллерена C_{s} - $C_{70}(CF_{3})_{8}$ с диазометаном, ранее апробированная лишь для нефункционализированных фуллеренов. Реакция C_{s} - $C_{70}(CF_{3})_{8}$ с диазометаном при 0 °C легко протекает с образованием термически неустойчивого пиразолинового интермедиата $C_{70}(CF_{3})_{8}(CH_{2}N_{2})$. Нагрев реакционной смеси до 100 °C приводит к образованию единственного изомера $C_{70}(CF_{3})_{8}(CH_{2})$ (I) (*Puc.* 7, *a*, *б*). Неожиданным стало то, что экспозиция на дневном свету раствора изомера $C_{70}(CF_{3})_{8}(CH_{2})$ (I) в течение 4–6 дней приводит к количественному его превращению в другой изомер $C_{70}(CF_{3})_{8}(CH_{2})$ (II) (*Puc.* 7, *в*).

Строение изомеров С₇₀(CF₃)₈(CH₂) (I, II) было установлено на основании данных

спектроскопии ЯМР, а в случае изомера $C_{70}(CF_3)_8(CH_2)$ (II) предложенное строение было подтверждено методом РСА.

Рис. 7. Хроматограммы (Cosmosil Buckyprep, 4.6 мм в.д. × 25 см, толуол, 1 мл мин⁻¹) реакционных смесей C_s - $C_{70}(CF_3)_8$ с диазометаном до (а) и после нагрева (б) (на вставке масс-спектр МАЛДИ $C_{70}(CF_3)_8(CH_2)$ (I)). Хроматограмма и масс-спектр отрицательных ионов $C_{70}(CF_3)_8(CH_2)$ (II) (в). Диаграмма Шлегеля и пространственные структуры изомеров I (г) и II (д).

Изомер II является продуктом присоединения группы CH₂ по околоэкваториальной [5,6]связи (*Puc.* 7, ∂). Циклопропанирование [5,6]-связи C_s -C₇₀(CF₃)₈ приводит к её удлинению с 1.418(6) до 1.683(8) Å. В случае изомера C₇₀(CF₃)₈(CH₂) (I) группа CH₂ присоединена по [6,6]связи, соседствующей с околоэкваториальной [5,6]-связью, как показано на диаграмме Шлегеля *Puc.* 7, *г.* Причем присоединение метиленового мостика сопровождается диссоциацией данной связи, что было установлено из данных спектроскопии ЯМР и результатов квантово-химических расчетов: в оптимизированной геометрии расстояние между атомами углерода, несущими метиленовую группу, составляет 2.17 Å.

Таким диазометана к $C_{s}-C_{70}(CF_{3})_{8}$ образом, присоединение происходит по нестабильного околоэкваториальной [5,6]-связи с образованием пиразолинового интермедиата. Его термолиз ведет к региоселективному образованию асимметричного[6,6]открытого изомера $C_{70}(CF_3)_8(CH_2)$ (I), который при облучении дневным светом количественно переходит в C_s -симметричный [5,6]-закрытый изомер $C_{70}(CF_3)_8(CH_2)$ (II). Стоит отметить, что наблюдаемый процесс изомеризации [6,6]-открытого C₇₀(CF₃)₈(CH₂) (I) в [5,6]-закрытый изомер II является первым примером такого рода изомеризации для метанофуллеренов.

Причины региоселективного образования изомеров С₇₀(CF₃)₈(CH₂) (I) и (II) были объяснены анализом на уровне ТФП путей реакции: (а) экструзии молекулярного азота из пиразолинового интермедиата с образованием метанопроизводного I и (б) изомеризации C₇₀(CF₃)₈(CH₂) (**I**) в C₇₀(CF₃)₈(CH₂) (**II**) (*Puc*. 8).

Установлено, что распад пиразолинового аддукта по [5,6]-связи околоэкваториальной C_{s} -С₇₀(СF₃)₈ с отрывом N₂ и образованием [6,6]-открытого изомера С₇₀(СF₃)₈(СH₂) (**I**) протекает как согласованный процесс с энергией активации 125 кДж моль⁻¹ и сопровождается небольшим экзотермическим эффектом (-24 кДж моль⁻¹). При этом замыкание CH_2 [5,6]фрагмента по околоэкваториальной связи оказывается без нарушения невозможным орбитальной симметрии процесса, осложняется также влиянием уходящей молекулы Альтернативный путь реакции, ведущий к присоединению группы CH₂ по второй соседствующей связи, не реализуется, т. к. характеризуется более высокой энергией

Рис. 8. Возможные пути термолиза пиразолинового интермедиата с образованием C₇₀(CF₃)₈(CH₂) (I) (а) и а изомеризации $C_{70}(CF_3)_8(CH_2)$ Показаны (б). относительные энергии образования исходных стерическим субстратов (S) и продуктов (P1-3), а также N2. переходных состояний (TS1-3, ТФП, PBE/TZ2P).

активации (166 кДж моль⁻¹) при сравнимом тепловом эффекте (-29 кДж моль⁻¹). Изомеризация $C_{70}(CF_3)_8(CH_2)$ **(I)** В $C_{70}(CF_3)_8(CH_2)$ **(II)** обусловлена высоким экзотермическим эффектом превращения (-68 кДж моль⁻¹). Вероятно, реакция протекает как постадийный процесс: первоначально происходит диссоциация связи С-СН₂ с образованием

бирадикального интермедиата в триплетном состоянии (+110 кДж моль⁻¹), который далее замыкается по [5,6]-околоэкваториальной связи с образованием изомера $C_{70}(CF_3)_8(CH_2)$ (II), что сопровождается значительным тепловым эффектом.

Азиридино- и эпоксипроизводные C_s - $C_{70}(CF_3)_8$

Для введения азиридиновой мостиковой группы были проведены реакции $C_{s}-C_{70}(CF_{3})_{8}$ с бензилазидокарбонатом ($C_6H_5CH_2CO_2N_3$, $CbzN_3$) и бензилазидом ($C_6H_5CH_2N_3$, BnN_3), которые позволяют аннелировать азиридиновый фрагмент к фуллереновому каркасу. Оказалось, что реакция C_s-C₇₀(CF₃)₈ с бензилазидокарбонатом протекает неклассическим путем с

образованием бензилпроизводных $C_{70}(CF_3)_8BnH$ и $C_{70}(CF_3)_8Bn_2$ в качестве основных продуктов и азиридинопроизводных $C_{70}(CF_3)_8NCbz$ и $C_{70}(CF_3)_8NBn$ в качестве минорных (Рис. 9, *a*). Строение основного продукта реакции $C_{70}(CF_3)_8Bn_2$ было предложено на основании данных спектроскопии ЯМР и подтверждено методом РСА (*Puc.* 9, *б*). Присоединение первой бензильной группы идет по околоэкваториальной [5,6]-связи, а вторая группа располагается в *пара*-позиции к первой.

Рис. 9. Хроматограммы реакционных смесей C_s-C₇₀(CF₃)₈ с CbzN₃ (a), BnN₃ (в), mCPBA (д). Строение C₇₀(CF₃)₈Bn₂ (PCA) (б), C₇₀(CF₃)₈NBn (г), C₇₀(CF₃)₈O (е).

Требуемые азиридинофуллерены удалось синтезировать в реакции C_s - $C_{70}(CF_3)_8$ с бензилазидом. Реакцию проводили в инертной атмосфере при кипячении смеси C_s - $C_{70}(CF_3)_8$, бензилбромида и NaN₃ в *о*-ДХБ в присутствии 18-краун-6 в качестве катализатора межфазного переноса. Спустя 2 ч конверсия исходного субстрата достигает 70%, причем единственным продуктом является $C_{70}(CF_3)_8$ NBn (*Puc.* 9, *e*). С помощью данных спектроскопии ЯМР было показано, что аннелирование идет по околоэкваториальной [5,6]-связи с образованием закрытой конфигурации (r_{C-C} 1.66 Å, данные ТФП) (*Puc.* 9, *e*).

Эпоксидирование фуллерена $C_{s}-C_{70}(CF_{3})_{8}$ было осуществлено обработкой его мета-хлорнадбензойной кислотой (mCPBA) в о-ДХБ при 50 °С (Puc. 9, д). Основным продуктом реакции является моноэпоксипроизводное C₇₀(CF₃)₈O, которое образуется с высоким выходом (70%). На основании данных спектроскопии ЯМР было установлено, что эпоксидная группа присоединена по околоэкваториальной [5,6]-связи, причем атомы углерода, несущие атом кислорода, являются sp^3 -гибридизированными, что свидетельствует о конфигурации $C_{70}(CF_3)_8O_{-}$ [5,6]-закрытой Согласно данным квантово-химического моделирования длина связи между атомами углерода, несущими эпоксидную группу, составляет 1.57 Å (данные ТФП) (*Рис.* 9, *е*).

Особенности молекулярного и электронного строения соединений ряда $C_{70}(CF_3)_8[X]$, X=CF₂, CH₂, NBn, O, в нейтральном и анионном состояниях

Разработка региоселективных методов синтеза и структурная характеризация ряда новых производных $C_{70}(CF_3)_8[X]$, где мостиковая группа X = CF₂, CH₂, NBn, O присоединена по околоэкваториальной [5,6]-связи, позволили выполнить систематический анализ влияния природы мостиковой группы на особенности молекулярного и электронного строения этих соединений. В случае электроноакцепторной группы CF₂ присоединение сопровождается диссоциацией [5,6]-околоэкваториальной С–С связи (расстояние r_{C-C} между атомами углерода, несущими группу CF₂, составляет 2.10 Å). При присоединении донорных и слабоакцепторных мостиковых фрагментов CH₂, NBn и O данная связь C-C сохраняется (*r*_{C-C} 1.57–1.68 Å). Наличие [5,6]-закрытых мостиковых фрагментов приводит к разделению единой сопряженной 62π-электронной системы на два изолированных 32π-И 26π-электронных фрагмента. Уменьшение размера π-сопряженной системы может приводить к увеличению ширины энергетического зазора между ВЗМО и НВМО, а также к снижению электроноакцепторных свойств. Действительно, зазор оказывается минимальным для [5,6]-открытого С₇₀(CF₃)₈(CF₂) (I) (1.98 эВ), а для [5,6]-закрытых производных С₇₀(CF₃)₈[X], X=CH₂ (II), О и NBn на 0.7 эВ больше (2.5-2.7 эВ, Табл. 2). Примечательно, что [6,6]-открытый C₇₀(CF₃)₈(CH₂) (I) и [6,6]-аддукт C₇₀(CF₃)₈(CF₂) (II) также имеют узкий оптический зазор (1.94 и 2.04 эВ), что свидетельствует о сохранении 62*π*-электронной системы в этих соединениях. Аналогичную тенденцию демонстрируют и расчетные данные, согласно которым ширины энергетического зазоров НВМО-ВЗМО для 62л- и (32+28)лэлектронных систем различаются на 0.4-0.5 эВ

Табл. 2. Сродство к электрону, энергии граничных МО и энергетический зазор HBMO–B3MO (E_{G}^{DFT}) , оптический зазор (E_{G}^{Opt}) и первые потенциалы восстановления соединений C_{s} - $C_{70}(CF_{3})_{8}$ (1) и $C_{70}(CF_{3})_{8}[X]$, X=CF₂, CH₂, NBn, O.

C ₇₀ (CF ₃) ₈ X, X=	r _{C-C} , ^[a] Å	Расчет. данные, ^[6] эВ				Эксп. данные		
		СЭ	B3MO	нвмо	$E_{ m G}^{ m DFT}$	$E_{\rm G}^{\rm Opt}$, $\Im { m B}$	$(E_{pc}^{1}+E_{pa}^{1})/2,^{[B]}B$	
							отн. Fc ^{0/+}	отн. 1 ^{-n/-(n+1)}
- (1)	1.418(6)	2.95	-6.26	-4.56	1.71	1.94	-0.96	_
$CF_{2}(\mathbf{I})$	2.099(4)	3.13	-6.39	-4.60	1.79	1.98	-0.66	0.30
$CF_{2}(\mathbf{II})$	1.774(8)	3.06	-6.29	-4.61	1.68	2.04	-0.83	0.13
$\mathrm{CH}_{2}\left(\mathbf{I}\right)$	[2.17]	2.82	-6.07	-4.40	1.67	1.94	[-1.07]	[-0.11]
$\operatorname{CH}_{2}\left(\mathbf{II}\right)$	1.683(8)	2.82	-6.37	-4.11	2.26	2.53	-1.13	-0.17
NBn	[1.66]	2.89	-6.32	-4.10	2.22	2.67	-1.00	-0.04
0	[1.57]	2.94	-6.56	-4.29	2.27	2.70	[-0.92]	[0.04]

^[a] Данные РСА, в скобках даны данные ТФП, РВЕ/ТZ2F. ^[6] ТФП, РВЕ/ТZ2P. ^[6]100 мВ с⁻¹, 0.15 М (н-Ви)₄NBF₄, о-ДХБ.

Для определения влияния природы мостиковой группы на электроноакцепторные свойства молекулы полученные соединения C₇₀(CF₃)₈[X] были исследованы методом циклической вольтамперометрии (ЦВА, Рис. 10, а). Восстановление большинства исследованных производных протекает обратимо вплоть до трианиона. Исключение составляют C_s - $C_{70}(CF_3)_8O$ и асимметричный [6,6]-открытый изомер $C_{70}(CF_3)_8(CH_2)$ (I), демонстрирующие сложное поведение при восстановлении. Образование соответствующих моноанионов сопровождается химическими превращениями, ведущими к появлению серии пиков как при более отрицательных, так и более положительных потенциалах. Сдвиг первых $[5,6]-C_{70}(CF_3)_8[X]$ восстановления относительно первого потенциалов потенциала *C*_s-*C*₇₀(*CF*₃)₈^{0/-} хорошо иллюстрирует изменение электроноакцепторных свойств соединений в зависимости от природы мостиковой группы (Табл. 2).

Рис. 10. ЦВА кривые для C_s-C₇₀(CF₃)₈ и [5,6]-C₇₀(CF₃)₈[X], X= CF₂, CH₂, O, NBn (100 мВ с⁻¹, 0.15 М (н-Ви)₄NBF₄, о-ДХБ, отн. Fc^{0/+}) (а). Сечения ППЭ вдоль координаты r_{c-C} для [5,6]-C₇₀(CF₃)₈[X], X=CF₂, CH₂, NBn, O (б).

Циклопропанирование приводит к смещению первого потенциала восстановления на -0.17 В, в то время как введение группы CF₂, сохраняющей сопряженную 62π -электронную систему, сопровождается положительным сдвигом первого потенциала восстановления на 0.30 В. Восстановление C_{s} - $C_{70}(CF_{3})_{8}$ NBn и C_{s} - $C_{70}(CF_{3})_{8}$ O происходит при потенциалах, близких к таковым для C_s-C₇₀(CF₃)₈. Очевидно, это связано с тем, что отрицательный индуктивный эффект аннелированного гетероатома компенсирует понижение акцепторных свойств молекулы уменьшения размера сопряженной из-за π-системы. С экспериментальными результатами согласуются расчетные данные, согласно которым сродство к электрону (СЭ) увеличивается на 0.2 эВ для [5,6]-открытого C₇₀(CF₃)₈(CF₂) (I), а для [5,6]-закрытых C₇₀(CF₃)₈O, C₇₀(CF₃)₈NBn и C₇₀(CF₃)₈(CH₂) (**II**) уменьшается на 0.1 эВ по

сравнению со СЭ для C_{s} - C_{70} (CF₃)₈.

Для [5,6]-аддуктов $C_{70}(CF_3)_8[X]$, находящихся в нейтральном и анион-радикальном состояниях, были рассчитаны сечения ППЭ вдоль координаты r_{C-C} , соединяющей два атома углерода, несущих мостиковую группу (*Puc.* 10, δ). Для [5,6]- $C_{70}(CF_3)_8(CF_2)$ в нейтральном состоянии наблюдается пологое сечение ППЭ с единственным минимумом энергии при r_{C-C} 2.06 Å. В случае $C_{70}(CF_3)_8[X]$, X=CH₂, NBn и O, единственный минимум соответствует [5,6]-закрытой конфигурации с $r_{C-C} \sim 1.6$ Å. Однако в случае анион-радикалов $C_{70}(CF_3)_8[X]^{-1}$ ситуация меняется. Для [5,6]- $C_{70}(CF_3)_8(CF_2)^{-1}$ сечение ППЭ становится более крутым и происходит увеличение расстояния между атомами углерода, несущими группу CF_2 (r_{C-C} 2.28 Å). Для анион-радикалов $C_{70}(CF_3)_8[X]^{-1}$, X=CH₂, NBn, O, наблюдаются два минимума: глобальные минимумы соответствуют [5,6]-открытой конфигурации фрагмента $C_{\text{карк}}$ -X- $C_{\text{карк}}$ (r_{C-C} 2.15–2.22 Å), а локальные (выше по энергии на 25–33 кДж моль⁻¹) соответствуют закрытой конфигурации фрагмента (r_{C-C} 1.56–1.67 Å). Таким образом, для производных [5,6]- $C_{70}(CF_3)_8[X]$, где X=CH₂, NBn, O, можно ожидать диссоциацию C–C связи при переводе соединений в анионное состояние.

Анализ распределения B3MO для [5,6]-открытых анион-радикалов $C_{70}(CF_3)_8[X]^{-}$, X=CF₂, CH₂, NBn, O, выявил, что B3MO во всех $C_{70}(CF_3)_8[X]^{-}$ локализована на атомах углерода, несущих мостиковую группу X. В то же время, для [5,6]-закрытых конфигураций анион-радикалов $C_{70}(CF_3)_8[X]^{-}$ B3MO делокализована в приполярном регионе фуллеренового остова. Различие в распределении зарядовой и спиновой плотности в анион-радикалах $C_{70}(CF_3)_8[X]^{-}$ может служить полезным диагностическим критерием для определения, в какой из двух – [5,6]-открытой или [5,6]-закрытой конфигурации – преимущественно находится данный анион.

Соединения C_s - $C_{70}(CF_3)_8^{---}$, [5,6]- $C_{70}(CF_3)_8(CF_2)^{---}$ (I) и [5,6]- $C_{70}(CF_3)_8(CH_2)^{---}$ (II) были исследованы методом *in situ* спектроэлектрохимии ЭПР. Зарегистрированные спектры электрохимически генерируемых анион-радикалов $C_{70}(CF_3)_8(CF_2)^{---}$ (I) и $C_{70}(CF_3)_8(CH_2)^{---}$ (II) демонстрируют хорошо разрешенную сверхтонкую структуру, что их отличает от C_s - $C_{70}(CF_3)_8^{---}$, который представлен широким синглетным сигналом (*Puc.* 11). Полученные данные свидетельствуют, что спиновая плотность в анион-радикалах мостиковых производных оказывается более локализованной по сравнению с анион-радикалом C_s - $C_{70}(CF_3)_8$.

19

Из спектров были установлены изотропные *а. С*₅-С₇₀(CF₃)⁻ константы сверхтонкого взаимодействия (СТВ). Для анион-радикала $C_{70}(CF_3)_8(CF_2)^{-1}$ (I): a_1 (1F_a, CF₂) 2.322, a_2 (1F_b, CF₂) 1.379, a_3 (6F, 2CF₃) 0.493, a_4 (6F, 2 Fc 2CF₃) 0.152 и *a*₅ (6F, 2CF₃) 0.151 Гс. Наибольшие константы СТВ наблюдаются для ядер фтора _{б.} С₇₀(СF₃)₈(СF₂)→ (I) мостикового фрагмента и ближайшей пары групп радикал-аниона $C_{70}(CF_3)_8(CH_2)^{--}$ (II) CF_{3} . Для наблюдаются лишь константы СТВ взаимодействия 2 Гс с ядрами фтора групп CF₃: *a*₁ (6F, 2CF₃) 0.51, *a*₂ (6F, $2CF_3$) 0.42 (6F. $2CF_3$) и 0.22 a_3 в. С₇₀(CF₃)₈(CH₂)^{-•}(II) Экспериментальные значения констант CTB находятся в хорошем согласии с данными квантовохимического моделирования анион-радикалов в 2 Fc конфигурации с диссоциированной [5,6]-связью. Таким образом, полученные экспериментальные обратимой данные свидетельствуют об трансформации углеродного каркаса соединения **Рис.** 11. Спектры ЭПР C_s - $C_{70}(CF_3)_{B}^{-1}$ и $C_{70}(CF_3)_8(CH_2)$ (II) при переводе его в анионное $C_{70}(CF_3)_8[X]^{-1}$, X=CF₂ (I), CH₂ (II). состояние.

Нуклеофильное циклопропанирование и гидрирование C_s-C₇₀(CF₃)₈(CF₂) (I)

Как было показано выше, введение в каркас мостиковых фрагментов может сопровождаться трансформацией углеродного каркаса и изменением строения граничных молекулярных орбиталей. Это должно также приводить к изменению химических свойств соединений. На примере [5,6]-открытого $C_{70}(CF_3)_8(CF_2)$ (I) исследованы особенности химических свойств мостиковых производных в реакциях нуклеофильного циклопропанирования и гидрирования, являющихся широко используемыми методами функционализации фуллеренов.

Введение группы CF_2 приводит к активации атомов углерода, несущих эту группу. В частности, в отличие от C_s - $C_{70}(CF_3)_8$, $C_{70}(CF_3)_8(CF_2)$ (I) демонстрирует повышенную активность к присутствию следов воды. Методом РСА было показано, что кристаллизация $C_{70}(CF_3)_8(CF_2)$ медленным испарением растворителя на воздухе осложнена образованием продуктов присоединения групп H и OH по атомам углерода, несущих группу CF_2 ,

20

С₇₀(CF₃)₈(CF₂)H(OH) и С₇₀(CF₃)₈(CF₂)(OH)₂. Таким образом, можно ожидать легкость введения небольших аддендов, например, атомов водорода в результате реакции гидрирования.

Гидрирование фуллерена C_s - $C_{70}(CF_3)_8(CF_2)$ (I) проводили в реакции с борогидридом натрия в присутствии этанола в инертной атмосфере в среде толуола. Гидрирование протекает с высоким выходом с образованием единственного продукта $C_{70}(CF_3)_8(CF_2)H_2$. Строение продукта

предложено на основании данных спектроскопии ЯМР (*Puc.* 12, a, δ). Атомы водорода присоединены по атомам углерода, несущим мостиковую $\frac{5}{6}$.

Спектр ЯМР на ядрах ¹Н содержит единственный сигнал при $\delta_{\rm H}$ 5.37 м.д., представленный

дублетом

^й **Рис. 12.** Спектр ЯМР ¹Н (а), ¹⁹F (б) и строение C₇₀(CF₃)₈(CF₂)H₂. Строение C₇₀(CF₃)₈(CF₂)[C(CO₂Et)₂] (в).

 $({}^{3}J_{\rm HF}$ 2.4 Гц и 11.6 Гц), который возникает за счет расщепления сигнала протонов, расположенных на фуллереновом каркасе, на двух неэквивалентных атомах фтора группы CF₂. Это согласуется с данными спектра ЯМР на ядрах ¹⁹F, в котором неэквивалентные атомы фтора группы CF₂ представлены в спектре сигналами типа дублет триплетов при $-\delta_{\rm F}$ 85.7 м.д. ($J_{\rm FF}$ 270 Гц, ${}^{3}J_{\rm HF}$ 12 Гц) и дублетом неразрешенных триплетов при $-\delta_{\rm F}$ 106.8 м.д. ($J_{\rm FF}$ 270 Гц, ${}^{3}J_{\rm HF}$ 12 Гц) и дублетом неразрешенных триплетов при $-\delta_{\rm F}$ 106.8 м.д. ($J_{\rm FF}$ 270 Гц), соответственно. Согласно данным ТФП, гидрирование $C_{\rm s}$ -C₇₀(CF₃)₈(CF₂) (I) приводит к увеличению расстояния между атомами углерода, несущими группу CF₂, до 2.56 Å.

Реакцию Бингеля проводили путем взаимодействия фуллерена $C_{70}(CF_3)_8(CF_2)$ (I) с бромодиэтилмалонатом в присутствии основания *t*-BuOK при комнатной температуре в инертной атмосфере. Уже через 30 мин наблюдается полная конверсия исходного субстрата с образованием моноаддукта $C_{70}(CF_3)_8(CF_2)[C(CO_2Et)_2]$ в качестве основного продукта. Строение аддукта, предложенное на основании данных спектроскопии ЯМР на ядрах ¹Н и ¹⁹F, показано на *Рис.* 12. Циклопропанирование $C_{70}(CF_3)_8(CF_2)$ (I) идет исключительно по

стерически наиболее доступной приполярной [6,6]-связи с образованием C_s-симметричного продукта.

Таким образом, в зависимости от размера присоединяемой группы возможна региоселективная функционализация околоэкваториальной или приполярной области молекулы. Наблюдаемая региоселективность хорошо согласуется с распределением граничных МО. Орбитали НВМО и НВМО+1 $C_{70}(CF_3)_8(CF_2)$ (I) локализованы на атомах углерода, несущих группу CF_2 , и атомах углерода приполярной [6,6]-связи фуллеренового каркаса. В силу стерических затруднений атака объемного карбаниона $[CBr(CO_2Et)_2]^-$ по позиции атомов углерода $C_{карк}$ - CF_2 - $C_{карк}$ исключена, и присоединение идет по приполярной [6,6]-связи. Напротив, в случае реакции гидрирования стерические затруднения отсутствуют, и присоединение идет по наиболее реакционноспособным атомам углерода, несущих группу CF_2 .

II.4. Гидрирование фуллерена цис-2-С₆₀(CF₂)₂

Интересным объектом изучения является дифторметанопроизводное μc -2-C₆₀(CF₂)₂. Его структурной особенностью является смешанная [6,6]-открытая/закрытая конфигурация мостиковых фрагментов (r_{C-C} 1.979(5) и 1.726(5) Å при 100 K, соответственно, данные PCA). Однако при комнатной температуре переходы между этими конфигурациями происходят достаточно быстро, что приводит к кажущейся C_s -симметричности молекулы в спектрах ЯМР. Это подтверждает вид сечения ППЭ, построенной вдоль изменения расстояния между атомами углерода, несущими одну из двух CF₂ групп при оптимизации прочих степеней

барьера **Рис. 13.** Сечение ППЭ цис-2- $C_{60}(CF_2)_2$ (а). Пространственное строение $C_{60}(CF_2)_2H_2$ (б) и $C_{60}(CF_2)_2H_4$ (в).

(до 30 кДж моль⁻¹), причем отрицательный заряд оказывается локализован на паре атомов углерода с [6,6]-конфигурацией. Такая асимметрия способствует региоселективности протонирования (или атаки другой стерически незатрудненной частицой).

Для иллюстрации этого эффекта было осуществлено гидрирование $\mu uc-2-C_{60}(CF_2)_2$ под действием Zn/Cu-пары в среде толуол-вода в инертной атмосфере. Методами ВЭЖХ и МС МАЛДИ показано, что реакция протекает последовательно с образованием на первом этапе $C_{60}(CF_2)_2H_2$ и тетрагидрида $C_{60}(CF_2)_2H_4$ на втором. Строение полученных соединений установлено методом спектроскопии ЯМР ¹H, ¹⁹F, а также методом PCA для $C_{60}(CF_2)_2H_4$. В случае $C_{60}(CF_2)_2H_2$ пара атомов водорода присоединяется к атомам углерода, несущим группу CF₂. При этом вторая группа CF₂ принимает [6,6]-закрытую конфигурацию (*Puc.* 13, δ). Присоединение второй пары атомов водорода происходит по атомам углерода, связанных со второй группой CF₂, и сопровождается диссоциацией каркасной C–C связи с образованием C_8 -симметричного продукта $C_{60}(CF_2)_2H_4$ (*Puc.* 13, ϵ). Помимо кинетических факторов региоселективность гидрирования также обеспечивается предпочтительностью образования связи C–H атомом углерода, несущим группу CF₂, что обусловлено снижением стерических напряжений при переходе данного атома углерода в *sp*³-гибридное состояние.

II.5.Заключение

В работе был синтезирован ряд мостиковых производных фуллерена C_{70} , эндоэдральных металлофуллеренов и C_s - $C_{70}(CF_3)_8$, на примере которых были исследованы закономерности трансформации углеродного каркаса и установлено влияние природы мостикового фрагмента на особенности молекулярного и электронного строения соединений. Показано, что наличие атомов фтора в мостиковой группе способствует образованию открытой конфигурации, в то время как электронодонорные заместители обеспечивают закрытую конфигурацию. Важной находкой стало обнаружение зарядово-контролируемой трансформации углеродного каркаса, приводящей к «переключению» между закрытыми и открытыми конфигурациями мостикового фрагмента. Подобный процесс перестройки углеродного скелета фуллерена сопровождается изменением размера и связности сопряженной π -системы фуллеренового каркаса, что может быть использовано для дизайна молекулярных переключателей и создания полевых транзисторов на органической основе. Введение мостиковых групп активирует несущие их атомы углерода, что открывает возможность получения новых функциональных материалов на основе фуллеренов с модифицированным углеродным скелетом.

23

II.6. Выводы

1. Впервые спектрально и структурно охарактеризованы три изомера $C_{70}(CF_2)$, а также производные эндоэдральных металлофуллеренов $Sc_3N@C_{80}(CF_2)$ и $Sc_3N@C_{78}(CF_2)$. Показано, что в зависимости от позиции присоединения группы CF_2 аддукты имеют [6,6]-закрытую, [5,6]-открытую конфигурации, а также нетипичную в химии фуллеренов [6,6]-открытую конфигурацию. Показано, что трансформация углеродного каркаса внедрением группы CF_2 приводит к увеличению электроноакцепторных свойств молекулы.

2. Методом РСА установлено строение комплексов трифторметилфуллеренов C_1 - $C_{70}(CF_3)_n$ (*n*=2, 4 и 8) с октаэтилпорфирином никеля(II).

3. Установлено строение ряда новых мостиковых производных C_s - $C_{70}(CF_3)_8$, несущих мостиковые группы CF₂ (2 изомера), CH₂ (2 изомера), NCH₂C₆H₅ и О. Присоединение донорного или слабоакцепторного адденда по околоэкваториальной [5,6]-связи идет с образованием [5,6]-закрытых аддуктов. Напротив, присоединение наиболее электроноакцепторного адденда CF₂ приводит к образованию [5,6]-открытого $C_{70}(CF_3)_8(CF_2)$. Такое различие в конфигурации мостиковой группы оказывает влияние на оптические и электронные свойства соединения: разница первых потенциалов восстановления, а также энергетических зазоров ВЗМО–НВМО достигают 0.4 В и 0.7 эВ, соответственно.

4. Методом *in situ* спектроэлектрохимии ЭПР и на основании квантово-химических расчетов показано, что [6,6]-закрытый C₇₀(CF₂), а также [5,6]-закрытый C₇₀(CF₃)₈(CH₂) претерпевают обратимое превращение между закрытой и открытой конфигурациями, контролируемое зарядовым состоянием молекулы.

5. Введение мостиковых фрагментов в фуллереновый каркас позволяет активировать несущие их атомы углерода, как это было показано на примере региоселективного гидрирования и гидроксилирования *цис*-2- $C_{60}(CF_2)_2$ и [5,6]- $C_{70}(CF_3)_8(CF_2)$. Наличие структурных напряжений в [6,6]-открытом изомере $C_{70}(CF_3)_8(CH_2)$ обеспечивает его фотоиндуцируемую трансформацию в [5,6]-закрытый изомер.

II.7. Основное содержание диссертационной работы изложено в следующих публикациях:

1. Rybalchenko A.V., Apenova M.G., <u>Semivrazhskaya O.O.</u>, Belov N.M., Markov V.Yu., Troyanov S.I., Ioffe I.N., Lukonina N.S., Sidorov L.N., Magdesieva T.V., Goryunkov A.A. *Electron affinities of* [5,6]-*open and* [5,6]-*closed adducts of trifluoromethylfullerene* C_s - $C_{70}(CF_3)_8$: even one bond matters! // Electrochim. Acta. – 2016. – V. 191. – P. 980-986.

2. Bogdanov V. F., <u>Semivrazhskaya O. O.</u>, Belov N. M., Troyanov S. I., Markov V. Yu., Ioffe I. N., Kemnitz E., Goryunkov A. A. *Stepwise Regioselective Hydrogenation of cis-2-C*₆₀(CF_2)₂ *Homofullerene with* [6,6]-*Open/Closed Valence Tautomerism* // Chem. Eur. J. – 2016. – V.22. – P. 15485-15490.

3. Apenova M. G., <u>Semivrazhskaya O. O.</u>, Borkovskaya E. V., Belov N. M., Ioffe I. N., Markov V. Yu., Troyanov S. I., Lukonina N. S., Sidorov L. N., Goryunkov A. A. *Orienting effect of the cage addends: the case of nucleophilic cyclopropanation of* C_2 - $C_{70}(CF_3)_8$. // Asian J. Chem. – 2015. – V. 10. – No. 6. – P.1370-1378.

4. Samoylova N.A., Belov N.M., Brotsman V.A., Ioffe I.N., Lukonina N.S., Markov V.Yu., Ruff A., Rybalchenko A.V., Schuler F., <u>Semivrazhskaya O.O.</u>, Speiser B., Troyanov S.I., Magdesieva T.V., Goryunkov A.A. [6,6]-Open and [6,6]-closed isomers of $C_{70}(CF_2)$: Synthesis, electrochemical and quantum chemical investigation // Chem. Eur. J. – 2013. – V. 19. – N_{2} 52. – P. 17969-17979.

5. <u>Semivrazhskaya O.O.</u>, Belov N.M., Goryunkov A.A. *Non-rigid methylene derivatives of* $poly(trifluoromethyl)fullerene C_s-C_{70}(CF_3)_8$ // **XI Всероссийская конференция с** международным участием «Химия фтора», Москва, Россия, 2016. С. 118.

6. <u>Semivrazhskaya O.O.</u>, Apenova M.G., Lukonina N.S., Belov N.M., Troyanov S.I., Goryunkov A.A. *High Regioselective Fullerene Cage Difluoromethylenation: the Case of C_s-* $C_{70}(CF_3)_8$ // 21st International Symposium on Fluorine Chemistry & 6th International Symposium on Fluorous Technologies (21st ISFC&ISOFT'15), Como, Italy, 2015. P. 385.

7. <u>Semivrazhskaya O.O.</u>, Apenova M.G., Lukonina N.S., Belov N.M., Troyanov S.I., Goryunkov A.A. *Regioselective nucleophilic cyclopropanation and alkylation of* C_2 - $C_{70}(CF_3)_8$ // **12th International Conference Advanced Carbon NanoStructures (ACNS'15)**, Saint-Petersburg, Russia, 2015. P. 87.

8. Goryunkov A.A., Apenova M.G., Borkovskaya E.V., Brotsman V.A., Belov N.M., Ioffe I.N., Ioutsi V.A., Lukonina N.S., Markov V. Yu., Rybalchenko A.V., <u>Semivrazhskaya O.O.</u> *Fluorinated fullerene derivatives: synthesis, structure, and electronic properties* // **The 8th International Conference Material Technologies and Modeling**, Ariel, Israel, 2014. P. 2.26-2.37.

9. Samoylova N.A., Rybalchenko A.V., <u>Semivrazhskaya O.O.</u>, Belov N.M., Nikitin O.M., Ovchinnikova N.S., Magdesieva T.V., Speiser B., Goryunkov A.A. *Structures and spectroscopy of neutral and charged forms of [6,6]-closed and [6,6]-open fullerene CF*₂-derivatives // 11th International Conference Advanced Carbon NanoStructures (ACNS'13), Saint-Petersburg, Russia, 2013. P. 162.

Автор выражает благодарность научному руководителю д.х.н. Горюнкову А. А. и всему коллективу лаборатории термохимии кафедры физической химии химического факультета МГУ имени М. В. Ломоносова.

Для заметок