ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

на диссертационную работу
Митрофанова Александра Юрьевича

Abstract

«ФОСФОНАТЫ ФЕНАНТРОЛИНОВОГО РЯДА В СОЗДАНИИ РЕГЕНЕРИРУЕМЫХ КАТАЛИЗАТОРОВ ДЛЯ ПРОЦЕССОВ «ЗЕЛЕНОЙ ХИМИИ»,

представленную на соискание ученой степени кандидата химических наук по специальностям 02.00 .03 - органическая химия и 02.00 .01 - неорганическая химия

Работа А.Ю. Митрофанова посвящена синтезу ранее неизвестных диэтиловых эфиров моно- и полифосфонатов фенантролинового ряда; получению комплексов этих лигандов с $\mathrm{Cu}(\mathrm{I}), \mathrm{Cu}(\mathrm{II}), \mathrm{Pd}(\mathrm{II}), \mathrm{Ru}(\mathrm{II})$; определению строения комплексов и изучению их каталитической активности (с упором на комплексы $\mathrm{Cu}(\mathrm{I})$) в реакциях кросс-сочетания (образование связей $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{P}$ и $\mathrm{C}-\mathrm{N}$) с последующим получением на их основе гибридньх органо-неорганических материалов на основе диоксида титана и изучения их каталитической активности в упомянутых типах реакций. Работа носит ярко выраженный междисциплинарный характер и включает в себя как оригинальный материал в области органической химии (синтез замещенных фенантролинов, изучение реакций образования связей С-С и С-гетероатом), так и неорганического синтеза (получение комплексов, модификация диоксида титана), поэтому представление работы по двум специальностям вполне оправдано.

Выбор данных объектов продиктован рядом факторов, органически вытекающих из стоящих перед современной химией проблем. Во-первых, все более широкое использование комплексов $\mathrm{Cu}(\mathrm{I})$ в реакциях кросс-сочетания самых разных типов, как альтернатива более дорогим палладиевым катализаторам. Во-вторых, фенантролин и его производные эффективно координируются к $\mathrm{Cu}(\mathrm{I})$ и (наряду с фосфинами) стабилизируют эту степень окисления. В третьих, на практике гораздо удобнее использовать гетерогенные иммобилизованные на поверхности носителя (например, диоксида титана) катализаторы. Иммобилизация может эффективно осуществляться путем включения присоединенной к координационному окружению каталитически активного металла фосфонатной группы в систему связей Ті-О подложки (ковалентное связывание). Однако, в четвертых, фосфонатные производные фенантролинов до настоящей работы отсутствовали.

В связи с этим актуальность данной работы не вызывает сомнений как в фундаментальном, так и в прикладном аспектах.

Диссертация имеет классическую структуру и содержит введение, литературный обзор, обсуждение результатов, экспериментальную часть, выводы и список литературы (217 наименований). Диссертация изложена на 152 страницах, содержит необходимый иллюстративный материал (27 таблиц, 34 рисунка, 22 схемы, и большое количество структурных формул органических соединений и синтетических цепочек).

Во введении обоснована актуальность выбранной темы, сформулированы научная новизна и практическая значимость работы, изложены цели и задачи исследования, приведены положения, выносимые на защиту.

В литературном обзоре обсуждается подробно использование фенантролиновых лигандов в медном катализе, проиллюстрированы широкие возможности таких реакций для синтеза самых разных типов органических соединений, включая синтез биологически активных и природных соединений.

В экспериментальной части собраны методики синтеза фосфорилированных фенантролинов, координационных соединений на их основе, продуктов модификации диоксида титана лигандами и координационными соединениями на их основе, а также детали каталитических экспериментов. Все продукты адекватно охарактеризованы. Индивидуальность впервые синтезированных соединений доказана данными элементного анализа, а также данными ЯМР и масс-спектрометрии. Для ключевых соединений

выполнен рентгеноструктурный анализ. Особенно хочется отметить тщательность характеризации продуктов модификации диоксида титана, для которых выполнен полный элементный анализ на все элементы, приведены данные MAC ${ }^{31} \mathrm{P}$, ИК-спектры, а также определена площадь поверхности.

В главе, посвященной обсуждению результатов, описано получение Pd катализируемой реакцией фосфонилирования галогенированных фенантролинов ранее неизвестных диэтиловых эфиров моно- и полифосфонатов фенантролинового ряда с высоким выходом. Изучено комплексообразование этих новых лигандов с рядом переходных металлов - $\mathrm{Cu}(\mathrm{I}), \mathrm{Cu}(\mathrm{II}), \mathrm{Ru}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$. Методом ЯМР показано, что комплексы $\mathrm{Cu}(\mathrm{I})$ с фенантролинами являются весьма лабильными. Координационная способность замещенных 1,10 -фенантролинов практически не зависит от присутствия в молекуле электроноакцепторных диэтоксифосфорильных заместителей (их числа и положения) и весьма похожа на незамещенный $1,10-$ фенантролин, для всех соединений, кроме стерически затрудненного 2,9-бисфосфоната. Тип координации фосфонилированого фенантролина определяется природой металла по Пирсону: мягкие кислоты Льюиса ($\mathrm{Cu}(\mathrm{I}), \mathrm{Ru}(\mathrm{II}), \mathrm{Pd}(\mathrm{II}))$ координируют лиганды исключительно через атомы азота, по бидентатно-хелатному типу, в то время как $\mathrm{Cu}(\mathrm{II})$ проявляет сильную тенденцию к дополнительной (или даже исключительной) координации фосфорильного атома кислорода. При этом синтезированы и охарактеризованы методом РСА два необычных координационных полимера меди(II), содержащих диэтоксифосфорил-1,10фенантролиновый лиганд в полимерной цепи.

Показано, что полученные комплексы меди(I) этих лигандов являются эффективными катализаторами реакций кросс-сочетания (образование связей $\mathrm{C}-\mathrm{C}$ и C гетероатом, гетероатом $=\mathrm{N}, \mathrm{P}$). В качестве модельных реакций использовалось арилирование ацетиленов, α-Арилирование CH -кислот по Хартли, аминирование арилгалогенидов, фосфонилирование арилгалогенидов. На основании большого количества экспериментов сделан вывод о том, что смешанно-лигандные медные комплексы с диэтоксифосфорил-1,10-фенантролиновыми лигандами являются эффективными катализаторами различных реакций кросс-сочетания и могут быть использованы для получения гетерогенных катализаторов.

На следующей стадии работы были изучены различные способы получения гибридных органо-неорганических материалов на основе оксида титана и

металлокомплексов $\mathrm{Ru}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ и $\mathrm{Cu}(\mathrm{I})$ с диэтоксифосфорил-1,10-фенантролиновыми лигандами. Были испробованы следующие подходы:

1) золь-гель иммобилизации металлокомплексов в матрицу оксида титана в органических растворителях;
2) модификация поверхности мезопористого оксида титана заранее синтезированными металлокомплексами с фосфонатной якорной группой;
3) пришивка лиганда с фосфонатной якорной группой на поверхность мезопористого оксида титана с последующей координацией лиганда. В результате сделан вывод, что наиболеее эффективным способом иммобилизации медных комплексов является их постадийная сборка на поверхности оксида титана.

Было установлено, что каталитические свойства полученных материалов зависят от положения якорной группы в лиганде и способа приготовления материала. Наиболее эффективным оказался материал, полученный прививкой 3(диэтоксифосфорил)фенантролина на поверхность мезопористого оксида титана и последующим комплексообразованием с комплексом $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}$. Данный материал является высокоэффективным и регенерируемым катализатором для реакции арилирования терминальных ацетиленов (медь-катализируемой реакции Соногаширы) и получения эфиров винилборных кислот присоединением связи B-B к терминальным алкинам.

При чтении текста диссертации возник ряд замечаний:

1. На с. 24 на второй сверху схеме структурная формула комплекса бора должна соответствовать CF_{3}-производному, $\left[\mathrm{B}\left(\mathrm{CF}_{3}\right)\left(\mathrm{OCH}_{3}\right)_{3}\right]^{.}$.
2. На с. 55 предположение о замене бромид-иона на метанол в координационной сфере $\mathrm{Cu}(\mathrm{I})$ не является единственным возможным объяснением наблюдаемой динамики. Метанол является жестким основанием по классификации Пирсона и, скорее всего, не замещает бромид, а способствует его диссоциации (будучи более полярным и сильно сольватирующим анионы растворителем); к.ч. 3 для $\mathrm{Cu}(\mathrm{I})$ не является чем-то необычным.
3. Рис. 15 на с. 60 относится к соединению $\mathbf{6 0}$, о котором в тексте говориться, что атом меди в нем имеет квадратно-пирамидальное окружение. Однако на

рисунке окружение меди показано как 7 -координированное, с бидентатными нитратными лигандами.
4. Рис. 16 на с. 61 относится к соединению $\mathbf{6 e}$, для которого заявлено квадратнопирамидальное окружение. На рисунке же для двух атомов меди, одинаково маркированных как $\mathrm{Cu}(1)$, показано разное координационное окружение (к.ч. 5 и 6 , соответственно). Более того, в подписи к рисунку имеются ссылки на пары атомов $\mathrm{Cu}-\mathrm{O}$, которые либо отсутствуют на рисунке ($\mathrm{Cu}-\mathrm{O}(10), \mathrm{Cu}-\mathrm{O}(2))$, либо являются несвязанными ($\mathrm{Cu}-\mathrm{O}(7)$).
5. Рис. 17, с. 63 , снова изображает соединение $6 \mathbf{e}$, но уже с к.ч. $\mathrm{Cu}=7$, и двумя бидентатными нитратными лигандами!
6. На с. 93 делается вывод о том, что при иммобилизации происходит смещение равновесия в растворе накопление свободного лиганда в оксидной матрице. Можно ли повысить содержание металла в матрице повторной обработкой матрицы, например, в растворе $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4}\right] \mathrm{BF}_{4}$?

Сделанные замечания носят преимущественно технический характер и не снижают положительного впечатления от тщательно спланированной и выполненной научной работы с применением широкого набора синтетических методов и физических методов идентификации, которыми автор прекрасно владеет. Результаты работы прошли достаточную апробацию на 6 научных конференциях различного уровня, опубликованы в 2 статьях из перечня ВАК.

Автореферат полностью передает основное содержание диссертации. Полученные результаты и выводы несомненно будут востребованы в академических институтах (ИОНХ РАН, ИНХ СО РАН, ИНЭОС РАН, ИМХ РАН, ИОХ РАН, ИК РАН, НИОХ РАН), а также в высших учебных заведениях (химфак МГУ, МИТХТ, МХТУ, Университетах Казани, Нижнего Новгорода, Санкт-Петербурга, Ростова, Новосибирска, Иркутска), где они могут быть рекомендованы для включения в учебные курсы лекций и практикумов.

Можно резюмировать, что работа «Фосфонаты фенантролинового ряда в создании регенерируемых катализаторов для процессов «зеленой химии»" полностью удовлетворяет требованиям п. 9 «Положения о порядке присуждения ученых степеней», предъявляемым к кандидатским диссертациям, а её автор, Митрофанов Александр Юрьевич, заслуживает присуждения ученой степени кандидата химических по специальностям 02.00 .03 - органическая химия и 02.00 .01 - неорганическая химия.

Настоящий отзыв рассмотрен и утвержден на заседании семинара лаборатории Химии кластерных и супрамолекулярных соединений ИНХ СО РАН (протокол № 12 от 20 апреля 2015 г.)

Главный научный сотрудник лаборатории
Химии кластерньх и супрамолекулярных соединений
ФГБУН ИНХ СО РАН,
доктор химических наук, профессор
г. Новосибирск, 630090, проспект Лаврентьева 3

Соколов Максим Наильевич

тел. +738323165845
e-mail: caesar@niic.nsc.ru

