Глава 10. Тримолекулярные реакции.

Как мы уже говорили, в газовой фазе тройные соударения маловероятны. Однако существуют некоторые превращения, в которых подобный механизм реализуется. Это, прежде всего, те, в которых для образования стабильных продуктов необходима передача выделяющейся энергии: рекомбинация радикалов: $I+I+M\to I_2+M$; взаимодействие радикала со стабильной молекулой, $H+O_2+M\to H_2O+M$; и ряд превращений с участием аналогичной радикалу молекулой NO, имеющей неспаренный электрон. Характерной особенностью тримолекулярных реакций при больших значениях температуры является уменьшение константы скорости с ростом T (как бы отрицательная энергия активации). Так в реакции взаимодействия NO и O_2 в интервале 300-600К константа скорости уменьшается почти в 3 раза.

Параграф 1. Схема Траутца.

Первой попыткой объяснить кинетику таких процессов была схема Траутца, предполагающая, что подобные реакции протекают в две стадии. Например, взаимодействие $2NO+O_2 \rightarrow 2NO_2$ описывается кинетическим уравнением третьего порядка. Известно, что в твердой фазе существует димер N_2O_2 , а с ростом температуры увеличивается содержание мономера ($\Delta H_1 = -11,2$ кДж). Третий порядок можно получить, предположив следующую схему:

$$(1) \ 2NO \leftrightarrow N_2O_2$$
 быстро и

(2)
$$N_2O_2 + O_2 \rightarrow 2NO_2$$
 медленно.

Тогда при равновесной первой стадии ($[N_2O_2] = K[NO]^2$) скорость получения продукта будет зависеть от третьей степени концентрации:

$$d[NO_2]/dt = 2k_2K[NO]^2[O_2]$$
. И тогда $E_{9\phi} = E_2 + \Delta H_1$.

Следует отметить, что если константа равновесия уменьшается с ростом температуры, (процесс образования димера экзотермичен), то можно объяснить и аналогичное поведение константы скорости (E активации в реакции 2 мала).

Однако, не понятна рекомбинация радикалов, процесс, для протекания которого, вообще говоря, энергия активации не нужна. Кроме того, образование димера можно представить как тройное соударение. Было отмечено также, что константа скорости зависит и от природы частицы M. В таблице приведены значения этого параметра для рекомбинации атомов I при 25° С. Видно, что с увеличением массы и числа атомов в молекуле M, константа увеличивается.

M	Не	Ne	Ar	H_2	O_2	CO_2	CCl ₄	CH ₃ OH	C ₂ H ₅ Cl	C ₆ H ₅ CH ₃
$k (\text{cm}^6/\text{моль}^2\text{c})$	0,94	1,00	2,00	2,63	3,69	7,44	28,0	35,8	46,3	183

Посмотрим, как две основные теории химической кинетики могут объяснить наблюдаемые опытные факты. Напомним, что обе рассмотренные выше теории предполагают статистически равновесное распределение энергии, для которого нужны столкновения, не приводящие к реакции между молекулами. Энергия активации тримолекулярных реакций мала или просто равна нулю. Равновесное распределение поступательной энергии устанавливается благодаря тому, что частота тройных соударений $(10^{-36} - 10^{-33} \text{cm}^6/\text{c})$ много меньше, чем двойных $(10^{-11} - 10^{-10} \text{cm}^3/\text{c})$. Именно в двойных соударениях, в том числе и одинаковых молекул между собой, будет устанавливаться равновесное распределение.

Параграф 2. Использование ТАС.

По ТАС число тройных соударений равно:

$$Z_{123} = 8\sqrt{2}\pi^{3/2}d_{12}^2d_{23}^2\delta(kT)^{1/2}\left\{\frac{1}{\mu_{12}^{1/2}} + \frac{1}{\mu_{23}^{1/2}}\right\}n_1n_2n_3.$$
 Скорость реакции опреде-

лится выражением: $r = pZ_{123}e^{-E/RT}$. Если принять диаметр молекулы 3Å, толщину шарового слоя 1Å, массу молекулы в среднем 30D, то при 300К получим $Z = 1,5\cdot 10^{10}\,\mathrm{n}^2/\mathrm{моль}^2\,\mathrm{c}^{-1}$, что близко к значению предэкспоненты для некоторых реакций рекомбинации радикалов водорода, брома и йода с участием третьей частицы, взаимодействия радикала O с NO или NO_2 . Но для многих взаимодей-

ствий совпадение расчетных экспериментальных данных достигается только после введения стерического множителя порядка 10^{-7} , что трудно объяснить с точки зрения рассматриваемой теории (использование представления о невыгодной ориентации при ударе не может дать такой поправки).

Качественно уменьшение значения $k_{\rm o}$ с ростом температуры может быть обусловлено тем, что диаметр молекул может уменьшаться с ростом температуры, что учитывается поправкой Сазерленда. В этом случае, при той же энергии взаимодействия кривая потенциала Сазерленда или ветвь притяжения потенциала Леннарда - Джонса должны быть круче, а толщина шарового слоя δ , входящая в формулы ТАС, с ростом температуры будет меньше. Однако часто мы не умеем определять энергию взаимодействия, входящую в поправку Сазерленда.

Кроме того, следует учесть, что критерием состояния соударения является условие: энергия взаимодействия двух молекул должны быть больше kT. С ростом температуры расстояние между частицами (толщина шарового слоя) на котором будет выполняться это условие, будет уменьшаться. Однако количественных совпадений достичь трудно.

Параграф 3. Использование ТАК.

Лучшее совпадение получается при использовании ТАК. Для тримолекулярной реакции константа скорости будет выражаться как

$$k=\chi rac{kT}{h} rac{q^\#}{q_A q_B q_C} e^{-\Delta E_O/RT}$$
 . Для реакции $2NO+X_2 o 2NOX$ активированный

комплекс представляем в виде: N - O - X.

$$k = \chi \frac{kT}{h} \frac{g^{\#}}{\prod_{i=1}^{3} g_{i}} \frac{\frac{\left(2\pi m^{\#}kT\right)^{3/2}}{h^{3}}}{\prod_{i=1}^{3} \frac{\left(2\pi m_{i}kT\right)^{3/2}}{h^{3}}} \frac{\pi^{1/2} \left(\frac{8\pi^{2}kT}{h^{2}}\right)^{3/2} \left(I_{A}^{\#}I_{B}^{\#}I_{C}^{\#}\right)^{1/2}}{\prod_{i=1}^{3} \frac{11}{1 - e^{-\frac{h\mathbf{v}_{i}^{\#}}{kT}}}^{-1}}{\prod_{i=1}^{3} \frac{2\pi m_{i}kT}{h^{3}}} \frac{\frac{\Delta E_{o}}{kT}}{\prod_{i=1}^{3} \frac{8\pi^{2}I_{i}kT}{\sigma_{i}h^{2}}} \frac{11}{\prod_{i=1}^{3} \left(1 - e^{-\frac{h\mathbf{v}_{i}}{kT}}\right)^{-1}}^{-1}}{\prod_{i=1}^{3} \left(1 - e^{-\frac{h\mathbf{v}_{i}}{kT}}\right)^{-1}}^{-1}} e^{-\frac{\Delta E_{o}}{kT}}$$

Здесь g_i - вырожденность первого электронного уровня соответствующей молекулы и АК.

Объединим все независящие от температуры сомножители в множитель

$$G$$
. Тогда $k=G\dfrac{1}{T^{7/2}}\dfrac{1}{3}\Biggl(1-e^{-\dfrac{hv^\#}{kT}}\Biggr)^{-1}e^{-\dfrac{E_o}{kT}}$. Понятно, что при малой энергии ак-

тивации значение константы скорости будет падать с ростом температуры. В рамках этой теории можно получить хорошее совпадение опытных и расчетных величин. В качестве примера рассмотрим взаимодействие NO и O_2 .

Понятно, что при малой энергии активации значение константы скорости будет падать с ростом температуры. В рамках этой теории можно получить хорошее совпадение опытных и расчетных величин. При этом необходимо учесть возможность внутреннего вращения в активированном комплексе, сумма по со

стояниям которого рассчитывается по формуле: $q = \frac{\left(8\pi^3 IkT\right)^{1/2}}{\sigma h}$, где I - приведенный момент инерции.

 $ln(k.10^9)$ Понятно, что в АК будет уже 10 1.6 колебаний, а константа скорости 1.2 является функцией $1/T^3$. На рис. 1 0.8 представлена зависимость величи-0.4 10⁻⁹ скорости константы ΗЫ 500 400 600 $(cm moль c^{-2} c^{-1})$ от температуры. рис. 1

Верхняя кривая - опытные, а нижняя - расчетные данные. В расчетах принято значение E=0.42 кДж/моль.

При понижении температуры зависимость k от T должна иметь максимум. Для определения значения температуры в точке максимума продифференцируем $k = G' \frac{1}{T^n} \exp(-E_o/RT)$ по T. Здесь пренебрегаем зависимостью колебательных сумм по состояниям от температуры и G' есть произведение G и колебательных сумм. Из условия равенства нулю производной находим, что $T_{Makc} = \frac{E_o/R}{n}$. Если значение энергии активации будет составлять несколько кДж/моль, максимум должен наблюдаться при низких температурах: например, при $E_o = 3$ кДж/моль и n = 7/2 получим $T_{Makc} = 103,1$ К. Поэтому в опытах обычно не замечают максимума и говорят только об уменьшении константы скорости тримолекулярной реакции с ростом температуры.