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Central problem: How to calculate macroscopic, time-averaged properties from 
rapidly fluctuating microscopic quantities?  
 
Brute force approach: Time-average over the microscopic properties 
 
obsf  ≡ observed macroscopic property – pressure, etc.  

( 3 3, )N Nf q p  ≡ microscopic mechanical variable  

 

(0
3 31lim ',obs
N N df fτ

τ ) τ
τ→∞

= ∫ q p  Time average 

 
But this requires calculation of time-dependent trajectories for all N particles! 
 
Better approach: ENSEMBLE THEORY  
Developed by J. Willard Gibbs – founder of statistical mechanics 
 
Replaces time average with ensemble average 
 
Ensemble ≡ collection of all possible states of an assembly 
 
e.g. assembly of only 2 particles  quantum description 
Constant energy ensemble with 7 quanta of translational energy 
 

 

1 1 1 2 2State

2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

x y z x yn n n n n n

α
β
γ
δ
ε
η

2z

 

 

 
classical description specify all the p
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QM ensemble average is a sum over states 
CM ensemble average is an integral over states 
 
ERGODIC HYPOTHESIS: Time average ⇔ Ensemble average 
 
Ensemble average for macroscopic property f 
 

j j
j

f P f= ∑  jP  ≡ probability that assembly is in distinguishable assembly state j 

1j
j
P =∑    probabilities are normalized 

 
e.g. ensemble average energy:  j j

j
E P= E∑   note Ej are assembly energies 

 
Ensemble average for continuous variables – classical treatment 
 

( ) ( )3 3 3 3 3 3, ,N N N N N Nf d d P f= ∫ ∫ q p q p q p  

 
where ( )3 3 3 3,N N NP dq p q p Nd  ≡ probability of assembly being in volume element 

3 3Nd dq p N  centered at ( )3 3,N Nq p  

 
In either QM or CM case, we need a complete list of all the distinguishable 
assembly states and their probabilities Pj. How do we determine Pj? 
 
They must give the minimum free energy under the experimental conditions!  
e.g. minimum Helmholtz free energy A if we have fixed (N,V,T) 
 
CANONICAL ENSEMBLE ≡ subject to constraint of constant (N,V,T) 

- closed, thermodynamically stable system 
 
The states of the assembly, given by {Pj}, must minimize A.  
 
We need to write A in terms of the Pj values. How? 
 

              j j j j
j j

A E TS E P E A P E TS= − = ⇒ = −∑ ∑  
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What about entropy S? The connection between S and {Pj} is assumed to be…... 
 

lnj j
j

S k P   P= − ∑
 
Central assumption of Boltzmann (originally in somewhat different form that 
we’ll see shortly). No derivation – only plausibility arguments. Statistical 
mechanics is built on this assumption! 

231.38 10  J/KAk R N x −= =  ≡ Boltzmann constant 
 

( )ln lnj j j j j j
j j j

jA E TS P E kT P P P E kT P= − = + = +∑ ∑ ∑  

 
To find the {Pj} values that minimize A, imagine the real assembly at equilibrium, 
with the minimum A and the probabilities {Pj}, and other assemblies with non-
equilibrium A and different {Pj} values.  
 
       Let {Pj} → {Pj + δPj} 
        

A       Then A → A + δA 
        

       Find {δPj} such that δA = 0 
 

{Pj}  
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Introduce constraint  1j

j
P =∑

After j jP P jPδ→ +  still ( ) 1j j
j
P Pδ+ =∑  

Probabilities still add to 1 before or after the change {δPj}.  
 

Then 1
2

0        
N

j j
j j
P P Pδ δ δ

=
= ⇒ = −∑ ∑  



5.62 2004   Lecture #2-3     page 
 

4
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The δPj’s from j = 2 to N are completely independent, for arbitrary {δPj}, so 
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Canonical Distribution Function gives the probability for the jth distinguishable 
state in the ensemble. This distribution minimizes A ⇒ equilibrium distribution.  
 
We needed the key assumption  lnj j

j
S k P P= − ∑  

This leads to the result that Pj depends on Ej only  
⇒ equal energy states have equal probabilities (seems highly plausible) 
⇒ probability decreases exponentially w/ energy (familiar dependence) 
⇒ probability of high-energy state increases with T (also familiar) 

 
Denominator has special name…..CANONICAL PARTITION FUNCTION Q 
 

( ), , jE kT

j
Q N V T e−

= ∑  

Sum of “Boltzmann factors” jE kTe−  over all the assembly states 
Originally called “Zustandsumme” ≡ Z ≡ “sum over states” 
 
Q is a very important quantity! So let’s rewrite Pj in terms of it:  
 



5.62 2004   Lecture #2-3     page 
 

5

j j

j

E kT E kT

j E kT

j

e eP
Qe
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We’ll be able to use Q, instead of any individual Pj values, to calculate 
everything! e.g. calculation of energy E : 
 

( )j j
j

E P E f= =∑ Q  

Define 1 kTβ =  so differentiation is simpler 

( ), ,       j j jE kT E E
j

j j j

QQ N V T e e E eβ β

β
− − −∂= = = −

∂∑ ∑ ∑  

Recall  
jE kT

j
eP
Q

−

=   so  jE
je Qβ− = P   ⇒   j j j j

j j

Q P E Q Q P E QE
β

∂ = − = − = −
∂ ∑ ∑  

( )
 2 lE E

T
∂=

∂
        1 ln ln n

1
Q Q Q QkT

Q k Tβ β
∂ ∂ ∂= − = − = −
∂ ∂ ∂

 
Ensemble average energy E  in terms of Q, not Pj.  
 
How about entropy?  

 

,

lnln ln
N V

E QS k Q k Q kT
T T

 
 
 

∂= + = +
∂

ln ln ln ln
j j jE kT

j j
j j j j

j j j

P E
EeS k P P k P k P Q k Q

Q kT T

−   
       

= − = − = − − − = +
∑

∑ ∑ ∑

 
Writing all thermodynamic functions or macroscopic properties in terms of Q 
 

From thermodynamics…..  Helmholtz free energy  ln EA E TS E kT Q T
T

= − = − −  

 
 lnA kT Q= −

 
Monumentally important result!  
 
From thermodynamics, dA pdV SdT dNµ= − − +  (single component system) 
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pressure 
, ,

ln       
T N T N

A Qp p kT
V V

   
   
   

∂ ∂= − =
∂ ∂

 

 

chemical potential  
, ,

ln       
T V T V

A QkT
N N

µ µ   
   
   

∂ ∂= = −
∂ ∂

 

 
H = E + pV   Homework:  
G = A + pV   Write in terms of Q 
 
Now we have a framework for relating microscopic properties, as given by Q, to 
macroscopic properties.  
Note that Q(Ej) or Pj(Ej) tells us the distribution of assembly states in the 
ensemble. Only the energy of an assembly state determines its probability. Q 
and Pj don’t depend on any other properties of the states.  
 
Alternate form for the probabilities 
Sometimes, more useful than Pj – probability of distinguishable state j – is P(E), 
probability of finding an assembly with energy E.  
 
Recall  ( ), , j E kTE kT E kT

j
Q N V T e e e βα −− −= = + + +∑  

But many distinguishable states are degenerate, e.g.  E E Eα γβ E= = ≡  
 
then  ( ) ( ), , 3 , ,E kT E kT

E
Q N V T e N V E e− −= + + = Ω∑  

( , ,N V EΩ )  ≡ degeneracy ≡ # distinguishable assembly states with energy E 
 

( ) ( ), , , ,jE kT E kT

j E
Q N V T e N V E e− −= = Ω∑ ∑  

sum over     sum over assembly 
assembly states   energy levels 
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sum over those assembly states with Ej = E 
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