
Лекции 2-3

Электронное строение атомов. Химическая связь и геометрия молекул

Общий план двух лекций

- 1. Водородоподобные атомы.
- 2. Электронные конфигурации многоэлектронных атомов.
- 3. Периодические свойства атомов.
- 4. Образование химической связи между атомами
- 5. Ковалентная связь. Правило октета. Структуры Льюиса
- 6. Характеристики химической связи длина, энергия, порядок, полярность.
- 7. Геометрия молекул. Модель ОЭПВО
- 8. Межмолекулярные взаимодействия:
 - а) ван-дер-ваальсова связь,
 - б) водородная связь

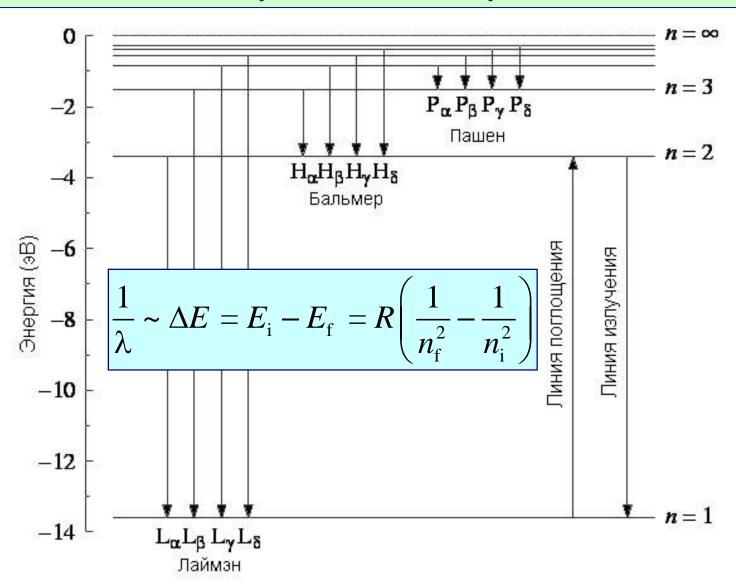
Водородоподобные атомы и ионы. Квантовая теория Бора

H, He⁺, Li²⁺...
$$\begin{array}{c}
n=2\\
n=1\\
\bullet\\
+Ze
\end{array}$$

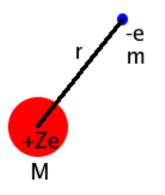
$$\begin{array}{c}
m_e v^2\\
r\\
m_e v r =
\end{array}$$

$$\begin{cases} rac{m_e v^2}{r} = rac{Ze^2}{r^2} & ext{- закон Ньютона} \ m_e v r = n \hbar & ext{- квантовое} \end{cases}$$

n — номер орбиты (квантовое число)


условие Бора

$$r = \left(\frac{\hbar^2}{m_e e^2}\right) \frac{n^2}{Z}$$


$$v = \left(\frac{e^2}{\hbar}\right) \frac{Z}{n}$$

$$E_n = \frac{m_e v^2}{2} - \frac{Ze^2}{r} = -\left(\frac{m_e e^4}{2\hbar^2}\right) \frac{Z^2}{n^2}$$

Спектральные серии

Водородоподобные атомы

$$\mathbf{H} = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{Ze^2}{r}$$

В сферически симметричном поле ядра *U(r)* для электрона сохраняются следующие величины:

Энергия п главное

Момент импульса / орбитальное

Проекция момента импульса

на выделенную ось z m_{l} магнитное

Спин электрона в спиновое

Проекция спина на ось z $m_{\rm s}$ магнитное спиновое

Водородоподобные атомы. Уровни энергии

$$E_n = -R \frac{Z^2}{n^2}$$

 $R = 13.6 \text{ } 9B = 109700 \text{ cm}^{-1}$

Квантовые числа

$$n = 1, 2, ... \infty$$

$$|l = 0,...n-1|$$

$$|m_l| = -l...0...l$$

$$s = 1/2$$

$$|m_{\rm s}| = \pm 1/2$$

 $\frac{1}{4s}$... (4p, 4d, 4f)

3p

32

 $\overline{3s}$

Энергия

 $--\frac{}{3d}$ 18

 $\frac{1}{2s}$ $\frac{1}{2p}$

8

Кратность вырождения:

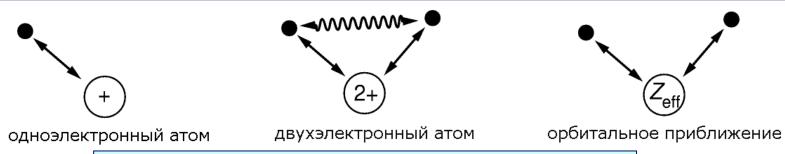
$$\sum_{l=0}^{n-1} (2l+1) = n^2$$

2

1 0 1 2 3 4 s p d f g

Физики, 1 курс. Весна 2017

R зависит


от массы

ядра

Многоэлектронные атомы

$$\mathbf{H} = -\frac{\hbar^2}{2m_e} \sum_{i} \nabla_{i}^{2} - \sum_{i} \frac{Ze^2}{r_i} + \sum_{i < j} \frac{e^2}{r_{ij}}$$

Орбитальное приближение: каждый электрон движется в сферическом поле, создаваемом ядром и остальными электронами. Орбитали — водородоподобные, с эффективными зарядами Z_i .

$$\mathbf{H} \approx \sum_{i} \mathbf{H}_{i} = \sum_{i} \left(-\frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \frac{Z_{i}e^{2}}{r_{i}} \right)$$

Многоэлектронные атомы. Эффективные заряды

	Li	Be	В	C	N	O	F	Ne
Z	3	4	5	6	7	8	9	10
1 <i>s</i>	2.69	3.68	4.68	5.67	6.66	7.66	8.65	9.64
2 <i>s</i>	1.28	1.91	2.58	3.22	3.85	4.49	5.13	5.76
2 <i>p</i>			2.42	3.14	3.83	4.45	5.10	5.76

$$E_n = -R \frac{Z_{eff}^2}{n^2}$$

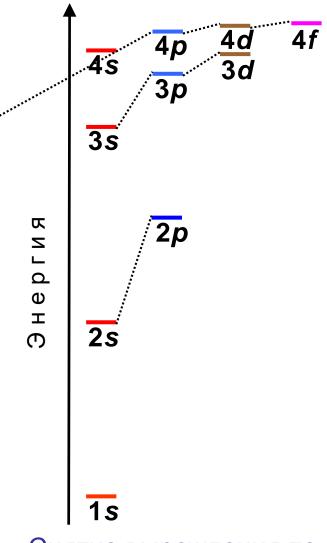
$$r = a_0 \frac{n^2}{Z_{eff}}$$

Многоэлектронные атомы. Энергия орбиталей

Энергия орбиталей возрастает в ряду:

$$1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p \dots$$

Обратный порядок энергий является причиной появления 1-ого ряда переходных элементов


Порядок энергий орбиталей может быть разным для атомов и ионов

Пример:

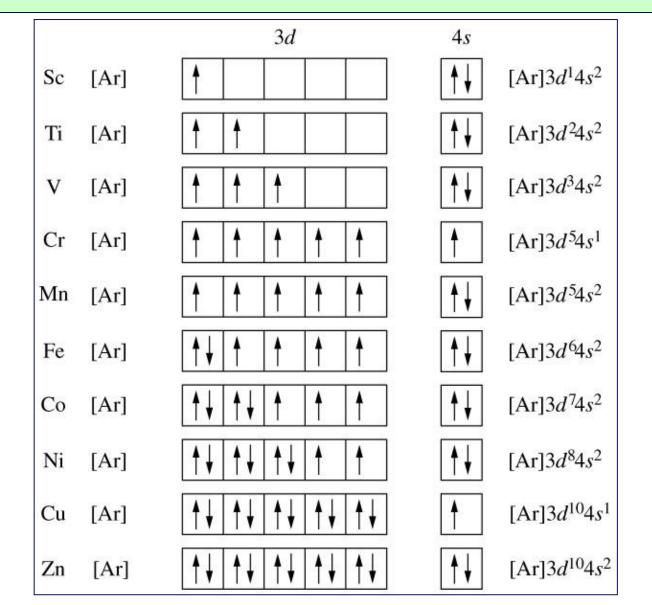
Ti 4s²3d²

Ti³+ 3d

Оставшийся после ионизации валентный электрон занимает 3*d*-а не **4***s*-орбиталь.

Снятие вырождения по орбитальному моменту l

Многоэлектронные атомы. Принципы заполнения


1. Порядок заполнения орбиталей определяется главным квантовым числом и эффективным зарядом:

$$1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p$$

- < 6s < 4f < 5d < 6p
- 2. На каждой орбитали не более 2 электронов.
- 3. Правило Хунда: основное состояние имеет максимальную мультиплетность (максимальное число неспаренных электронов в пределах одного подуровня).

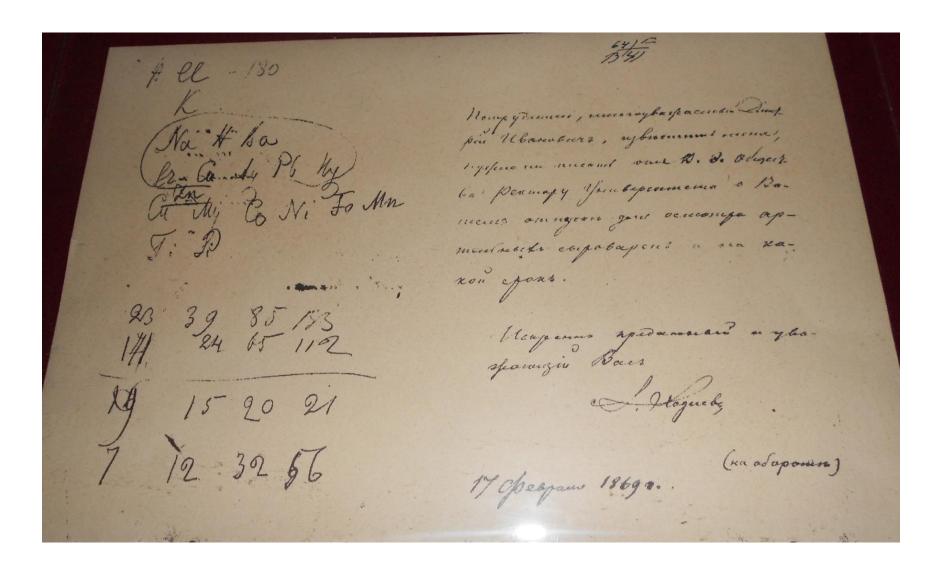
Физики, 1 курс. Весна 2017

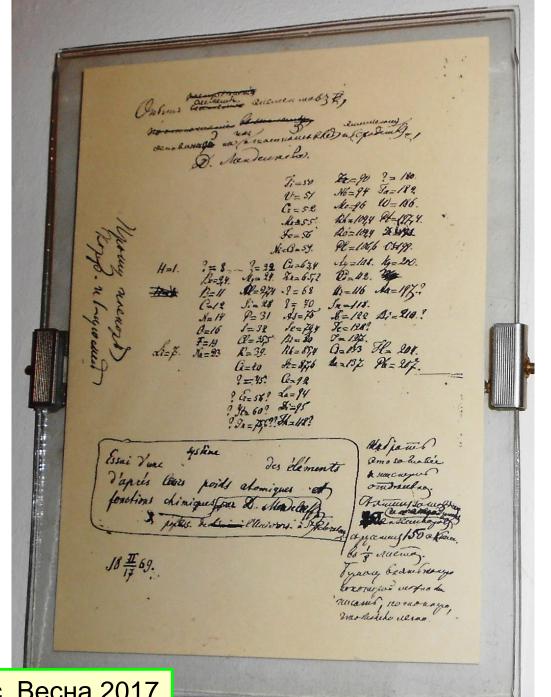
Электронные конфигурации 3*d*-элементов

Периодический закон. История открытия

1869 – Д.И. Менделеев (Россия). Периодический закон:

- 1. Элементы, расположенные по величине атомного веса, представляют явственную периодичность свойств.
- 2. Должно ожидать открытия еще многих неизвестных простых тел, например, сходных с Al и Si элементов с атомным весом 65–75.
- 3. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии.
- 4. Некоторые аналогии элементов открываются по величине веса их атомов.


Как был открыт Периодический закон


«Невольно зародилась мысль о том, что между массой и химическими свойствами необходимо должна быть связь. А так как масса вещества ... выражается окончательно в виде весов атомов, то надо искать функциональное соответствие между индивидуальными свойствами элементов и их атомными весами.

Искать же что-либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя.

Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причем, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить было невозможно»

Первые наброски. 17 февраля 1869

Периодическая таблица. Самая первая (1869)

Д.И. Менделеев, портрет 1869 г.

			Ti = 50	Zr = 90	?=180.
			V == 51	Nb = 94	Ta = 182.
			Cr=52	Mo-96	W-186.
			Mn=55	Rh = 104,4	Pt-197,4
			Fe 56	Ru = 104,4	Ir=198.
		No.	-Co-59	PI = 106s,	Os-199.
H=1			Cu - 63,4	Ag=108	Hg-200.
	Be=9,4	Mg=24	$Z_{n} = 65,2$	Cd = 112	
	B== 11	A1-274	7-68	Ur=116	Au-197?
	C = 12	Si-28	7-70	Sn=118	
	N=14	P=31	As=75	5b = 122	Bi-210
	0 = 16	S-32	Se-79,4	Te-128?	
	F=19	Cl=35,	Br 80	1-127	
L(=7	$N_A=23$	K-39	Rb-85,4	$C_5 = 138$	T1-204
		Ca=40	Sr - 87.6	Ba==137	Pb-207
		?== 45	Ce=92		
		?Er-56	La=94		
		.7Yt-60	Di-95		
		?In -75,4	Th-118?		

Предсказания на основе Периодического закона

Предсказания Д.И. Менделеева:

- 1) Экабор (скандий, Sc) открыт в 1879 г.
- 2) Экаалюминий (галлий, Ga) открыт в 1875 г.
- 3) Экасилиций (германий, Ge) открыт в 1886 г.
- 4) Экамарганец (Технеций, Тс) синтезирован в 1937.

Свойства 118-го элемента:

Открыт: в 2005 г. (Россия, США) в количестве 3 атомов

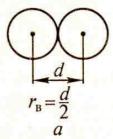
Положение в Периодической системе: группа VIIIA (инертный газ)

Электронная конфигурация: [Rn] 5f¹⁴ 6d¹⁰ 7s² 7p⁶.

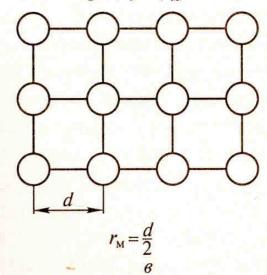
Температура плавления: –10 °C.

Температура кипения: -6 °C

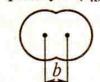
Высший оксид: RO4


Периодические свойства элементов

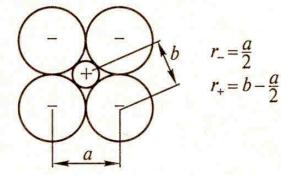
- Радиус атома
- Энергия ионизации
- Сродство к электрону
- Электроотрицательность


www.webelements.com

Радиусы атомов и ионов

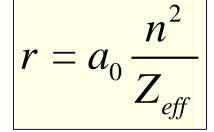

Ван-дер-ваальсов радиус $(r_{\rm B})$

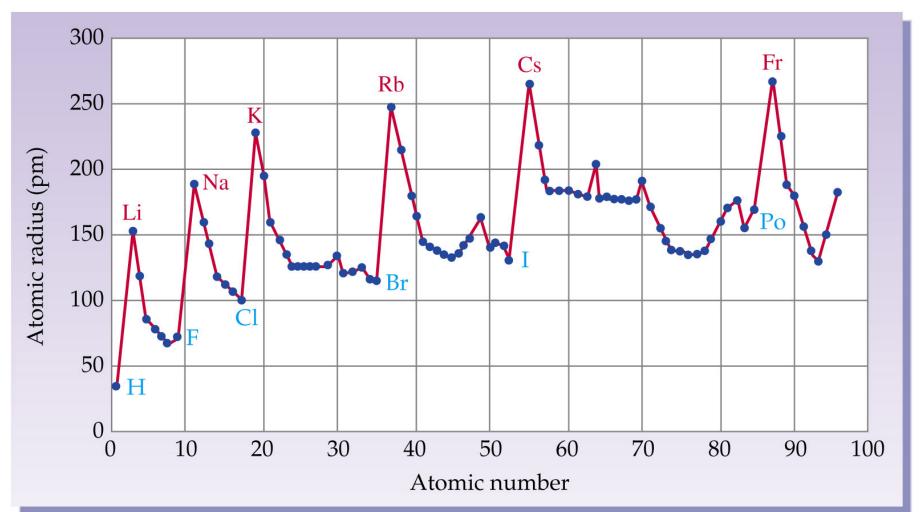
Металлический радиус (r_{M})



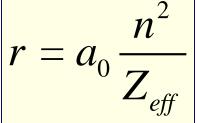
Ковалентный радиус $(r_{\rm k})$

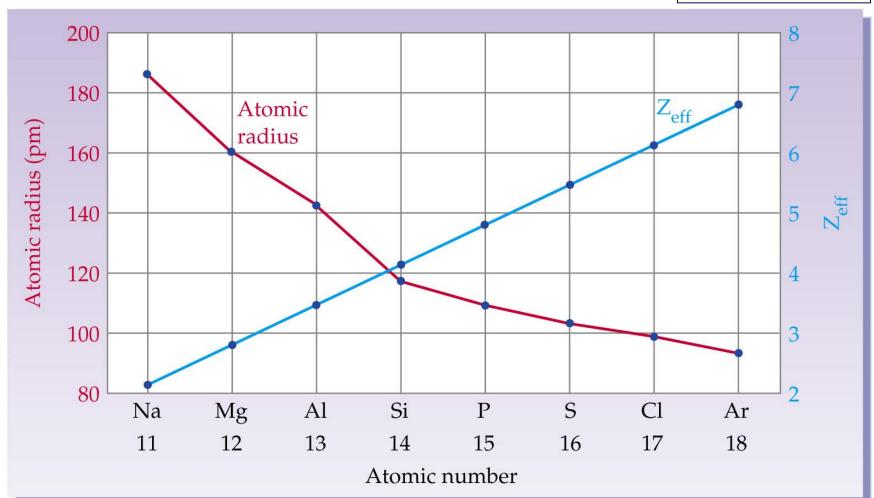
 $r_{\rm K} = \frac{b}{2}$, где b – длина связи

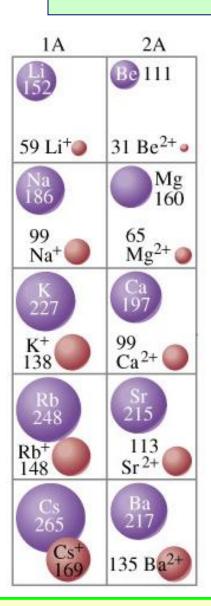

Ионные радиусы

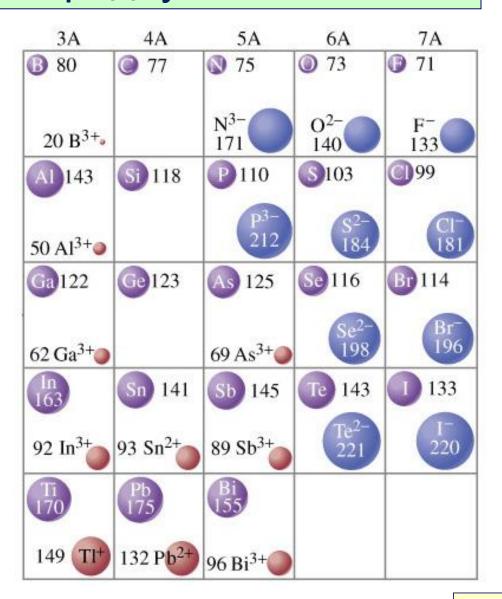


Ковалентные и ван-дер-ваальсовы радиусы атомов


Атом	Ковалентный радиус, пм	Ван-дер-ваальсов радиус, пм		
Н	37	120		
С	77	185		
О	73	140		
Cl	99	180		


Периодичность ковалентных радиусов



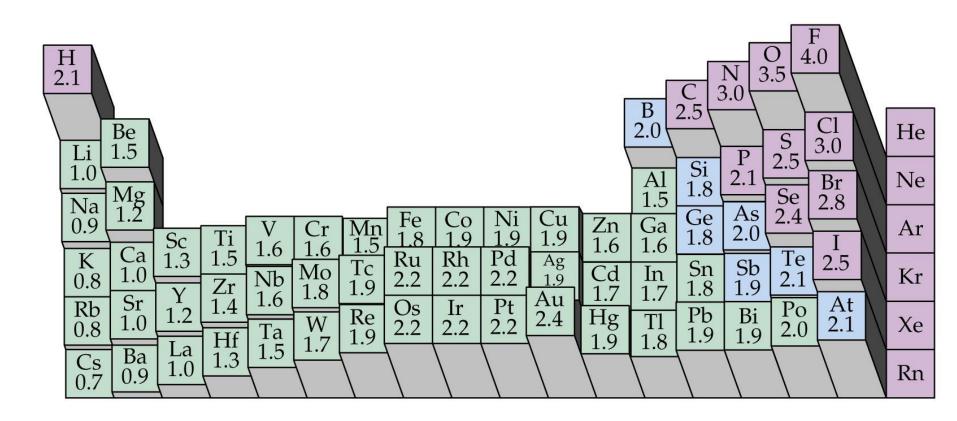

Эффективный заряд

Ионные радиусы

Электроотрицательность

Способность атома притягивать электроны в составе химического соединения

Малликен

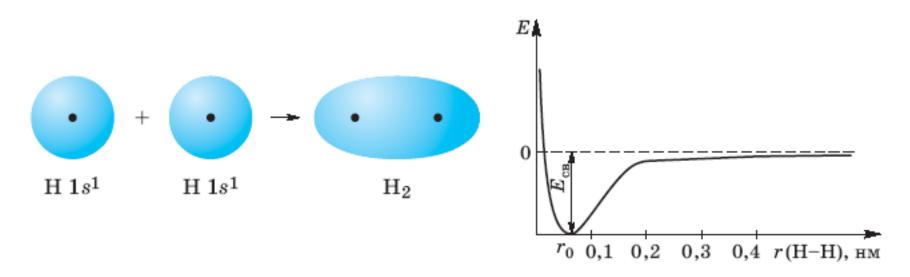

$$\chi_{\rm M} = \frac{I + E_a}{2}$$

Полинг

$$\chi_{P}(A) - \chi_{P}(B) = \sqrt{E_{d}(AB) - \frac{1}{2}(E_{d}(AA) + E_{d}(BB))}$$

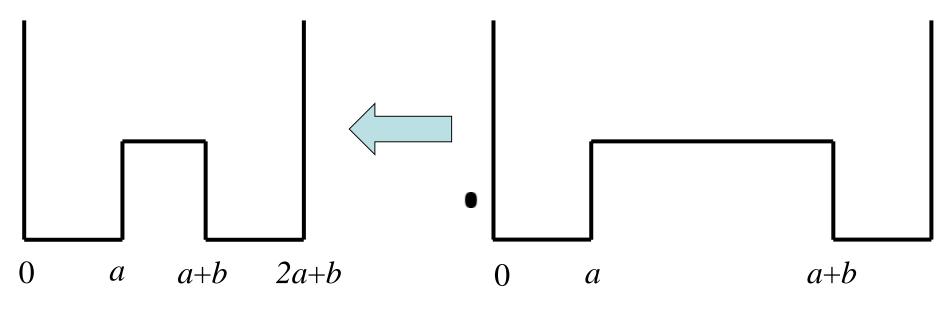
$$\chi_{\rm P} = 1.35\chi_{\rm M} - 1.37$$

Электроотрицательность по Полингу



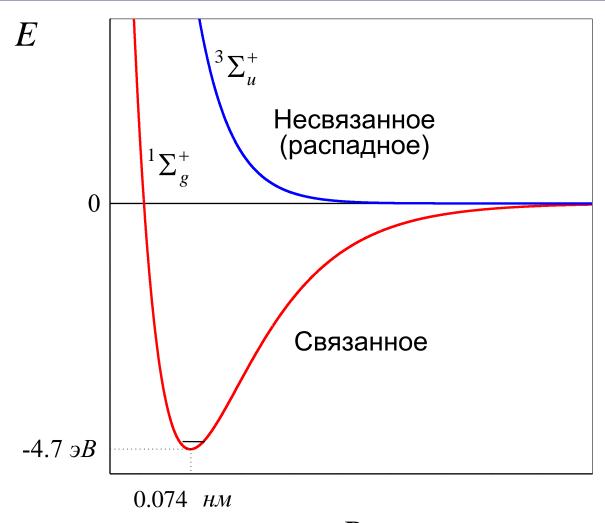
$$F > O > Cl > N > Br > S > C > H = P > металлы$$

Молекула


 Молекула – электронейтральная частица, состоящая из нескольких (n > 1) атомов, соединенных между собой химическими связями

Образование молекулы сопровождается понижением энергии системы по сравнению с суммой энергий удаленных друг от друга атомов.

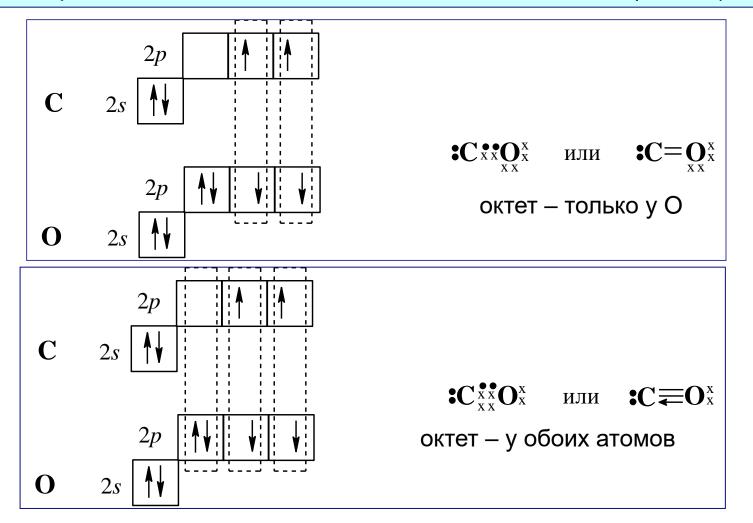
Как образуется химическая связь: модель двух потенциальных ям



При образовании химической связи энергия системы уменьшается

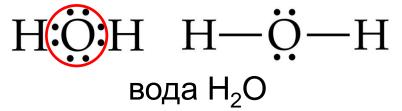
Потенциальные кривые низших электронных состояний молекулы H_2

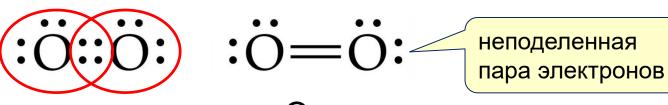
Химическая связь


- **Химическая связь** взаимодействие между атомами, приводящее к понижению общей энергии системы.
- Взаимодействие имеет преимущественно электростатический характер (обобществление электронов, переход электрона, кулоновское притяжение).

Виды химической связи

- Ковалентная внутримолекулярная связь между атомами, осуществляемая за счет общих пар электронов.
- Ионная связь между ионами, образовавшимися при переходе электрона от одного атома к другому.
- Металлическая связь между атомами металлов в твердой фазе
- Водородная межмолекулярная связь между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом неметалла другой молекулы
- Ван-дер-ваальсова межмолекулярная связь, притяжение дипольных моментов молекул (постоянных или индуцированных).


Правило октета. Молекула СО


Ковалентная связь образуется, когда два атома создают общую пару электронов. За счет общих электронов каждый атом стремится достичь полной валентной оболочки (октета)

Электронные формулы молекул (структуры Льюиса)

Показывают порядок соединения атомов в молекуле, число химических связей между ними (число общих электронных пар) и те внешние электроны, которые НЕ участвуют в образовании связей (неподеленные электроны).

кислород О2

углекислый газ СО2

Резонансные структуры

Резонанс: молекула – суперпозиция льюисовских структур

Донорно-акцепторная (координационная) связь

образование иона аммония

образование иона гидроксония

донор – NH_3 , акцептор – BF_3

гем, акцептор – Fe²⁺

Валентность – одно из основных понятий в химии

Валентность – число ковалентных химических связей (общих электронных пар), которые данный атом образует с другими атомами в молекуле или ионе.

Пример – оксид азота (I) N_2O

$$: \ddot{N} = N = \ddot{O}: \longleftrightarrow : N = N - \ddot{O}:$$

Атомы азота: средняя степень окисления +1, валентность центрального атома – IV, крайнего – средняя между II или III

Более общее определение валентности (ИЮПАК)

Валентность - число одновалентных атомов (групп атомов), с которыми может соединиться данный атом или которые он может заместить.

Пример: Н – одновалентен

H-CI следовательно CI одновалентен

NaCl следовательно Na одновалентен

H₂SO₄ следовательно сульфат SO₄ двухвалентен

Для молекулярных соединений эти два определения совпадают. У ионных соединений валентность элементов определена только по ИЮПАК.

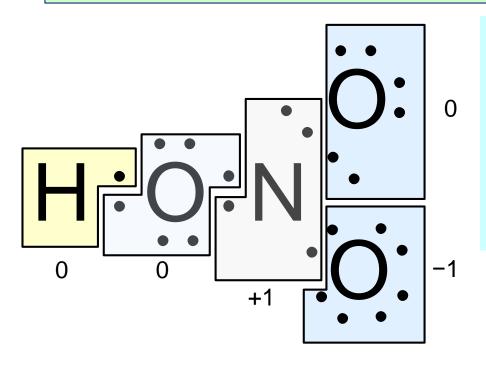
Химические ошибки в физических статьях

Chalcogenide Letters Vol. 8, No. 3, March 2011, p. 177 – 185

PREPARATION AND CHARACTERIZATION OF CdS NANOPARTICLES BY CHEMICAL CO-PRECIPITATION TECHNIQUE

2. Experimental

CdS nanoparticles are prepared by the colloidal chemical precipitation method using cadmium acetate (CdCH₃COOH), sodium sulfide (Na₂S) as starting compounds and using thiophenol as capping agent. These compounds are weighed in a microbalance (M/s SICO, India). The stoichiometric solution was taken in a burette and was added in drops with continuous sitting to precipitate of CdS was formed. After complete precipitation, the solution in conical flask was


Journal of Biomedical Optics

March/April 2006 • Vol. 11(2)

Insofar as the H₂O phase transition cannot be solely responsible for the permanent deformation of cartilage, Sobol et al. ^{18,19} have postulated that local mineralization may enforce the long-term restructuring process following laser irradiation. In support of this hypothesis, Velegrakis et al. ⁵ found loci of calcification in CO₂ laser–irradiated auricular cartilage *in vitro*, and Sobol et al. ¹⁸ reported on the occurrence of submicrometer sodium carbonate (NaCO₃) crystals in the matrix of CO₂ laser–irradiated nasal septal cartilage samples. Since NaCO₃ crystals are chemically unstable and resolve in time,

Физики, 1 курс. Весна 2017

Формальный заряд и степень окисления

H $-\ddot{O}$ +1 \ddot{O} : -2 \ddot{O} : -2 \ddot{O} : -2

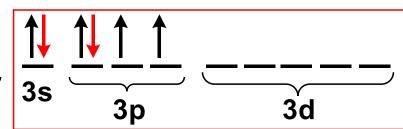
- <u>ФЗ</u> атома заряд, который он имел бы в предположении строго ковалентного характера связи.
- Общие электронные пары делятся поровну между соответствующей парой атомов.
- Неподеленные пары полностью принадлежат атому.

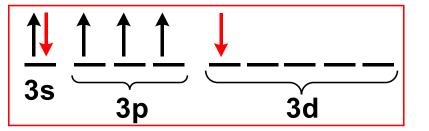
Ф3 = число валентных электронов — 2х(число неподеленных эл. пар) — число ковалентных связей

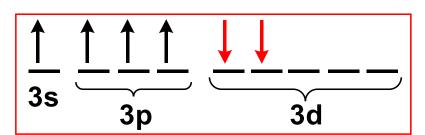
- <u>CO</u> атома заряд, который он имел бы в предположении строго ионного характера связи.
- Оба электрона из общей пары полностью принадлежат более электроотрицательному атому.

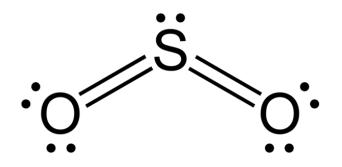
Физики, 1 курс. Весна 2017

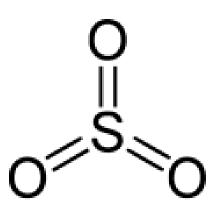
Молекула СО


Оксид углерода (II)


	С	O
Валентность	Ш	III
Формальный заряд	–1	+1
Степень окисления	+2	-2


Роль вакантных орбиталей атома



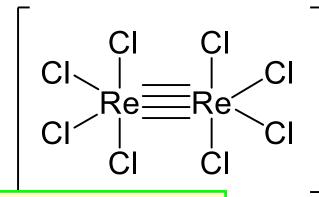

$$\frac{1}{1s} \frac{1}{2s} \underbrace{\frac{1}{1}}_{2p} \underbrace{\frac{1}{1}}_{2p} \underbrace{\frac{1}{1}}_{2p}$$

Основные характеристики ковалентной связи

- 1. Кратность (порядок связи) число электронных пар
- 2. Длина связи расстояние между ядрами, при котором энергия молекулы наименьшая
- 3. Энергия связи выигрыш в энергии при образовании связи из разъединённых фрагментов (атомов)
- 4. Полярность связи характеризует степень смещения электронной плотности к одному из двух атомов, образующих связь

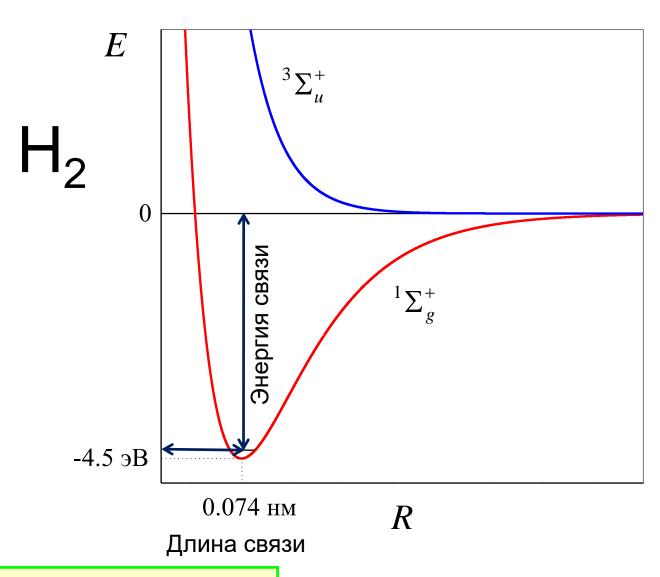
Кратность связи

Это – число электронных пар, осуществляющих химическую связь

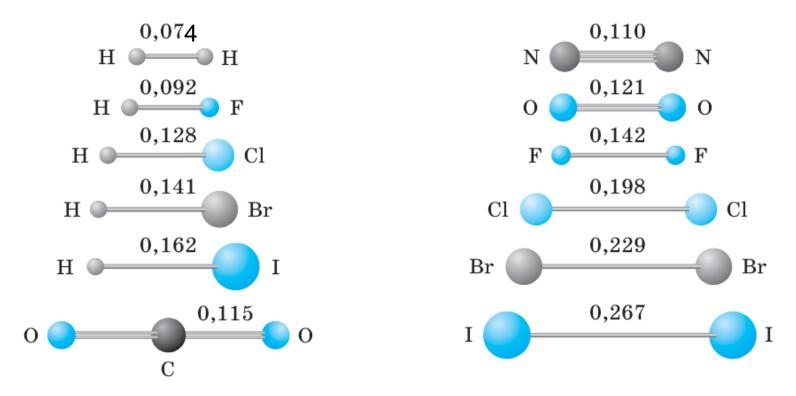

одинарная связь

$$o=0$$

– двойная связь


$$N \equiv N$$

– тройная связь


- четверная связь

Длина связи и энергия связи

Длина связи

Длина связи — расстояние между ядрами связанных атомов. Измеряют в нанометрах.

Самая короткая связь: Н–Н (0,074 нм)

Самая длинная связь: І–І (0,267 нм)

Энергия связи

Энергия связи – энергия, необходимая для разрыва химической связи и разделения полученных фрагментов на бесконечное расстояние

$$E(H-H) = 436 кДж/моль.$$

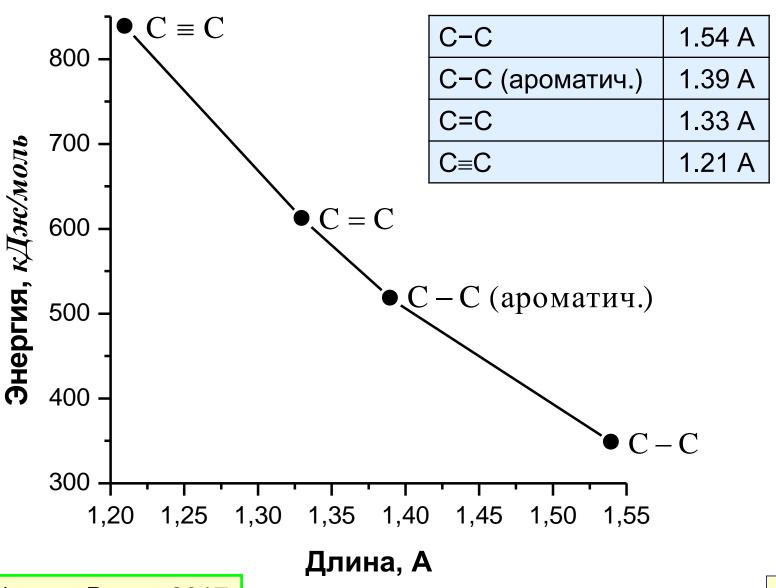
$$H_2(\Gamma) = H(\Gamma) + H(\Gamma) - 436 кДж/моль$$

$$H(\Gamma) + H(\Gamma) = H_2(\Gamma) + 436 кДж/моль$$

Самая прочная ковалентная связь: С≡О (1076 кДж/моль)

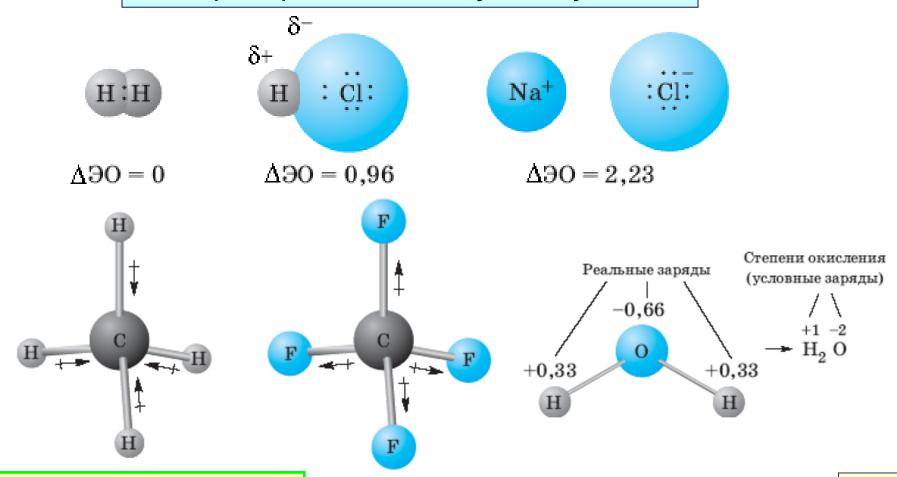
Самая слабая ковалентная связь: N-N в N_2O_3 (41 кДж/моль)

Энергии некоторых связей (кДж/моль)


H–H	C–C	N–N	0–0	F–F	CI-CI	Br–Br	I–I
436	348	163	146	155	242	193	151
	Si–Si	P–P	S–S				
	226	201	264				

C–H	C-O	C-N	C–F	C–CI	C–Br	C–I
412	360	305	484	338	276	238

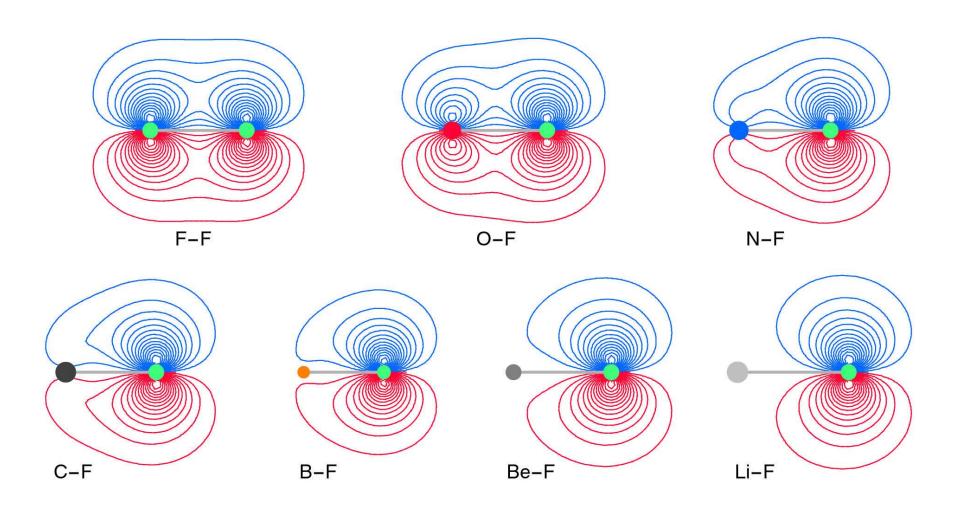
H–N	H–O	H–F	H–CI	H–Br	H	H-Si	H–P	H-S
388	463	565	431	366	299	318	322	338


C–C	C=C	C≡C	С–С (ароматич.)
348	612	838	518

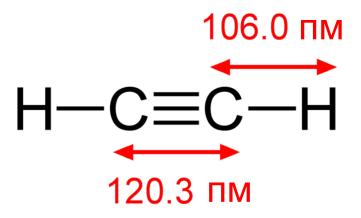
Корреляция длины и энергии связи

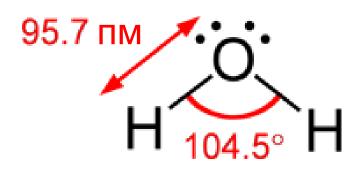
Полярность ковалентной связи

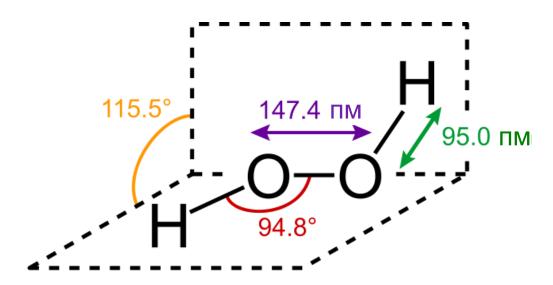
Электронная пара смещена к более электроотрицательному атому



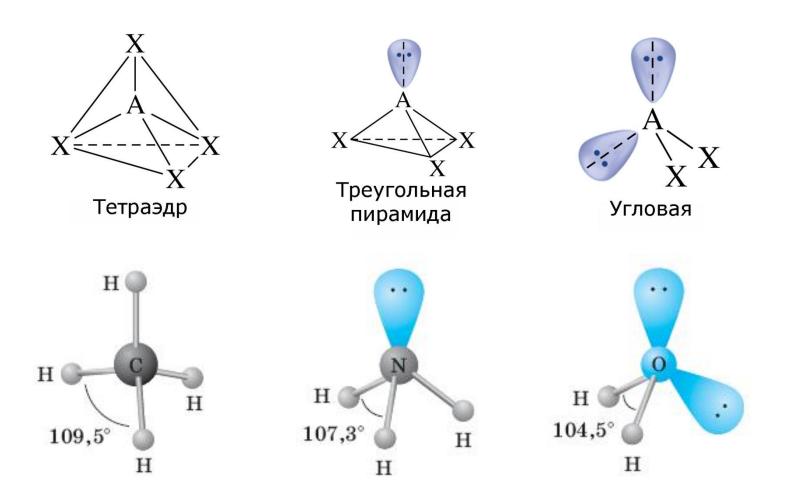
Дипольные моменты некоторых молекул

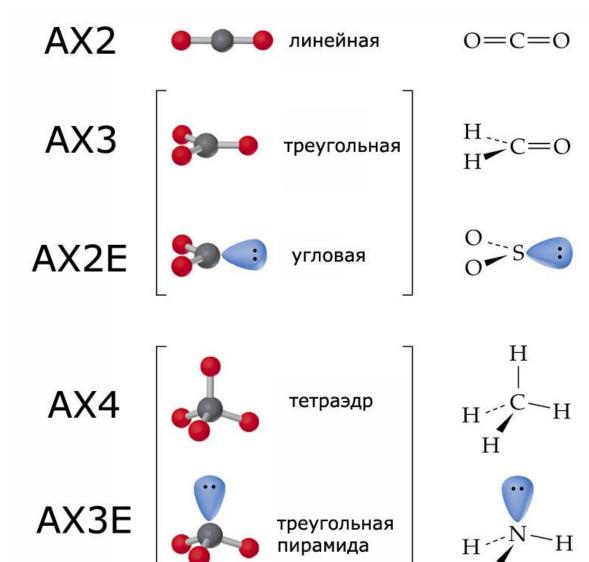

Молекула	Дипольный момент (Д)
H_2	0
H ₂ O	1.85
NH ₃	1.47
CH ₄	0
CH ₃ F	1.86
CH ₂ F ₂	1.98
CHF ₃	1.65
CF ₄	0


Молекула	Дипольный момент (Д)
HF	1.83
HCI	1.11
NaCl	9.0
CO ₂	0
SO ₂	1.62
SO ₃	0
SF ₆	0
O ₃	0.53

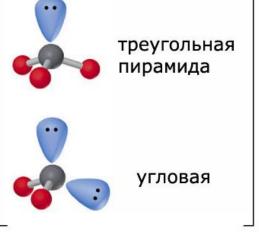

Сравнение ковалентной и ионной связи

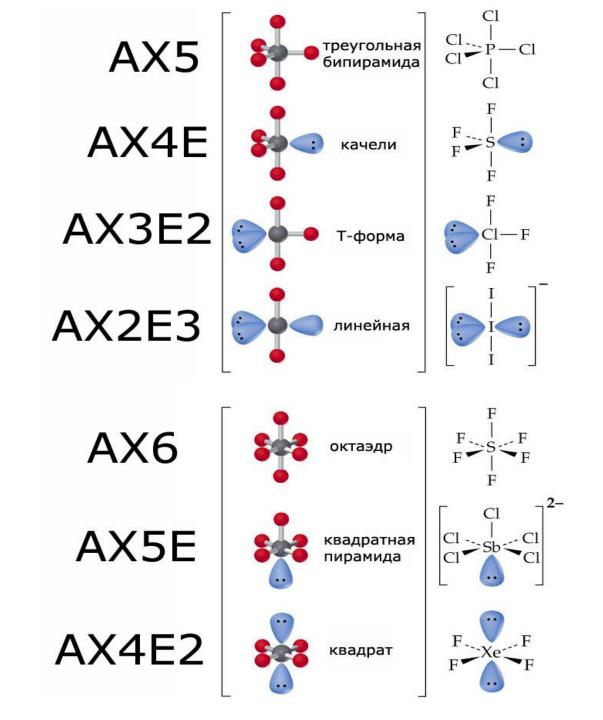
Геометрия молекул. Длины связей и валентные углы

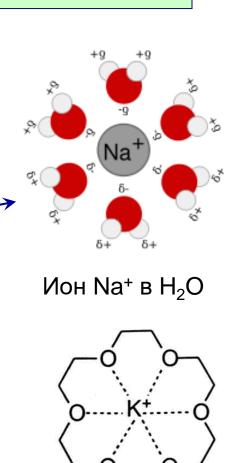



Геометрия молекул. Модель ОЭПВО

Области повышенной электронной плотности — электронные пары связей и неподеленные пары — располагаются на максимальном удалении друг от друга.




Геометрия молекул. Модель ОЭПВО



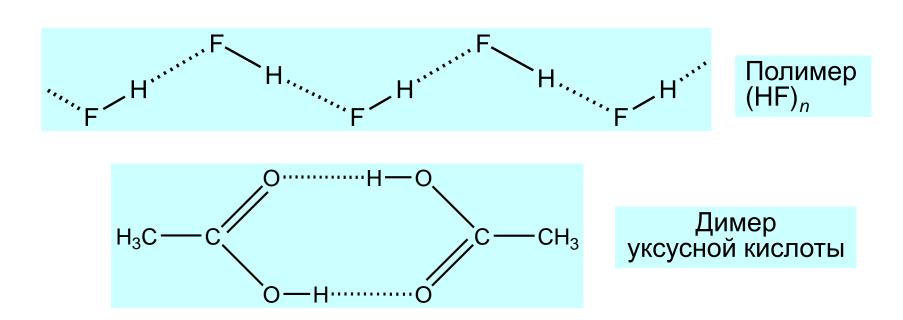
Основные типы нековалентных взаимодействий

- 1. Ион-ионные (100-400 кДж/моль)
- 2. Ион-дипольные (50-200)
- 3. Диполь-дипольные (Ван-дер-ваальсовы) (1-50)
- 4. Водородная связь (5-100)
- 5. Гидрофобные

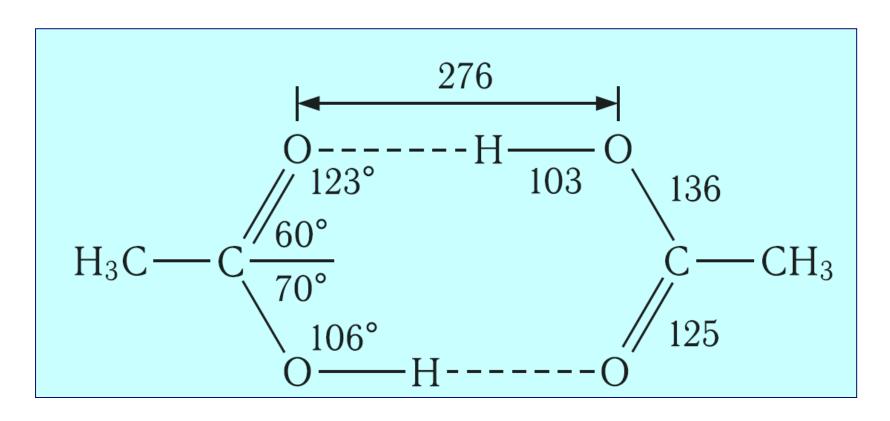
Ион К+ в краун-эфире

Ван-дер-ваальсовы взаимодействия

- 1) Ориентационное между полярными молекулами (диполь-диполь)
- 2) Индукционное между полярной и неполярной молекулами (постоянный диполь наведенный диполь)
- 3) Дисперсионное между неполярными молекулами (наведенный диполь наведенный диполь)


Взаимодействие тем сильнее, чем больше: 1) полярность; 2) поляризуемость молекул.

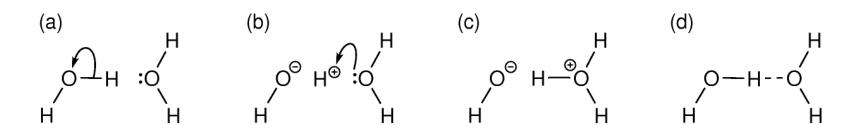
Пример: CH_4 – газ, C_6H_6 – жидкость


$$E_{\text{ков.}}(\text{Cl-Cl}) = 244 \text{ кДж/моль}$$

 $E_{\text{влв.}}(\text{Cl}_2\text{---Cl}_2) = 25 \text{ кДж/моль}$

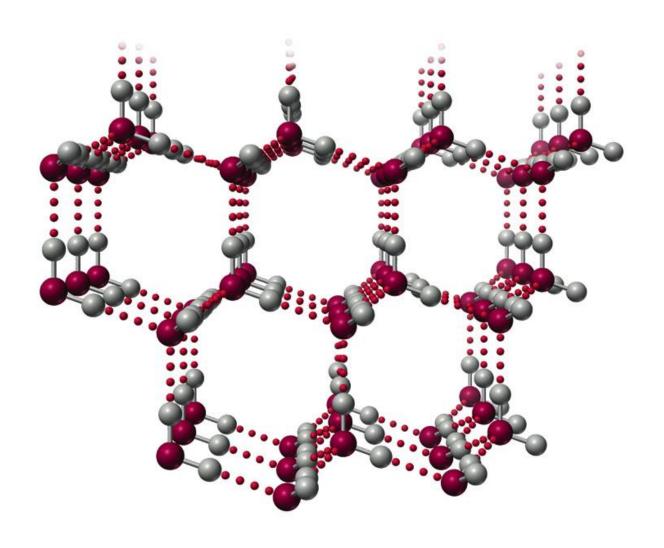
Водородная связь

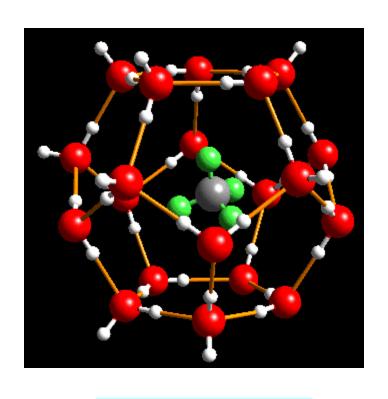
Притяжение между атомом водорода (+) одной молекулы и атомом F, O, N (–) другой молекулы

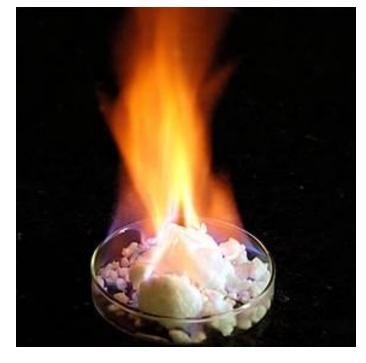


Длина водородной связи

Длины связей приведены в пм (1 пм = 10^{-12} м)


Водородная связь


Образование водородной связи между молекулами воды


Энергия некоторых водородных связей (кДж/моль)

Структура льда Ih

Гидрат метана $CH_4 \cdot 5,75 H_2O$

структура

«горючий лед»

Влияние водородной связи на температуры кипения

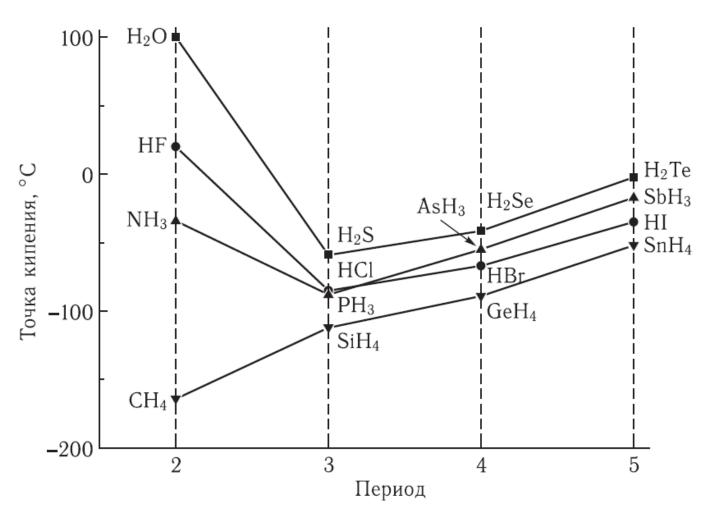


Рис. 14.1. Нормальные температуры кипения соединений водорода с неметаллами

Примеры вопросов на электронные конфигурации атомов, химическую связь и геометрию молекул

- 1. Напишите электронную конфигурацию атома элемента X и иона Xⁿ⁺⁽⁻⁾. Определите возможные значения валентности и степени окисления X в соединениях. X = N, O, CI и т.д.
- 2. Изобразите льюисову структуру молекулы озона (CO, CO₂, N₂O, NH₃, H₂SO₄, SO₄²⁻). Определите степени окисления и формальные заряды на атомах.
- 3. Предскажите геометрическую форму молекулы CO_2 (SO_2 , NH_3 , $COCl_2$, PCl_5 , $POCl_3$). Установите, полярна данная молекула или нет.

Коротко о главном. Электронное строение и периодические свойства атомов

- 1. Состояние электрона в водородоподобном атоме характеризуется **пятью** квантовыми числами, из которых одно постоянное (спин $s = \frac{1}{2}$), а четыре (n, l, m_l, m_s) могут изменяться.
- 2. В многоэлектронных атомах электронная конфигурация характеризует распределение электронов по одноэлектронным орбиталям.
- 3. Орбитали заполняются электронами в порядке увеличения их энергии. На каждой орбитали может быть не больше 2 электронов.
- 4. Периодические свойства элементов радиус атома, энергия ионизации, электроотрицательность.
- 5. Радиус атома определяется по-разному в зависимости от типа химической связи, которую атом образует.

Коротко о главном. Хим. связь. Молекулы

- 1. Химическая связь взаимодействие атомов, которое приводит к уменьшению энергии системы, в частности к образованию молекул.
- 2. Ковалентная связь образуется, когда два атома создают общую пару электронов с тем, чтобы достичь полной валентной оболочки.
- 3. Основные характеристики химической связи: порядок (кратность), длина, энергия, полярность. С увеличением порядка длина связи уменьшается, а энергия увеличивается.
- 4. Геометрия молекул определяется отталкиванием электронных пар химических связей и неподеленных электронных пар.
- 5. Межмолекулярные взаимодействия обеспечивают устойчивость веществ в конденсированном (жидком и твердом) состоянии. Основные виды межмолекулярных взаимодействий водородная связь и диполь-дипольное (ван-дер-ваальсово) взаимодействие.
- 6. Энергия этих взаимодействий на порядок меньше энергии ковалентной связи они слабы индивидуально, но сильны коллективно.

Основные понятия. Атом

- Водородоподобный атом (ион)
- Атомная орбиталь
- Квантовые числа электрона в атоме
- Одноэлектронное (орбитальное) приближение
- Электронная конфигурация атома (иона)
- Основное состояние атома
- Периодические свойства элементов
- Радиус атома
- Электроотрицательность

Основные понятия. Молекула

- Молекула
- Химическая связь. Правило октета
- Валентность, степень окисления
- Структура Льюиса
- Характеристики химической связи:
 - кратность связи
 - длина связи
 - полярность (дипольный момент)
 - энергия связи
- Геометрия молекул: длины связей, валентные углы
- Модель отталкивания электронных пар
- Электронные состояния молекул
- Межмолекулярные взаимодействия:
 - водородная связь
 - ван-дер-ваальсово (дипольное) взаимодействие

Литература

- 1. Еремин, Борщевский. Основы общей и физической химии. Гл. 12-14.
- 2. Кузьменко, Еремин. Начала химии. Гл. 2, 3.
- 3. Шрайвер, Эткинс. Неорганическая химия, т. 1. Гл. 3.
- 4. Ахметов. Общая и неорганическая химия. Раздел 2, гл. 3.
- 5. Глинка. Общая химия. Глава 4.
- 6. Еремин. Теоретическая и математическая химия. Глава 2. § 5.