### Одиннадцатый класс

### Задача 11-1 (автор В.В.Космынин)

 $1. \ v_C: v_H: v_O=(6/12): (1/1): (2/16)=0.5: 1:0.125=4:8: 1. Отсюда следует, что молекулярная формула соединения <math>\mathbf{A}-(C_4H_8O)_n$ . Для молекулярной формулы  $C_4H_8O$  (при n=1) можно предложить лишь единственное соединение, в спектре ПМР которого имеется три сигнала – дублеты от метильных и альдегидного протонов и сложный мультиплет – от метинового протона. Это 2-метилпропаналь (или изомасляный альдегид): (CH<sub>3</sub>)<sub>2</sub>CH-CHO. При других значениях n структур, удовлетворяющих спектру ПМР, не имеется.

2. **Б** –  $HOCH_2$ - $C(CH_3)_2$ -CHO – 3-гидрокси-2,2-диметилпропаналь;

 ${\bf B}$  – HOCH<sub>2</sub>-C(CH<sub>3</sub>)<sub>2</sub>-CHOH-CN – 2,2-диметил-1-циано-пропан-1,3-диол

 $\Gamma$  –HOCH<sub>2</sub>-C(CH<sub>3</sub>)<sub>2</sub>-CHOH-COOH – 2,4-дигидрокси-3,3-диметилбутановая кислота;

Д – СН<sub>2</sub> – лактон 2,4-дигидрокси-3,3-диметилбутановой кислоты; образование продукта межмолекулярного взаимодействия – например, димеризации – маловероятно (энтропийный фактор);

**E** − CH<sub>2</sub>=CH-COOH − пропеновая или акриловая кислота;

 $\mathbf{W} - NH_2 - CH_2 - COOH - 3$ -аминопропановая кислота;

 $3 - HOCH_2$ -C(CH<sub>3</sub>)<sub>2</sub>-CHOH-CO-NH-CH<sub>2</sub>-CH<sub>2</sub>-COOH – 2-карбоксиэтиламид

2,4-дигидрокси-3,3-диметилбутановой кислоты (или пантотеновая кислота).

3. Тип реакции – альдольная конденсация, которая протекает в присутствии основных или кислотных катализаторов. Карбонат калия играет роль генератора основного катализатора – гидроксид-аниона. Гидроксид-анион может получиться при гидролизе карбоната калия. Поэтому необходимым условием выполнения реакции является присутствие в реакционной смеси воды, хотя бы в небольших количествах.

Механизм реакции:

Заключительный этап

- 4. Максимальная физиологическая активность синтезированного соединения 3 не может быть выше 50% по сравнению с таковой для природной пантотеновой кислоты. Это связано с тем, что в соединении 3 имеется асимметрический атом углерода (это атом углерода, у которого четыре различных заместителя) и синтезированный препарат представляет собой рацемическую смесь L- и D-энантиомеров. Природная пантотеновая кислота имеет D-конфигурацию. Асимметрический атом углерода появляется на стадии превращения соединения Б в соединение В.
- 5. «Витамин В<sub>3</sub> был обнаружен в дрожжах и назван пантотеновой (т.е. «вездесущей») кислотой; его часто называют также «универсальным витамином»».

## Задача 11-2 (автор Д.А.Малышев)

1. Конфигурация и конформация характеризуют относительное пространственное расположение атомов или групп атомов в молекуле химического соединения. При этом различные конфигурации молекулы не переходят друг в друга при нормальных условиях, могут иметь различные химические и физические свойства и др. Например Z- и Е-конфигурации алкенов.

Конформации молекулы возникают в результате вращения групп атомов вокруг одинарных связей, характеризуются определенным пространственным расположением атомов и легко превращаются друг в друга при обычных условиях.

Одним из простых примеров, которые иллюстрируют различие конформации и конфигурации, являются 1,2-дихлорэтилен и 1,2 дихлорэтан. Конфигурация первого соединения может быть как *цис*- (Z-), так и *транс*- (E-), причем эти изомеры не переходят друг в друга при обычных условиях.

Второе соединение может существовать в различных конформациях при комнатной температуре, две из которых показаны на рисунке (заторможенная (анти) и заслоненная (син) соответственно).

2. Первая стадия – классическая реакция Хорнера-Эммонса. Карбанионный центр, образующийся в присутствии основания, реагирует с карбонильной группой с последующим отщеплением диэтифосфат-аниона. Образующееся вещество **A** имеет, как указано на схеме, *E*-конфигурацию:

$$\begin{array}{c} H_2 \\ OEt \\ OEt \\ H^+ \\ OEt \\ OEt \\ H^- \\ OEt \\$$

Вторая стадия — гидрирование диена — протекает по описанной в условии задачи схеме. При этом цисоидная конформация приводит к E-изомеру вещества  $\mathbf{B}$ :

COOEt 
$$\begin{array}{c} H_2 \\ LCr(CO)_3 \\ \\ A \\ C_9H_{14}O_2 \end{array}$$

Далее следует восстановление сложноэфирной группы алюмогидридом лития до соответствующего спирта, обработка тозилхлоридом переводит -ОН в хорошо уходящую – ОТѕ группу, после чего проходит нуклеофильное замещение с образованием бромида С:

Получение реактива Гриньяра, его взаимодействие с пропаналем с образованием спирта и последующим ацилированием приводит к феромону **D**:

- 3. После восстановления сложноэфирной группы в соединении **В** образующийся спирт необходимо перевести в соответствующий бромид. Однако провести замещение напрямую не удается, поскольку, как известно, ОН-группа является «плохой» уходящей группой. Поэтому сначала переводят гидроксил в хорошо уходящую тозильную группу (*п*толуолсульфокислота сильная кислота), после чего замещение бромид-анионом проходит без осложнений.
- 4. Очевидно, что на первой стадии для отрыва протона необходимо использовать основание, поэтому ни одна из кислот не подходит (AlCl<sub>3</sub> (кислота Льюиса), HCl, CF<sub>3</sub>COOH). Поскольку реагент является сильной CH-кислотой, то из предложенных веществ лучше всего подходит слабое основание  $K_2CO_3$ , так как его силы вполне достаточно для инициирования процесса. NaH нельзя использовать, так как он реагирует с водой, а использование сильного основания КОН может привести к протеканию побочных процессов.

Литература: Bioorg. Med. Chem., **1996**, 4, 389.

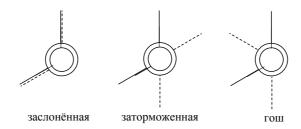
# Задача 11-3 (автор А.М.Мажуга)

Из описания кристаллической структуры вещества A можно сделать вывод, что на каждый анион (Y) в кристалле приходится один катион (X), т.е. состав вещества: XY.

Поскольку  $\bf A$  неограниченно смешивается с водой, образуя сильнокислые среды, логично предположить, что взаимодействия  $\bf B$  с  $\bf C$  и последующее взаимодействие  $\bf A$  с  $NH_3$  представляют собой кислотно-основные равновесия.

Т.к. соль **E** изоструктурна **A**, то в их кристаллических решётках катионы ( $\mathbf{X}^+$  в **A** и  $\mathrm{NH_4}^+$  в **E**) занимают одни и те же позиции. Более того,  $\mathbf{X}^+$  и  $\mathrm{NH_4}^+$ , вероятно, занимают примерно равный объём (иначе сингония могла бы измениться) и в состав  $\mathbf{X}^+$  входит по крайней мере три атома водорода ( $\mathrm{3H_{n+1}}^+$ ) (т.к. образуются три водородные связи). Учитывая заряд иона аммония и полученное ранее соотношение  $\mathbf{X}:\mathbf{Y}=1:1$ , можно заключить, что кислота **B** одноосновная, а **C** имеет состав  $\mathrm{3H_n}$ , где  $\mathrm{n}=2$ , 3 (так как неизвестны ионы со-

става  $9H_5^+$ ). Указанным условиям удовлетворяет вода. Действительно, ион гидроксония  $H_3O^+$  не только изоэлектронен  $NH_4^+$  и обладает сходными размерами, но и легко образует водородные связи.


При добавлении ещё одного эквивалента воды к A ион  $H_3O^+$  переходит в  $H_5O_2^+$ .

Роль тетраэдрического однозарядного аниона в **A** и **D** могут выполнять  $SO_3F$ ,  $BF_4$  и  $ClO_4$ , однако лишь перхлорат аммония разлагается со взрывом, поэтому **Y** =  $ClO_4$ .

#### Следовательно:

- 1)  $\mathbf{A} H_3O^+ ClO_4^-$ ,  $\mathbf{B} HClO_4$ ,  $\mathbf{C} H_2O$ ,  $\mathbf{D} H_5O_2^+ ClO_4^-$ ,  $\mathbf{E} NH_4^+ ClO_4^-$ .
- 2) Катионы  $H_3O^+$  и  $H_5O_2^+$  можно представить в виде:

3) Катион  $H_5O_2^+$ , присутствующий в соединении **D**, может существовать в виде трех конформеров:



4) Подобные катионы содержат некоторые моногидраты сильных кислот, например:  $H_3O^+NO_3$ ,  $H_3O^+SO_3F^-$  и некоторые другие.

# Задача 11-4 (автор В.А.Реутов)

1-3. Цветовой переход для соединений кобальта розовый – зеленый может соответствовать переходу кобальт(II) – кобальт(III). Об изменении степени окисления говорит и использование в синтезе  $\underline{\mathbf{B}}$  перекиси водорода. Соответственно:  $\underline{\mathbf{A}}$  и  $\underline{\mathbf{B}}$  – это ацетилацетонаты кобальта +2 и +3. Для  $\underline{\mathbf{B}}$  данные элементного анализа на кобальт соответствуют формуле  $\mathrm{Co}(\mathrm{C}_5\mathrm{H}_7\mathrm{O}_2)_3$  (16.57 %). Однако для  $\underline{\mathbf{A}}$  содержание кобальта явно занижено по сравнению с величиной, получаемой для формулы  $\mathrm{Co}(\mathrm{C}_5\mathrm{H}_7\mathrm{O}_2)_2$  (22.96 %). Следовательно,  $\underline{\mathbf{A}}$  содержит молекулы сольватированного растворителя. Для формулы  $\mathrm{Co}(\mathrm{C}_5\mathrm{H}_7\mathrm{O}_2)_2 \cdot \mathrm{nH}_2\mathrm{O}$  получаем

 $\omega$ (Co) = 58.9/(58.9+2·99+n·18) = 0.2014, соответственно: n = 2. Следовательно, формула образующегося в водной среде соединения  $\underline{\mathbf{A}}$ :  $Co(C_5H_7O_2)_2 \cdot 2H_2O$ . Предположение о том, что соединение А содержит в своем составе сольватированные молекулы спирта вместо молекул воды, достаточно легко опровергается ПО расчетам формулы ДЛЯ  $Co(C_5H_7O_2)_2 \cdot mC_2H_5OH$ , для которой не получается логичного значения m. Более того, в описанном водно-спиртовом растворе количество воды существенно превышает количество спирта, что соответственно приводит к преимущественному координированию к атому металла именно молекул воды. Необходимость использования в качестве растворителя смеси вода – спирт связана с растворимостью исходных реагентов: соли – растворяются в воде, ацетилацетон - в спирте, соответственно использование смешанного растворителя приводит к гомогенизации смеси и увеличении скорости процесса.

Описанные превращения:

$$Co(NO_3)_2 + 2C_5H_8O_2 + Na_2CO_3 + H_2O \rightarrow Co(C_5H_7O_2)_2 \cdot 2H_2O + 2NaNO_3 + CO_2$$

$$Co(NO_3)_2 + 3C_5H_8O_2 + Na_2CO_3 + \frac{1}{2}H_2O_2 \rightarrow Co(C_5H_7O_2)_3 + 2NaNO_3 + CO_2 + 2H_2O_3 + \frac{1}{2}CO_3 +$$

Оба соединения (и  $\underline{\mathbf{A}}$ , и  $\underline{\mathbf{B}}$ ) содержат в своем составе объемные органические фрагменты, в результате чего растворимость этих соединений в воде мала. Соединение  $\underline{\mathbf{A}}$ , кроме того, имеет в своем составе координированную воду, что резко уменьшает его растворимость в органических растворителях. В соединении же  $\underline{\mathbf{B}}$  атом кобальта полностью "закрыт" органическими фрагментами, поэтому "неорганическая" природа этого соединения практически не проявляется. Соответственно "органическое" соединение  $\underline{\mathbf{B}}$  хорошо растворимо в органических растворителях (бензол, хлороформ, ...).

При кипячении  $\underline{\mathbf{A}}$  в бензоле в присутствии пиридина происходит замещение сольватированной воды на молекулы другого лиганда – пиридина:

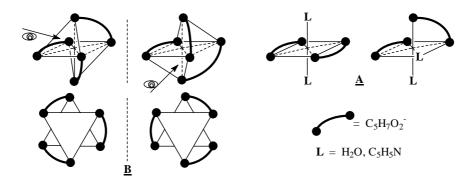
$$Co(C_5H_7O_2)_2 \cdot 2H_2O + 2C_5H_5N \rightarrow Co(C_5H_7O_2)_2 \cdot 2C_5H_5N + 2H_2O$$

В образующемся соединении атом кобальта, как и в соединении  $\underline{\mathbf{B}}$ , "закрыт" органическими фрагментами, поэтому это комплекс растворим в органических растворителях существенно лучше, чем  $\underline{\mathbf{A}}$ .

Получение  $\underline{\mathbf{B}}$  по второй схеме проходит через образование комплексного карбоната трехвалентного кобальта – наличие карбонат-ионов в  $\underline{\mathbf{C}}$  подтверждается образованием газа (углекислого) на стадии обработки его смеси с ацетилацетоном кислотами. Учитывая шести-координированность атома кобальта и бидентатность карбонат-иона, формула соединения  $\underline{\mathbf{C}}$  –  $\mathrm{Na_3}[\mathrm{Co}(\mathrm{CO_3})_3]\cdot\mathrm{nH_2O}$  (цветовой переход связан с окислением кобальта). Для этой формулы получаем  $\omega(\mathrm{Co}) = 58.9/(3\cdot23+58.9+3\cdot60+\mathrm{n}\cdot18) = 0.1628$ , соответственно:  $\mathrm{n} = 3$ . Следовательно формула  $\underline{\mathbf{C}}$ :  $\mathrm{Na_3}[\mathrm{Co}(\mathrm{CO_3})_3]\cdot\mathrm{3H_2O}$ .

$$Co(NO_3)_2 + 5NaHCO_3 + {}^{1}/_2H_2O_2 \rightarrow Na_3[Co(CO_3)_3] \cdot 3H_2O + 2NaNO_3 + 2CO_2$$

 $Na_3[Co(CO_3)_3] \cdot 3H_2O + 3C_5H_8O_2 + 3HX \rightarrow Co(C_5H_7O_2)_3 + 3NaX + 3CO_2 + 6H_2O$ , где X – анион кислоты ( $NO_3$  или  $CH_3COO$ ).


"Продажная" азотная кислота обычно загрязнена оксидом азота(IV), образующимся за счет частичного разложения кислоты.  $NO_2$  может вступать в химические реакции как в качестве окислителя, так и в качестве восстановителя. В присутствии сильного окислителя — соли кобальта(III)  $NO_2$  выступает в качестве восстановителя, что приводит к образованию смеси ацетилацетонатов трех- и двухвалентного кобальта.

4. Пространственное строение соединений  $\underline{\mathbf{A}}$  и  $\underline{\mathbf{B}}$  легко выводится из координационного числа комплексообразователя — атома кобальта. В обоих соединениях координационное число равно 6 (ацетилацетонатный лиганд бидентатен), следовательно, наиболее вероятное ближайшее окружение атома кобальта — октаэдр.

Для конкретизации строения ацетилацетонатных комплексов необходимо отметить, что в координированном лиганде – ацетилацетонатном анионе, так же как в ароматических соединениях, нет одинарных и двойных связей, а все связи С-О и С-С попарно выровнены. Таким образом, органический фрагмент, связанный с атомом металла, симметричен. С одним

лигандом связана  $^{1}/_{2}$  или  $^{1}/_{3}$  часть атома кобальта, что на схеме обозначено символом "n\", где n — валентность металла.

Ацетилацетонат кобальта(III) — соединение  $\underline{\mathbf{B}}$ , может иметь два оптических изомера, которые четко различаются на изображении, если смотреть на пространственную структуру вдоль оси симметрии третьего порядка. Возможность существования оптических изомеров для комплексов типа  $\underline{\mathbf{B}}$  (комплексов металлов с тремя бидентантными лигандами) связана с отсутствием для этих молекул плоскости симметрии и центра симметрии (более точно, отсутствием зеркально-поворотных осей симметрии).



Кобальт в дигидрате ацетилацетоната кобальта(II) — соединении  $\underline{\mathbf{A}}$ , также находится в центре октаэдра. Отсутствие оптических изомеров возможно только в том случае, если молекулы воды находятся в транс-положении относительно друг друга (левая структура). Тео-

Решения заданий обязательного тура

ретически возможно существование второго геометрического изомера (правая структура), в котором молекулы воды находятся в цис-положении относительно друг друга. Такой цис-изомер может иметь оптические изомеры.

- 5. Соединение  $\underline{\mathbf{C}}$  (вернее его анион), так же как и  $\underline{\mathbf{B}}$ , может существовать в виде двух оптических изомеров. Однако образующаяся соль  $\underline{\mathbf{C}}$  нерастворима ни в воде, ни в органических растворителях, поэтому  $\underline{\mathbf{C}}$  не может быть разделено на изомеры. Статистически образование обоих изомеров равновероятно. Поэтому  $\underline{\mathbf{C}}$  образуется в виде рацемической смеси и оптически неактивно.
- 6. Соляная кислота (хлористый водород) проявляет по отношению к Co(III) восстановительные свойства. Поэтому использование соляной кислоты для перевода  $\underline{C}$  в  $\underline{B}$  невозможно. В лучшем случае, при недостатке соляной кислоты, произойдет образование ацетилацетоната кобальта(II)  $\underline{A}$ . В случае применения избытка соляной кислоты образование хелата  $\underline{A}$  наблюдаться не будет (образующийся при прибавлении недостатка кислоты  $\underline{A}$  разлагается избытком кислоты с образованием свободного лиганда ацетилацетона).

$$2Na_{3}[Co(CO_{3})_{3}]\cdot 3H_{2}O + 4C_{5}H_{8}O_{2} + 8HCl \rightarrow 2Co(C_{5}H_{7}O_{2})_{2} + 6NaCl + Cl_{2} + 6CO_{2} + 12H_{2}O$$

$$2Na_{3}[Co(CO_{3})_{3}]\cdot 3H_{2}O + 12HCl \rightarrow 2CoCl_{2} + 6NaCl + Cl_{2} + 6CO_{2} + 12H_{2}O$$

## Задача 11-5 (автор С.А.Серяков)

1. Судя по тому, что при физической атомизации  $\bf A$  возникают трудности, распад  $\bf P$  должен сопровождаться образованием чрезвычайно стабильных молекул (не реагирующих с  $\bf X$ ), можно утверждать, что  $\bf P$ , помимо  $\bf A$ , должен содержать скорее всего азот (по схеме синтеза), т. к. это соединение – бинарное. Тогда

$$Ar(\mathbf{A}) = n \cdot 14 \cdot 0.1765/(1-0.1765) \approx 3 \cdot n.$$

| A <sub>r</sub> | 3              | 6               | 9 | 12              | 15 | 18 | 21 | 24 | 27          |
|----------------|----------------|-----------------|---|-----------------|----|----|----|----|-------------|
| A              | <sup>3</sup> H | <sup>6</sup> Li | _ | С               | _  | _  | _  | Mg | Al          |
| P              | $N_2(^3H)_2$   | _               | _ | CN <sub>4</sub> | _  | _  | _  | _  | $Al(N_3)_3$ |

Перебор более высоких значений п не может согласоваться с разумной стехиометрией.

Процесс генерирования атомарного  $^3$ H или Al всегда приводит к парамагнитным частицам (т.к. число электронов у них – нечетное). Наиболее подходящий вариант -  $CN_4$ :  $\mathbf{P} = N_3CN$  – цианазид,  $\mathbf{A} = C$ ,  $\mathbf{B} = NaCN$ ,  $\mathbf{C} = NaN_3$ ,  $\mathbf{E} = ClCN$  (эти варианты соответствуют схеме получения  $\mathbf{P}$ ),  $\mathbf{X}$  – атомарный углерод.

$$NaNH_2 + C \rightarrow NaCN + H_2$$

$$NaNH_2 + N_2O \rightarrow NaN_3 + H_2O$$

$$NaCN + Cl_2 \rightarrow ClCN + NaCl$$

$$ClCN + NaN_3 \rightarrow N_3CN + NaCl$$

2. Конфигурации валентных электронов **X** в порядке увеличения энергии:

«Распаривание» электронов s-слоя невыгодно, поэтому C(S=2) лежит выше по энергии, чем C(S=0) и C(S=1). Из трех конфигураций  $C(s^2p^2)$  в соответствии с правилом Хунда, наиболее устойчиво состояние с бо́льшим спином; S – суммарный спин электронов атома.

3. Первичными продуктами взаимодействия X с тетраметилэтиленом являются карбены  $Y_1$  и  $Y_2$ :

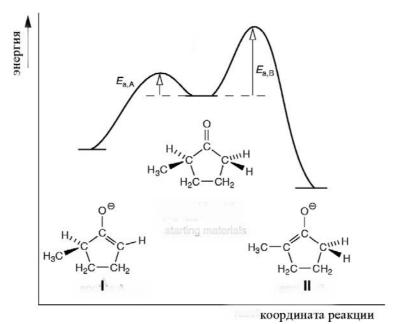
Диамагнитный карбен ( $Y_2$ ) является электрофилом и нуклеофилом одновременно, для него (в отличие от  $Y_1$ ) возможна внутримолекулярная перегруппировка в стабильные продукты. Последняя стадия процесса конверсии  $Y_1$  затруднена необходимостью инверсии спина. Отметим также возможность «запрещенного по спину» перехода  $Y_1$  в  $Y_2$ .

 $\mathbf{D}_1$  – тетраметилаллен,  $\mathbf{D}_2$  – октаметилспиропентан.

4. В этом году исполняется 20 лет со дня открытия продуктов высокотемпературного пиролиза графита – фуллеренов, зафиксированных впервые в ходе исследований углеродных кластеров, образующихся при испарении С лазерным лучом.[Nature, **318**, 162 (1985)] Основные проблемы: (1) генерация **X** всегда затруднена агрегацией атомов вещества; (2)

деградация молекулярных реагентов при высоких температурах не позволяет проводить реакции с их участием.

# Задача 11-6 (автор В.В.Еремин)


1. Возможный вариант: **Х** – трифенилметиллитий,

Это сильное основание является слабым нуклеофилом благодаря наличию трех объемных фенильных групп. Существует и много других веществ с похожими свойствами.

2.

$$H_{3C}$$
 $H_{3C}$ 
 $H_{3C}$ 

- 3. С большей скоростью образуется анион I, так как отрыв протона от  $CH_2$  группы осуществляется легче, чем от  $CH(CH_3)$ , из-за пространственных затруднений в последнем случае, а также из-за положительного индуктивного эффекта метильной группы, увеличивающей частичный отрицательный заряд на соседнем углеродном атоме.
- 4. Термодинамически более устойчив анион **II**, так как в нем осуществляется дополнительное сопряжение двух атомов водорода метильной группы, находящихся вне плоскости кольца, с  $\pi$ -электронной системой. Это сопряжение понижает энергию молекулы. Изомер, имеющий алкильные заместители у двойной связи, более устойчив.
- 5. Реакция образования аниона **I** характеризуется меньшей энергией активации и меньшим тепловым эффектом, чем **II**:



6. Термодинамический контроль осуществляется в условиях, при которых достижимо равновесие. При избытке кетона между двумя енолят-анионами устанавливается равновесие:

анион 
$$A$$
 + кетон  $\Longrightarrow$  кетон + анион  $B$ ,

связанное с переносом протона от кетона к анионам:

B этих условиях преимущественно образуется более устойчивый продукт B. Константа равновесия:

$$K = \frac{[\mathbf{B}]}{[\mathbf{A}]} = \frac{94}{6} = 15.7$$

Формула енолят-аниона А:

Энергия Гиббса реакции  $A \rightarrow B$ :

$$\Delta G = G(\mathbf{B}) - G(\mathbf{A}) = -RT \ln K = -8.314 \cdot 298 \cdot \ln 15.7 = -6820$$
 Дж/моль.

Энергия Гиббса А на 6820 Дж/моль больше, чем В.

7. В условиях кинетического контроля соотношение продуктов определяется константами скорости:

$$\frac{[\mathbf{A}]}{[\mathbf{B}]} = \frac{72}{28} = \frac{k(\mathbf{A})}{k(\mathbf{B})} = \frac{e^{-E_{\mathrm{A}}/(RT)}}{e^{-E_{\mathrm{B}}/(RT)}} = e^{(E_{\mathrm{B}}-E_{\mathrm{A}})/(RT)},$$

откуда

$$E_{\mathrm{B}}-E_{\mathrm{A}}=RT\ln\frac{[\mathbf{A}]}{[\mathbf{B}]}=8.314\cdot298\cdot\ln\frac{72}{28}=2340$$
 Дж/моль.

Энергия активации образования аниона А на 2340 Дж/моль меньше, чем аниона В.