Fluorinated and Hypervalent Compounds

6% of total													
Question	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	Total			
Points	4	4	4	2	6	4	1	4	5	$\mathbf{3 4}$			
Score													

Introduction - Fluorine forms stable and isolable compounds with essentially all elements, including the noble gases Kr and Xe . Fluorine-containing molecules often feature uncommon structures. Thus, fluorine is frequently involved in the formation of compounds with elements of groups 14-18, which are defined as hypervalent. The synthesis of fluorinated organic compounds is nowadays heavily based on the availability of specifically designed reagents, compound $\mathbf{4}$ below being an example.

Hint: Any element E in the series $E^{1}-E^{8}$ may be represented more than once.

4

I Molecular Geometry

4.1 Identify elements $\mathbf{E}^{\mathbf{1}}, \mathbf{E}^{\mathbf{2}}, \mathbf{E}^{\mathbf{3}}$, and $\mathbf{E}^{\mathbf{4}}$ in the three species $\mathbf{1 , [2]}$, and [3] ${ }^{-}$. Write 4.0pt the answer in the appropriate box on your answer sheet.

1

[2] ${ }^{-}$

[3]

1: neutral, non-zwitterionic molecule, $\mathbf{E}^{\mathbf{1}}$, square pyramidal; $\mathbf{E}^{\mathbf{2}}$, octahedral,
av. $d\left(E^{1}-F\right)=1.91 \AA$; av. $d\left(E^{2}-F\right)=1.58 \AA$
[2] ${ }^{-}$: anion, square pyramidal
av. $d\left(E^{3}-F\right)=1.96 \AA$
[3]-: anion, pentagonal planar av. $\mathrm{d}\left(\mathrm{E}^{4}-\mathrm{F}\right)=1.98 \AA$

15	16	17	18
$\mathrm{~d}(\mathrm{P}-\mathrm{F}), 1.50-1.68 \AA$	$\mathrm{~d}(\mathrm{~S}-\mathrm{F}) 1.52-1.60 \AA$	$\mathrm{~d}(\mathrm{Cl}-\mathrm{F}), 1.63-1.85 \AA$	
$\mathrm{~d}(\mathrm{As}-\mathrm{F}), 1.68-1.72 \AA$	$\mathrm{~d}(\mathrm{Se}-\mathrm{F}), 1.75-1.80 \AA$	$\mathrm{~d}(\mathrm{Br}-\mathrm{F}), 1.77-1.97 \AA$	$\mathrm{~d}(\mathrm{Kr}-\mathrm{F}), 1.77-1.89 \AA$
$\mathrm{~d}(\mathrm{Sb}-\mathrm{F}), 1.85-2.05 \AA$	$\mathrm{~d}(\mathrm{Te}-\mathrm{F}), 1.80-2.00 \AA$	$\mathrm{~d}(\mathrm{I}-\mathrm{F}), 1.90-2.00 \AA$	$\mathrm{~d}(\mathrm{Xe}-\mathrm{F}), 1.77-2.00 \AA$

Table 1. Typical E-F bond distance ranges for a selection of elements in Groups 15-18

Hints:

1. The specified molecular geometries refer to the arrangement of atoms bonding to $E^{1}-E^{4}$
2. The elemental analysis of $\mathbf{1}$ gives a carbon content of $17.75 \mathrm{wt} . \%$

Assume that molecule $\mathbf{1}$ is a zwitterion, with single formal charges at both $\mathbf{E}^{\mathbf{1}}$ and $\mathbf{E}^{\mathbf{2}}$, thereby giving rise to the hypothetic molecules $\mathbf{1}^{\prime}$ and $\mathbf{1}^{\prime \prime}$, shown below.

Theory

4.2 Choose which elements $\mathbf{E}^{5} / \mathbf{E}^{6}$ and $\mathbf{E}^{7} / \mathbf{E}^{8}$, respectively, would display the given molecular geometry, including E-F bond distances close to those in 1 (see table 1). Write the answer in the boxes provided on your answer sheet.

1 '

1"

II Reactivity and structure

Consider the reaction shown below:

4
$+\mathrm{Ph}-\mathrm{Te}-\mathrm{Te}-\mathrm{Ph}$

5

6
$+\mathrm{Ph}-\mathrm{Te}-\mathrm{CF}_{3}$

7
4.3 - Specify the ideal geometry of compound 6 in terms of the arrangement of the valence-shell electron-pair domains around the Te atom. Tick the right box on your answer sheet.

- Provide the expected ideal bond angles $\mathrm{C}^{1}-\mathrm{Te}-\mathrm{I}, \mathrm{C}^{2}-\mathrm{Te}-\mathrm{I}, \mathrm{I}-\mathrm{Te}-\mathrm{O}$, and $\mathrm{C}^{1}-\mathrm{Te}-$ C^{2}. Write the answer on your answer sheet in the respective box.
4.4 Write the number of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals you expect for the two methyl groups in 2.0 pt compounds 4 and 6 respectively on your answer sheet.
4.5 Compound 6 reacts consecutively with AgF and $\left(\mathrm{H}_{3} \mathrm{C}_{3} \mathrm{SiCF}_{3}\left(\mathrm{TMSCF}_{3}\right)\right.$.

Formulate the Te-containing intermediate \mathbf{A} and final product \mathbf{B}, including their correct geometry, as well as the byproducts C and D. Draw A and B and write the by-products \mathbf{C} and \mathbf{D} on your answer sheet.
Hint: $M W$ of \boldsymbol{D} is $92.08 \mathrm{~g} \mathrm{~mol}^{-1}$.

Theory

55 ${ }^{\text {TH }}$ INTERNATIONAL CHEMISTRY OLYMPIAD
SWITZERLAND 2023

Assume that compound 6 reacts with a sterically bulky, chiral, enantiomerically pure Lewis acid, such as the known boron derivative 8, as shown below. This reaction should lead to the formation of a new product 9 the composition of which corresponds to the sum of $\mathbf{6}$ and $\mathbf{8}$. Further assume that $\mathbf{9}$ is a salt, in which the cation derives from 6 and the anion from 8.

8

4.6 Draw the structure of both the Te-containing cation and the boron-containing anion and tick the box corresponding to the ideal geometry of the cation in terms of the arrangement of the valence-shell electron-pair domains around the Te atom. Draw on your answer sheet.
Hint: Use for compound 8 (chiral, enantiomerically pure) the following generic schematic representation:

4.7 Write the number of possible stereochemically different salts 9 on your answer $\quad 1.0 \mathrm{pt}$ sheet.

III Synthesis of a $\boldsymbol{\lambda}^{3}$-difluoroiodane and rotation around a single bond

Compound 12 is prepared from starting material 10 by oxidation with trichloroisocyanuric acid (TCICA, 11) in the presence of excess KF in dry acetonitrile as shown below.

Theory

4.8 Formulate balanced half-cell reactions and a balanced overall reaction for this
 4.0pt process. Write the reactions on your answer sheet.
 Hint: Abbreviate 10 as $R-I$ and 12 as $R-I F_{2}$ and TCICA as $\mathrm{C}_{3} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$. The sixmembered ring of TCICA stays intact upon reduction.

The IF_{2} group in 12 can rotate around the I-C bond (imagine a molecular propeller). The corresponding rotation barrier has been measured experimentally: $E_{a}=30 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Furthermore, the rate constant for the rotation is $k=2500 \mathrm{~s}^{-1}$ at 228 K .

12

Theory
4.9 Determine how fast the IF_{2} group can in principle rotate at room temperature (298 K). Consider this process as if it were a chemical reaction for which you are determining the rate constant. Write your answer on the answer sheet. The unit of the constant should be given in s^{-1}.

