

Fluorinated and Hypervalent Compounds

6% of total										
Question	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	Total
Points	4	4	4	2	6	4	1	4	5	34
Score										

Introduction - Fluorine forms stable and isolable compounds with essentially all elements, including the noble gases Kr and Xe. Fluorine-containing molecules often feature uncommon structures. Thus, fluorine is frequently involved in the formation of compounds with elements of groups 14-18, which are defined as hypervalent. The synthesis of fluorinated organic compounds is nowadays heavily based on the availability of specifically designed reagents, compound **4** below being an example.

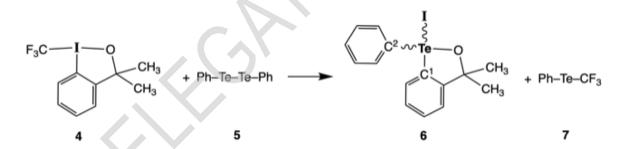
Hint: Any element E in the series E^1 - E^8 may be represented more than once.

I Molecular Geometry

55™ INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Identify elements E¹, E², E³, and E⁴ in the three species 1, [2]⁻, and [3]⁻. Write 4.1 4.0pt the answer in the appropriate box on your answer sheet. [2] [3] 1: neutral, non-zwitterionic molecule, E¹, square pyramidal; E², octahedral, av. d(E1-F)=1.91Å; av. d(E2-F)=1.58Å [2]⁻: anion, square pyramidal av. d(E³-F)=1.96Å [3]⁻: anion, pentagonal planar av. d(E⁴-F)=1.98Å 15 16 17 18 d(P-F), 1.50-1.68 Å d(S–F) 1.52-1.60 Å d(Cl-F), 1.63-1.85 Å d(As–F), 1.68-1.72 Å d(Se–F), 1.75-1.80 Å d(Br–F), 1.77-1.97 Å d(Kr–F), 1.77-1.89 Å d(I–F), 1.90-2.00 Å d(Sb–F), 1.85-2.05 Å d(Te-F), 1.80-2.00 Å d(Xe–F), 1.77-2.00 Å Table 1. Typical E-F bond distance ranges for a selection of elements in Groups 15 - 18 Hints: 1. The specified molecular geometries refer to the arrangement of atoms bonding to $E^1 - E^4$ 2. The elemental analysis of **1** gives a carbon content of 17.75 wt.%

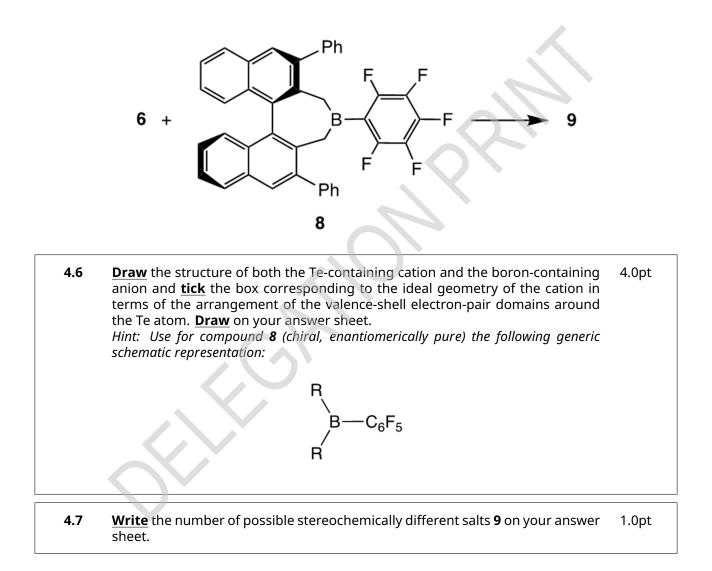
Assume that molecule **1** is a zwitterion, with single formal charges at both **E**¹ and **E**², thereby giving rise to the hypothetic molecules **1**' and **1**'', shown below.



55[™] INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

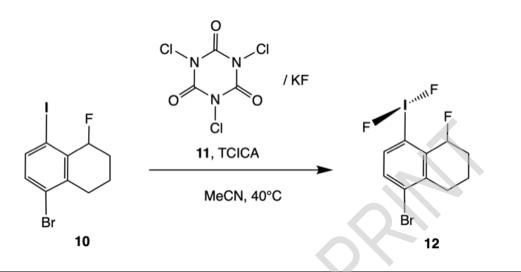
II Reactivity and structure

Consider the reaction shown below:


- **4.3** Specify the ideal geometry of compound 6 in terms of the arrangement of the valence-shell electron-pair domains around the Te atom. <u>Tick</u> the right box on your answer sheet.
 Provide the expected ideal bond angles C¹-Te-I, C²-Te-I, I-Te-O, and C¹-Te-I
 - C^2 . **Write** the answer on your answer sheet in the respective box.
 - **4.4** <u>Write</u> the number of ¹H-NMR signals you expect for the two methyl groups in 2.0pt compounds **4** and **6** respectively on your answer sheet.
 - **4.5** Compound **6** reacts consecutively with AgF and $(H_3C)_3SiCF_3$ (TMSCF₃). 6.0pt **Formulate** the Te-containing intermediate **A** and final product **B**, including their correct geometry, as well as the byproducts **C** and **D**. **Draw A** and **B** and **write** the by-products **C** and **D** on your answer sheet. *Hint: MW of* **D** *is* 92.08 *g mol*⁻¹.

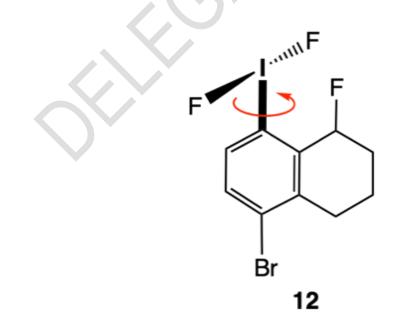
55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Assume that compound **6** reacts with a sterically bulky, chiral, enantiomerically pure Lewis acid, such as the known boron derivative **8**, as shown below. This reaction should lead to the formation of a new product **9** the composition of which corresponds to the sum of **6** and **8**. Further assume that **9** is a salt, in which the cation derives from **6** and the anion from **8**.



III Synthesis of a λ^3 -difluoroiodane and rotation around a single bond

Compound **12** is prepared from starting material **10** by oxidation with trichloroisocyanuric acid (TCICA, **11**) in the presence of excess KF in dry acetonitrile as shown below.



4.8 Formulate balanced half-cell reactions and a balanced overall reaction for this 4.0pt process. **Write** the reactions on your answer sheet. *Hint:* Abbreviate **10** as R-I and **12** as R-IF₂ and TCICA as $C_3Cl_3N_3O_3$. The six-membered ring of TCICA stays intact upon reduction.

The IF₂ group in **12** can rotate around the I-C bond (imagine a molecular propeller). The corresponding rotation barrier has been measured experimentally: $E_a = 30 \text{ kJ mol}^{-1}$. Furthermore, the rate constant for the rotation is $k = 2500 \text{ s}^{-1}$ at 228 K.

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

4.9 Determine how fast the IF₂ group can in principle rotate at room temperature 5.0pt (298 K). Consider this process as if it were a chemical reaction for which you are determining the rate constant. **Write** your answer on the answer sheet. The unit of the constant should be given in s^{-1} .