35^{ая} Международная Химическая Олимпиада

Афины, Греция

Задания теоретического Тура Четверг, 10 июля 2003

РАЗДЕЛ В: ФИЗИЧЕСКАЯ ХИМИЯ

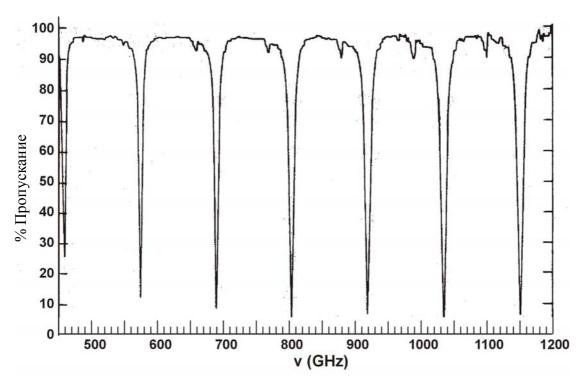
Задание 25. Мюон (8 баллов)

Мюон (μ) — субатомная частица с таким же зарядом, как у электрона, но другой массой. Мюон неустойчив и за время порядка микросекунд распадается на другие частицы. В этой задаче мы определим массу мюона двумя разными методами.

1) Обычно мюон распадается по реакции:

$$\mu \rightarrow e + \nu_e + \nu_\mu$$

где v_e — электронное антинейтрино, а v_μ — мюонное нейтрино. В одном из экспериментов при распаде покоящегося мюона образовалась пара v_e + v_μ , уносящая общую энергию 2.000×10^{-12} Дж, а выделившийся при этом электрон двигался с кинетической энергией 1.4846×10^{-11} Дж. Определите массу мюона.

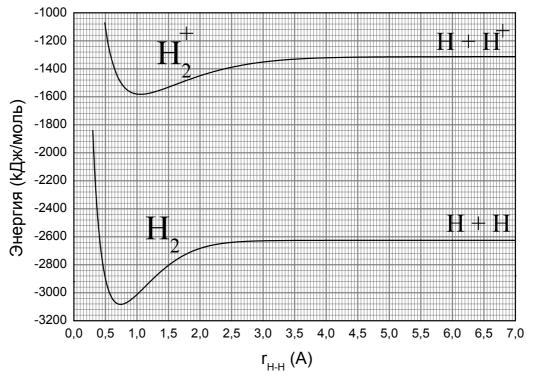

2) Другой способ измерения массы – спектроскопия атомов, в которых вместо электрона находится мюон. Такие экзотические атомы часто образуются в возбужденных состояниях. В атоме, состоящем из ядра ¹Н и мюона, переход из третьего по счету возбужденного состояния в первое по счету возбужденное состояние наблюдался на длине волны 2.615 нм. Определите массу мюона.

Задание 26. Спектр СО (5 баллов)

Вращательные уровни энергии двухатомных молекул хорошо описываются формулой $E_J = B \cdot J \cdot (J+1)$, где J — вращательное квантовое число, а B — вращательная постоянная. Постоянная B связана с приведенной массой μ и длиной связи R соотношением:

$$B = \frac{h^2}{8\pi^2 \mu R^2}.$$

Переходы между вращательными уровнями происходят, если энергия фотона равна разности энергий этих уровней: $h\nu = \Delta E$. Вращательные переходы происходят между соседними уровнями, поэтому $\Delta E = E_{J+1} - E_J = 2B \cdot (J+1)$. Отсюда следует, что вращательный спектр (на рисунке) представляет собой серию равноотстоящих пиков с одинаковой разностью частот между соседними линиями, которая дается формулой: $h \cdot \Delta \nu = 2B$.



Используя приведенный на рисунке спектр $^{12}\mathrm{C}^{16}\mathrm{O}$, определите для этой молекулы следующие величины (с соответствующей размерностью):

- (1) Δv
- (2) B
- (3) R

Задание 27. Молекула водорода (6 баллов)

На рисунке приведены кривые потенциальной энергии молекулы H_2 и катиона H_2^+ .

пользуя информацию, приведенную на рисунке, дайте численные ответы с необходимой размерностью на следующие вопросы:

Ис

1) Чему равны равновесные длины связей в молекулах H_2 и H_2^+ ?

- 2) Чему равны энергии связей в молекулах H_2 и H_2^+ ?
- 3) Чему равна энергия ионизации молекулы Н₂?
- 4) Чему равна энергия ионизации атома водорода?
- 5) Молекулу H_2 ионизуют светом с частотой $4.1 \cdot 10^{15}$ Гц. Чему равна скорость вылетающих электронов (колебательной энергией молекул пренебречь)?

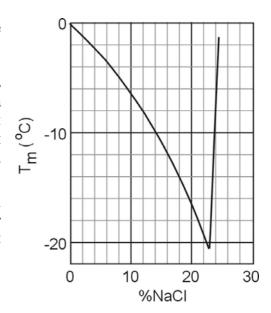
Задание 28. Криоскопия (4 балла)

Химикам часто приходится работать с температурами ниже температуры плавления воды $(0~^{\circ}\text{C})$ и значительно выше температуры сублимации CO_2 ($-78~^{\circ}\text{C}$). Для создания таких температур смешивают лед при температуре его плавления и NaCl. В зависимости от соотношения компонентов можно достичь температур вплоть до $-20~^{\circ}\text{C}$.

В термостате приготовили ледяную баню. Для этого при 0 °C к 1 кг льда добавили 150 г NaCl.

Укажите, являются ли правильными (Д) или неправильными (Н) следующие утверждения.

1) Процесс смешивания компонентов является самопроизвольным


Д Н

2) Изменение энтропии в процессе смешивания отрицательное.

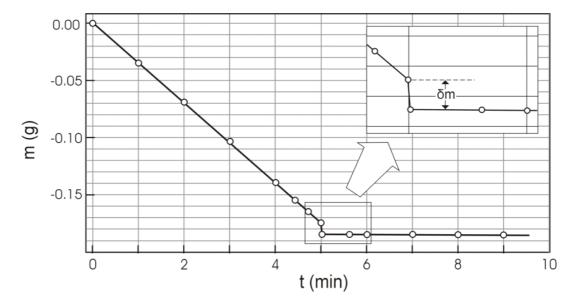
Д Н

- 3) На рисунке изображена зависимость температуры замерзания водного раствора NaCl от состава раствора (отложены массовые доли соли в процентах). При какой температуре замерзает раствор, приготовление которого описано выше?
- 4) Готовя ледяную баню, вместо NaCl использовали $MgCl_2$ такой же массы. Будет ли в этом случае температура замерзания раствора выше? Приведите расчет.

Д Н

Задание 29. Бассейн (5 баллов)

Очень большой плавательный бассейн заполнен водой с температурой 20° С. В бассейн погружен резисторный нагреватель с мощностью нагрева 500 Вт. Для передачи тепла воде резистор включили. Теплообмен происходит только между водой и резистором. В других взаимодействиях вода не участвует. По истечении 20 мин резистор выключили.


- 1) Рассчитайте количество теплоты, переданное от резистора воде.
- 2) Какое из выражений справедливо для изменения энтропии резистора?
 - (i) $\Delta S_{\text{резистор}} > 0$
 - (ii) $\Delta S_{\text{резистор}} = 0$
 - (iii) $\Delta S_{\text{резистор}} < 0$

- 3) Какое из выражений справедливо для изменения энтропии воды в бассейне?
 - (i) $\Delta S_{BOJA} > 0$
 - (ii) $\Delta S_{BOJIa} = 0$
 - (iii) $\Delta S_{BOJIa} < 0$
- 4) Какое из выражений справедливо для изменения энтропии всей системы?
 - (i) $\Delta S_{\text{система}} > 0$
 - (ii) $\Delta S_{\text{система}} = 0$
 - (iii) $\Delta S_{\text{система}} < 0$
- 5) Является ли процесс обратимым?

Д Н

Задание 30. Скорость молекул газа (5 баллов)

Описанный в этой задаче эксперимент позволяет определить среднюю скорость (u) молекул в газовой фазе над летучей жидкостью. Открытый сосуд (чашку Петри) наполовину наполняют этанолом и ставят на электронные весы, а рядом с ним на эти же весы помещают крышку. В момент времени t=0 показания весов равны нулю. Изменение показаний весов во времени изображено на рисунке.

В момент времени t=5 мин сосуд накрывают крышкой. Жидкость больше не испаряется, но молекулы над жидкостью давят изнутри на крышку. Это приводит к уменьшению показаний весов на величину δm . Сила, действующая на крышку, равна $f=\delta m \cdot g$, где $g=9.8 \text{ м} \cdot \text{c}^{-2}$. С другой стороны, эту же силу можно рассчитать через производную импульса по формуле: $f=\frac{1}{2}u\frac{dm}{dt}$.

Используя данные, приведенные на рисунке, рассчитайте среднюю скорость молекул этанола при 290 K.