Аскорбиновая кислота (\mathbf{AK}) — важный витамин и антиоксидант. Для определения количества \mathbf{AK} в фармпрепаратах применяют титрование иодатом калия в среде 0.5 М HCl в присутствии крахмала, при котором образуются дегидроаскорбиновая кислота $\mathbf{C_6H_6O_6}$ ($\mathbf{Д\Gamma A}$) и иодид ион.

1. Запишите уравнение реакции титрования и реакции, при которой выделяется иод, окрашивающий индикатор. Рассчитайте количество АК в образце (моль), если на его титрование потребовалось 9.5 мл 0.100 М раствора KIO₃.

ДГА в результате присоединения молекулы воды и декарбоксилирования медленно переходит в ксилозон $C_5H_8O_5$, который затем быстро (намного быстрее, чем в предыдущей реакции) восстанавливается еще одной молекулой АК с образованием ксилозы $C_5H_{10}O_5$ и еще одной молекулы ДГА. Ксилоза затем медленно циклизуется в фурфурол $C_5H_4O_2$.

Начав аналогичное п. 1 титрование иодатом раствора АК (общее количество АК равно 1.00 ммоль), лаборант отошел на некоторое время, а когда он вернулся, аскорбиновой кислоты в растворе уже не было. При этом в растворе были обнаружены ксилоза и фурфурол в суммарном количестве 0.55 ммоль.

- **2.** Запишите уравнения превращений ДГА и ксилозона во время стояния раствора, используя их брутто-формулы.
- **3.** Какой объем 0.100 M раствора иодата успел израсходовать аналитик перед уходом?
- **4.** Какие еще органические компоненты, кроме ксилозы и фурфурола, и в каких количествах присутствовали в растворе к моменту возвращения аналитика, если за это время система пришла к равновесию?
- **5.** Какая побочная реакция, кроме перечисленных, также могла бы понизить концентрацию АК в растворе при его стоянии?

Если титрование АК иодатом провести в среде 5 М HCl, то иодат восстановится также до иодида, но на 0.300 ммоль АК израсходуется 7.00 мл 0.100 М раствора иодата.

6. Что будет продуктом окисления АК в этих условиях? Напишите уравнение реакции титрования и структуру этого продукта, если других углеродсодержащих соединений в реакции не образуется.

$$K \xrightarrow{+ H_2SO_4 \text{ (КОНЦ.)}} A \xrightarrow{+ B} X \xrightarrow{t^0} F \xrightarrow{t^0} Y \xrightarrow{+ L} D \xrightarrow{+ CH_3I} H$$

Х (массовая доля более тяжелого компонента 98.45%) образуется в виде краснокоричневого осадка при добавлении к раствору кристаллогидрата соли А голубого цвета раствора одноосновной кислоты В, содержащей фосфор. Белый порошок У может быть получен действием L на иодид C или легковоспламеняющуюся жидкость **D** (молярная масса 95.4 г/моль). **Z** получают прямым взаимодействием эквимолярных количеств простых веществ Е и F под давлением. Е присутствует в составе минералов оливина, доломита И карналлита. Соединение L получают восстановлением устойчивого нитрида G, содержащего 40.20 масс. % азота. L и его производные широко используют в препаративной химии в качестве сильных восстановителей. Х и У весьма неустойчивы – разлагаются при нагревании выше 90°С. **К** и **H** – металлы с зарядом ядра, различающимся на 1. **J** – хлорсодержащая кислота. Х, У, Z, L – бинарные соединения, относящиеся к одному классу.

- 1. Определите вещества, зашифрованные буквами.
- 2. Напишите уравнения реакций.
- **3.** Объясните, почему **X** и **Y** заметно устойчивы в водном растворе, **Z** разлагается водой довольно медленно, в то время как **L** реагирует практически мгновенно, с большим тепловыделением.
- **4.** В качестве чего предлагали использовать **Z** в области альтернативной энергетики?
- **5.** Изобразите структурную формулу **B** и объясните почему **B** одноосновная кислота?

Задача З

При растворении меди в разбавленной HNO_3 выделяется бесцветный газ \mathbf{X} , буреющий на воздухе, и образуется синий раствор, из которого при упаривании кристаллизуется синий гидрат \mathbf{A} , содержащий 2.5 молекулы H_2O . Нагреванием \mathbf{A} на воздухе невозможно получить безводную соль \mathbf{D} , т.к. протекает двухстадийное термическое разложение сначала до основной соли \mathbf{B} с потерей массы 48.4%, а затем до оксида \mathbf{C} .

Схема I. A
$$\xrightarrow{\text{t °C}}$$
 B (52.9% Cu, 5.8% N) $\xrightarrow{\text{t °C}}$ C (79.9 % Cu)

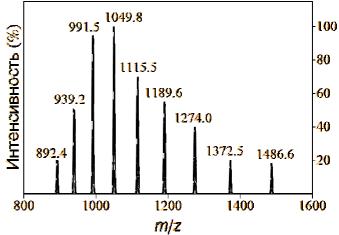
Для получения ${\bf D}$ на металлическую медь действуют жидким N_2O_4 , растворенным в этилацетате или ацетонитриле. Данные растворители способствуют диссоциации N_2O_4 на ионы, а образующиеся при диссоциации анионы координируются медью. Процесс также протекает в две стадии (${\bf Y}$ – комплексная соль CuN_4O_{10}).

Схема II.
$$Cu \xrightarrow{N_2O_4, CH_3CN} \mathbf{Y} \xrightarrow{t \circ C} \mathbf{D}$$

Также в качестве нитрующего агента для синтеза безводных нитратов металлов используют N_2O_5 , который диссоциирует на ионы в среде безводной азотной кислоты. Таким способом получают безводный нитрат циркония ${\bf E}$. Соль ${\bf Z}$ сходна с ${\bf Y}$.

Схема III.
$$ZrCl_4 \xrightarrow{N_2O_5, HNO_3} \mathbf{Z} (20.4\% Zr, 18.8\% N) \xrightarrow{t \, ^{\circ}C} \mathbf{E}$$

- **1.** Запишите уравнения реакций самоионизации N_2O_4 и N_2O_5 , протекающих в соответствующих растворах.
- **2.** Установите формулы веществ A E, X, Z и ионы, из которых построены комплексные соли Y и Z.
- 3. Запишите уравнения всех описанных в задаче реакций.
- **4.** Изобразите структурные формулы N_2O_4 и N_2O_5 .


Задача 4

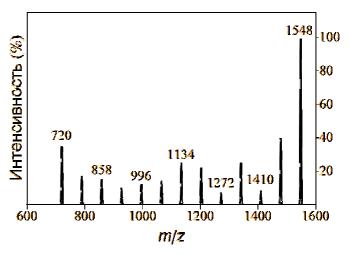
Эффективными строительными блоками получения ДЛЯ органических транзисторов являются молекулы тиофена, так как они обладают структурноотносительно стабильны, свойствами, но ΜΟΓΥΤ быть легко функционализированы. В 2011 году было получено производное тиофена, которая также является эффективным для органических транзисторов:

- **1.** Какое из ароматических соединений тиофен или бензол легче вступает в реакции электрофильного замещения?
- **2.** При нитровании тиофена образуется смесь двух мононитропроизводных в соотношении ~100:1. Напишите структурную формулу основного продукта.
- **3.** Напишите структуру амина RNH_2 если известно, что его спектр ЯМР 13 С содержит 3 сигнала (в молекуле имеется три типа атомов углерода).
- **4.** Расшифруйте схему синтеза, учитывая, что в спектре ¹Н ЯМР вещества **D** имеется 4 сигнала с интегральной интенсивностью 2:2:3:3.

Электрораспыление (англ. electrospray) — способ ионизации молекул, растворенных в жидкости. Основное преимущество — практическое отсутствие фрагментации молекул. Поток жидкости направляется в иглу-капилляр, на выходе из которой образуется аэрозоль из заряженных капель. Капли движутся под действием электрического поля, уменьшаясь в размере за счет испарения растворителя и самопроизвольного распада на более мелкие части. В итоге возникают микро-капли, содержащие всего одну заряженную молекулу (ион). После испарения последних порций растворителя ионы направляются в масс-спектрометр, где разделяются по величине отношения массы к заряду (m/z).

Электрораспыление используется для определения молекулярной массы белков. С помощью масс-спектрометра регистрируются пики многократно протонированных ионов вида $[\mathbf{A} + n\mathbf{H}]^{n+}$, где n — число присоединившихся к молекуле \mathbf{A} протонов. На рисунке приведен

масс-спектр фермента лизоцима А. Заряды соседних ионов отличаются на единицу.


- **1.** Выберите из масс-спектра любые два пика и по значениям m/z определите молекулярную массу М фермента **A**. Массу выразить в дальтонах (1 Да = 1 а.е.м. = $1.66054 \cdot 10^{-27}$ кг) и округлить до целого числа. Масса протона равна $m_p = 1.0073$ Да.
- **2.** Найти заряды (*z*) всех ионов, представленных в масс-спектре (целочисленные значения в элементарных зарядах $e = 1.602 \cdot 10^{-19}$ Кл).

Устойчивость заряженной капли по отношению к ее дроблению обусловлена конкуренцией электростатической и поверхностной энергии. Для сферической капли $U_{\text{эл}} = q^2 / 8\pi\epsilon_0 r$, где q — заряд капли, r — радиус, $\epsilon_0 = 8.854 \cdot 10^{-12} \, \text{Дж}^{-1} \text{Кл}^2 \text{м}^{-1}$, $U_{\text{пов}} = \sigma S$, где S — площадь поверхности капли, σ — поверхностное натяжение.

- 3. Из энергетических соображений вывести условие устойчивости сферической капли по отношению к распаду на две равные по объему части (с зарядами q/2) той же формы. Неравенство, выражающее это условие, должно содержать в качестве переменных заряд q и радиус r капли, а в качестве констант σ и ε_0 .
- 4. Какой максимальный заряд (в единицах е) может нести капля воды радиуса

 $10^{-5}\, \text{cm}$? Ответ округлить до целого числа. Поверхностное натяжение воды $\sigma = 7.28 \cdot 10^{-2} \; \text{Дж} \cdot \text{м}^{-2}.$

В отличие от электрораспыления, при ионизации молекул электронным ударом, как правило, наблюдается их значительная фрагментация. На рисунке представлен масс-спектр соединения фуллерена $C_N(\mathbf{CX_3})_n$, полученный при его испарении. Элемент \mathbf{X} – галоген. Все пики — ионы с зарядом +1, но разным числом групп $-\mathbf{CX_3}$.

5. *а*) Сколько атомов углерода (*N*) имеет молекула фуллерена, С \mathbf{X}_3 -производное которого изучалось? *b*) Определить элемент \mathbf{X} ; *c*) Определить число функциональных групп (*n*) в молекуле исследуемого соединения.

Задача 6

Из эфирных масел некоторых растений выделяют ментон (I), существующий в виде нескольких стереоизомеров:

- **1.** Циклоалканоны часто получают пиролизом кальциевых солей кислот. Этот метод был использован, в том числе, для доказательства структуры ментона. Пиролизом соли какой кислоты можно получить **I**?
- **2.** Назовите **I** по номенклатуре IUPAC. Нарисуйте структурные формулы всех стереоизомеров для **I**.

В (–)-ментоне атом углерода, связанный с CH_3 группой, имеет R-конфигурацию. При 20° С в водном растворе CH_3COOH в результате эпимеризации из (–)-**I** образуется равновесная смесь (–)-ментона и (+)-изоментона [(+)-*isoI*] с удельным вращением -3° . Превращение (–)-**I** \rightleftharpoons (+)-*isoI* происходит через промежуточное образование неустойчивого соединения **X**, имеющего в ИК-спектре широкую полосу при 3500-3200 см⁻¹ и являющегося изомером (–)-**I** и (+)-*isoI*.

- **3.** Рассчитайте содержание (%) (–)-**I** ([α] $_{\rm D}^{20^{\circ}{\rm C}}$ = -30°) и (+)-*iso***I** ([α] $_{\rm D}^{20^{\circ}{\rm C}}$ = $+92^{\circ}$), а также константу равновесия *K*. Изобразите структурную формулу **X**.
- **4.** Основываясь на результате ответа для п. 3, предложите строение (-)-**I** и (+)-*iso***I**, используя приведенные в листе ответов конформации циклогексана.

Химия изотопов имеет разнообразные полезные применения в разных областях науки и промышленности, например, изучение механизмов и кинетики реакций, исследование катализа, диффузии, адсорбции и т.д. В геохимии одним из полезных и практичных применений изотопов является определение возраста земных пород и других объектов, например, метеоритов.

Один из таких методов, который был разработан Лангмаром в 1947 году, основан на изотопах металлов самария и неодима. Количество ¹⁴³Nd, начиная с некоторого

значения $n_0(^{143}\mathrm{Nd})$ в момент образования тела (n- число молей), увеличивается во времени за счет распада $^{147}\mathrm{Sm}$ ($\tau_{\frac{1}{2}}=1.06\cdot10^{11}$ лет). Количество изотопа $^{144}\mathrm{Nd}$ постоянно во времени, что позволяет по отношению изотопов $^{143}\mathrm{Nd}$ / $^{144}\mathrm{Nd}$ и $^{147}\mathrm{Sm}$ / $^{144}\mathrm{Nd}$, найденному с помощью масс-спектрометрии, определить возраст образца.

В 1940 году в Австралии был найден метеорит, названный Моама. Считается, что его возраст сопоставим с возрастом Солнечной системы. В 1978 году из метеорита выделили минералы плагиоклаз и пироксен, которые проанализировали:

Минерал	$n(^{143}\text{Nd}) / n(^{144}\text{Nd})$	$n(^{147}\text{Sm}) / n(^{144}\text{Nd})$
Плагиоклаз	0.510	0.111
Пироксен	0.515	0.280

- **1.** а) Напишите реакцию распада 147 Sm; b) определите константу распада.
- **2.** Рассчитайте начальное отношение $n_0(^{143}\mathrm{Nd})/n_0(^{144}\mathrm{Nd})$ в момент образования метеорита, используя данные из таблицы, и учитывая, что это отношение одинаково в обоих минералах.
- 3. Рассчитайте возраст метеорита Моамы.
- **4.** Можно ли, используя изотопный метод, с помощью данных изотопов определить возраст горных пород, образовавшихся в 3-м 5-м тысячелетии до нашей эры? Ответ подтвердите расчетом.

Задача 8

В ноябре 2004 года скоропостижно скончался при странных обстоятельствах Председатель Палестинской национальной администрации, лауреат Нобелевской премии мира Ясир Арафат. В 2012 году по настоянию вдовы покойного тело Я. Арафата

было эксгумировано, а образцы тканей направлены на анализ. Результаты показали возможность смертельного отравления Я. Арафата веществом, содержащим изотоп Х.

Количество α -частиц, испускаемых в единицу времени образцом **X** массой 1.00 мг ($T_{1/2} = 138.4$ дня) и образцом 226 Ra ($T_{1/2} = 1601$ год) массой 4.55 г, идентично.

- **1.** Напишите уравнение радиоактивного распада изотопа ²²⁶Ra.
- 2. Рассчитайте молярную массу вещества X.
- 3. Когда эксгумация тела Я. Арафата (70 кг) стала бы нецелесообразной ввиду снижения общей α-радиоактивности тканей организма до 0.3 Бк/кг, если:
 - а) минимальная смертельная доза X составляет 1 мкг;
- b) В норме α -активность (A_{α}) тела человека (70 кг) равна 0.2 Бк/кг, не изменяясь много лет;
 - с) в процессе α -распада из **X** образуется нерадиоактивный изотоп. Соотношение числа нейтронов и протонов (N/Z) для **X** составляет 1.50.
- **4.** Определите **X**.

Более 90% ${\bf X}$ производится в России. В одностадийной методике получения ${\bf X}$ в качестве мишени используют изотоп $^{209}{
m Bi}$.

5. Напишите теоретически возможные уравнения ядерных реакций, если масса всех остальных частиц в реакции (кроме \mathbf{X} и $^{209}\mathrm{Bi}$) не превышает 1 а.е.м.

Образец **X** объемом 1 см³ ($\rho_{\mathbf{X}} = 9.2 \text{ г/см}^3$) выделяет значительную энергию в единицу времени (1210 Вт), что сопоставимо с мощностью электрического утюга. Это предопределяет крайне высокую токсичность **X** для живых организмов.

6. Рассчитайте начальную кинетическую энергию (в МэВ) α -частицы, образующейся при распаде **X**, при условии полной трансформации кинетической энергии в тепловую (1 эВ = $1.6 \cdot 10^{-19}$ Дж).